1
|
Camargo CA, Salvador-Reyes R, Bazzani CSR, Clerici MTPS, Marques MC, Mariutti LRB. Screening the carotenoid in vitro bioaccessibility of purple corn breakfast cereal consumed with milk and plant-based milk. Food Res Int 2024; 197:115259. [PMID: 39593341 DOI: 10.1016/j.foodres.2024.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Chronic non-communicable diseases (NCD), such as cardiovascular diseases, diabetes, and cancer, dominate global mortality, besides compromising the quality of life. Unhealthy habits like sedentary lifestyles and poor diets escalate NCD risks. Conversely, the consumption of phenolic compounds and carotenoids has shown promise in reducing NCD risks. The food industry responds by adapting products to meet demands for healthier options rich in bioactive compounds. For instance, breakfast cereals made from purple and yellow corn offer carotenoids and anthocyanins and form a nutrient-balanced meal when consumed with milk or alternatives. However, bioactive compounds in food do not guarantee absorption, necessitating bioaccessibility studies. In this study, we aimed to evaluate the bioaccessibility of the major carotenoids in two breakfast cereals, one made with 100% yellow corn and the other with 50% purple corn, co-digested with whole milk, semi-skimmed milk, skimmed milk, and almond "milk". The bioaccessibility of lutein in the breakfast cereals was evaluated using the INFOGEST 2.0 in vitro digestion method. Results showed that lutein bioaccessibility ranged from 9% to 29%. The bioaccessibility was lower than that observed in other food matrices, such as spinach and maize products. High fiber, low carotenoid contents, and anthocyanin presence negatively influenced the carotenoid bioaccessibility. Interestingly, the varying lipid content of milk showed no impact on lutein bioaccessibility under the examined conditions. In conclusion, the effects of lipids in a low range (0-7%) are not significant (p > 0.05) compared to other matrix components. When developing new products with health and nutritional benefits, it is important to consider that while fiber can reduce the bioaccessibility of carotenoids, it remains crucial for gut health.
Collapse
Affiliation(s)
- Celso Andrade Camargo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | | | - Carmen Sílvia Rincon Bazzani
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | | | - Marcella Camargo Marques
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | - Lilian Regina Barros Mariutti
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| |
Collapse
|
2
|
Šimurina O, Filipčev B, Kiprovski B, Nježić Z, Janić Hajnal E, Đalović I. Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish "proja" Made from Pigmented Maize. Foods 2024; 13:2799. [PMID: 39272564 PMCID: PMC11394680 DOI: 10.3390/foods13172799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Two genotypes of pigmented maize (black (BM) and red (RM)) were used as flour ingredients in several formulations of the traditional baked maize dish "proja". This study investigated the stability of phytochemical compounds and antioxidant activity in proja as affected by baking and different acidity degrees of dough formulations. Compared to RM proja, all BM proja formulations were significantly higher in antioxidant compounds and exhibited the highest inhibitory activity (73-85%) against DPPH. There was a strong significant correlation between DPPH inhibition and total phenolics (r2 = 0.95), flavonoids (r2 = 0.96), and anthocyanins (r2 = 0.97) in baked proja. After baking, 67-85% of total phenolics were retained. The fate of flavonoids and anthocyanins after baking was variable: from 70% degradation to liberation. Dough acidity significantly and positively affected the content of phenolics, flavonoids, and anthocyanins in BM proja (r2 = 0.70, 0.82, and 0.47, respectively). Baking increased antioxidant activity against DPPH, •OH, and O2•- radicals in proja, except for ≈10% decline of DPPH inhibition in BM proja. In RM proja, retention of inhibitory capacity against O2•- was highly correlated to flavonoid retention (r2 = 0.71). Using pigmented maize flour in proja baking resulted in proja with appreciable content of total phenolics, flavonoids, anthocyanins, and high antioxidant activity, confirming the significant improvement of the nutrient profile of this traditional food.
Collapse
Affiliation(s)
- Olivera Šimurina
- Institute of Food Technology, University of Novi Sad, Bul. cara Lazara, 21000 Novi Sad, Serbia
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bul. cara Lazara, 21000 Novi Sad, Serbia
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21101 Novi Sad, Serbia
| | - Zvonko Nježić
- Institute of Food Technology, University of Novi Sad, Bul. cara Lazara, 21000 Novi Sad, Serbia
| | - Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bul. cara Lazara, 21000 Novi Sad, Serbia
| | - Ivica Đalović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21101 Novi Sad, Serbia
| |
Collapse
|
3
|
Salvador-Reyes R, Furlan LC, Martínez-Villaluenga C, Dala-Paula BM, Clerici MTPS. From ancient crop to modern superfood: Exploring the history, diversity, characteristics, technological applications, and culinary uses of Peruvian fava beans. Food Res Int 2023; 173:113394. [PMID: 37803732 DOI: 10.1016/j.foodres.2023.113394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 10/08/2023]
Abstract
The search for plant-based superfoods has shown that many regional populations already have these foods in their diet, with significant potential for production and marketing. This critical review intends to show the history, diversity, characteristics, and uses, emphasizing their significance in traditional diets and potential in the food industry of Peruvian fava beans. As a valuable plant-based protein source, fava beans offer essential micronutrients and have diverse culinary applications. Innovative food industry applications include plant-based meat alternatives, fortified gluten-free products, and a natural color, protein, and fiber source in extruded foods. Key studies have highlighted the successful incorporation of fava beans into various food products, improving their nutritional properties, though some studies also point to limitations in their sensory acceptance. Further research is needed to understand the bioactive components, health effects, and techno-functional characteristics of beans. Challenges facing cultivating and consuming fava beans in Peru include adapting to climate change, enhancing productivity and quality, and promoting consumption and added value. Addressing these challenges involves developing climate-resilient varieties, optimizing agricultural practices, and providing access to resources and financing. In conclusion, this review highlights the promising prospects of Peruvian fava beans as a sustainable, nutritionally rich, and versatile ingredient in the food industry. By harnessing their potential and overcoming challenges, Peruvian fava beans can transition from an ancient crop to a modern superfood, inspiring a global shift towards sustainable and nutritionally balanced diets, aiding the fight against malnutrition, and enriching culinary traditions worldwide.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil; Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | | | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Department of Technological Processes and Biotechnology, Jose Antonio Novais, 6, 28040 Madrid, Spain
| | - Bruno Martins Dala-Paula
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil
| | | |
Collapse
|
4
|
Lu Y, Yu Y, Xuan Y, Kari A, Yang C, Wang C, Zhang C, Gu W, Wang H, Hu Y, Sun P, Guan Y, Si W, Bai B, Zhang X, Xu Y, Prasanna BM, Shi B, Zheng H. Integrative transcriptome and metabolome analysis reveals the mechanisms of light-induced pigmentation in purple waxy maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1203284. [PMID: 37649997 PMCID: PMC10465178 DOI: 10.3389/fpls.2023.1203284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Introduction Waxy maize, mainly consumed at the immature stage, is a staple and vegetable food in Asia. The pigmentation in the kernel of purple waxy maize enhances its nutritional and market values. Light, a critical environmental factor, affects anthocyanin biosynthesis and results in pigmentation in different parts of plants, including in the kernel. SWL502 is a light-sensitive waxy maize inbred line with purple kernel color, but the regulatory mechanism of pigmentation in the kernel resulting in purple color is still unknown. Methods In this study, cyanidin, peonidin, and pelargonidin were identified as the main anthocyanin components in SWL502, evaluated by the ultra-performance liquid chromatography (UPLC) method. Investigation of pigment accumulation in the kernel of SWL502 was performed at 12, 17, and 22 days after pollination (DAP) under both dark and light treatment conditions via transcriptome and metabolome analyses. Results Dark treatment affected genes and metabolites associated with metabolic pathways of amino acid, carbohydrate, lipid, and galactose, biosynthesis of phenylpropanoid and terpenoid backbone, and ABC transporters. The expression of anthocyanin biosynthesis genes, such as 4CL2, CHS, F3H, and UGT, was reduced under dark treatment. Dynamic changes were identified in genes and metabolites by time-series analysis. The genes and metabolites involved in photosynthesis and purine metabolism were altered in light treatment, and the expression of genes and metabolites associated with carotenoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, and plant hormone signal transduction pathway were induced by dark treatment. Light treatment increased the expression level of major transcription factors such as LRL1, myc7, bHLH125, PIF1, BH093, PIL5, MYBS1, and BH074 in purple waxy maize kernels, while dark treatment greatly promoted the expression level of transcription factors RVE6, MYB4, MY1R1, and MYB145. Discussion This study is the first report to investigate the effects of light on waxy maize kernel pigmentation and the underlying mechanism at both transcriptome and metabolome levels, and the results from this study are valuable for future research to better understand the effects of light on the regulation of plant growth.
Collapse
Affiliation(s)
- Yuan Lu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yao Yu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yanfang Xuan
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ayiguli Kari
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Caixia Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chenyu Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chao Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wei Gu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hui Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yingxiong Hu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Pingdong Sun
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuan Guan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wenshuai Si
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bing Bai
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Yunbi Xu
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Biao Shi
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongjian Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
5
|
Bongianino NF, Steffolani ME, Morales CD, Biasutti CA, León AE. Technological and Sensory Quality of Gluten-Free Pasta Made from Flint Maize Cultivars. Foods 2023; 12:2780. [PMID: 37509871 PMCID: PMC10378873 DOI: 10.3390/foods12142780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The development of quality gluten-free products presents a major technological challenge in terms of structure, texture, and shelf life. However, there is insufficient information available to identify genotypes for obtaining gluten-free maize pasta of good acceptability and technological quality. The objective of this work was to evaluate the technological and sensory quality of gluten-free pasta made from different maize cultivars. The flint open-pollinated variety, flint inbred line, and three dent commercial hybrids were used. Grain and flour's physical characteristics and chemical composition were determined. Gluten-free pasta was made via extrusion, and its quality traits were studied. A sensory evaluation test was carried out. Flint cultivars showed the lowest values on swelling index (both 1.77) and water absorption (124.30 and 134.58%). Pasta swelling index showed a negative association r = -0.77 to sodium carbonate retention capacity (p = 8.5 × 10-5) and water retention capacity (p = 6.6 × 10-5). Evaluators' preference results showed a higher frequency of choices at the top level of preference (4) for the flint open-pollinated variety C6006. Thus, evaluators' choices showed a positive association between sample preference and firmness. Pasta preference and technological quality have a direct relationship with fast tests over grain, such as test weight and float index.
Collapse
Affiliation(s)
- Nicolás Francisco Bongianino
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), National Scientific and Technical Research Council (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina
- Mejoramiento Genético Vegetal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Casilla de Correo 509, Córdoba 5000, Argentina
| | - María Eugenia Steffolani
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), National Scientific and Technical Research Council (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina
- Química Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Casilla de Correo 509, Córdoba 5000, Argentina
| | - Claudio David Morales
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), National Scientific and Technical Research Council (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina
| | - Carlos Alberto Biasutti
- Mejoramiento Genético Vegetal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Casilla de Correo 509, Córdoba 5000, Argentina
| | - Alberto Edel León
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), National Scientific and Technical Research Council (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Argentina
- Química Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Casilla de Correo 509, Córdoba 5000, Argentina
| |
Collapse
|
6
|
Optimization of Extrusion Treatments, Quality Assessments, and Kinetics Degradation of Enzyme Activities during Storage of Rice Bran. Foods 2023; 12:foods12061236. [PMID: 36981162 PMCID: PMC10048670 DOI: 10.3390/foods12061236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Over the years, extrusion has been a multi-step thermal technique that has proven to be the most effective process to stabilize rice bran (RB). This study aimed to investigate the effects of extrusion treatment and temperature (15, 25, and 40 °C) on the storage stability, lipid oxidation, peroxidase, and peroxide values, free fatty acids, fatty acid composition, and protein variations of RB over 60 days. The study offers novel insights into the changes in RB’s protein and amino acid compositions during extrusion and storage, which has not been extensively explored in prior research. After extrusion processing, peroxidase activity (POD) and lipase activity (LPS) were significantly reduced. However, peroxide value (PV), free fatty acids (FFA), and malondialdehyde content (MDA) observed a significantly increased by 0.64 mEqO2/kg, 8.3 mg/100 g, and 0.0005 μmol/L respectively. The storage stability of RB after extrusion shows that the POD, LPS, FFA, PV, and MDA were positively correlated with storage duration and temperature. The oleic acid/linoleic acid ratio in processed RB by extrusion had no significant changes during storage. The total and essential/non-essential amino acid ratios showed a downward trend of 5.26% and 8.76%, respectively. The first-order kinetics was the best-fitting model to describe the enzymatic inactivation and degradation of extruded RB during storage. The extrusion treatment did not affect the crude protein and the essential subunits of protein. Overall, the optimized extrusion procedure exhibited promising results in stabilizing the RB.
Collapse
|