1
|
Xia X, Wu Y, Chen Z, Du D, Chen X, Zhang R, Yan J, Wong IN, Huang R. Colon cancer inhibitory properties of Caulerpa lentillifera polysaccharide and its molecular mechanisms based on three-dimensional cell culture model. Int J Biol Macromol 2024; 267:131574. [PMID: 38615857 DOI: 10.1016/j.ijbiomac.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510535, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Danyi Du
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Guangzhou 510515, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
You Y, Song C, Fu Y, Sun Y, Wen C, Zhu B, Song S. Structure-activity relationship of Caulerpa lentillifera polysaccharide in inhibiting lipid digestion. Int J Biol Macromol 2024; 260:129435. [PMID: 38228205 DOI: 10.1016/j.ijbiomac.2024.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Caulerpa lentillifera polysaccharide (CLP) has been characterized as a sulfated polysaccharide which can effectively inhibit lipid digestion. However, little information was known regarding its inhibitory mechanisms. In the present study, desulfation and degradation were conducted to prepare the derivatives of CLP, and a series of chemical and spectroscopic methods were used to elucidate the structure-activity relationship of CLP on the inhibitory effect of lipid digestion. Results revealed that CLP possessed excellent binding capacities for sodium cholate, sodium glycocholate, and sodium taurocholate. In addition, CLP can effectively inhibit lipase activity by quenching the fluorescence intensity, changing the secondary structure, and decreasing the UV-Vis absorbance. Of note, sulfate groups in CLP took a vital role in inhibiting lipase activity, while the molecular weight of CLP showed a positive correlation with the binding activities of bile acids. Furthermore, adding CLP into the whey protein isolate (WPI) emulsion system also impeded lipid digestion, indicating that CLP can be a potential reduced-fat nutraceutical used in food emulsion systems.
Collapse
Affiliation(s)
- Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China; Institute of Functional Agriculture, Shanxi Agriculture University, Taigu 030801, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chen Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yinghuan Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaa-nxi University of Science and Technology, Xi'an 710021, PR China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China; Institute of Functional Agriculture, Shanxi Agriculture University, Taigu 030801, China.
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Wang N, Ren D, Zhang L, Han N, Zhao Y, Yang X. Effects of sheep whey protein combined with Fu brick tea polysaccharides and stachyose on immune function and intestinal metabolites of cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3402-3413. [PMID: 36722467 DOI: 10.1002/jsfa.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sheep whey protein (SWP), Fu brick tea polysaccharides (FBTP) and stachyose (STA) have been shown to improve immunity, but little is known about the regulatory effect of SWP, FBTP, STA and their combined formula (CF) on immune function and intestinal metabolism of immunosuppressed mice induced by cyclophosphamide (CTX). RESULTS Administration of SWP, FBTP, STA or CF restored the levels of body weight, immune organ index, immune organ morphology, cytokines and immunoglobulins in CTX immunosuppressed mice. Interestingly, CF improved all the mentioned parameters more effective than administration of SWP, FBTP or STA alone. In addition, CF was more effective to increase the levels of intestinal immune-related gene expression than FBTP, SWP or STA alone in immunosuppressed mice, suggesting that CF exhibited excellent intestinal immune regulation function. CF also significantly improved cecal concentrations of short-chain fatty acids of CTX-treated mice. Furthermore, metabolomics analysis demonstrated that CF recovered the levels of 28 metabolites associated with the CTX treatment to the levels of normal mice. CONCLUSION Conclusively, these findings suggested that CF as a functional food combination of SWP, FBTP and STA could promote the immune function against human diseases, which providing theoretical support for the co-ingestion of SWP and functional sugars as a feasible strategy for improving the body immunity in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ning Han
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
4
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|