1
|
Zhang T, Zhong H, Yang M, Shi X, Yang L, Yang J, Liu H, Luo Y, Xie Y, Zhong Z, Peng G, Zhang K, Zheng C, Zhang M, Zhou Z. Lactobacillus salivary LSbg3 is a Potential Food Probiotic Having Excellent Anti-pathogen Effect That Might Improve Antibiotic-Resistant Diarrhea in Dogs. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10527-0. [PMID: 40259196 DOI: 10.1007/s12602-025-10527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Antibiotics may disrupt the intestinal microbiota balance and induce antimicrobial resistance. Although probiotics should be a priority treatment for animal diarrhea, it still has chance to be used as same/or behind as antibiotics in the clinic. Among the probiotics, Lactobacillus (Lact.) was the most frequently utilized in clinical setting since its excellent ability of safety, anti-pathogen, stress resistance, and easy colonization in intestine. In this study, we screened 24 strains of Lact. in the presence of antibiotics from clinical common antibiotic-treated feces, identified L. salivarius LSbg3 exhibiting good stress resistance, potent antibacterial activity, and exceptional intestinal adhesion capability. Its genome showed a good function of regulating intestinal nutrition while lack of transmission antibiotic-resistance genes. Additionally, in a simulated canine diarrhea with failed antibiotic treatment, LSbg3 had a good efficacy in the releasing diarrhea, balancing the microbiome and suppressing typical pathogens, positioning a potential food probiotic have excellent effect on anti-pathogen that can effectively improve antibiotic-resistant diarrhea in dogs.
Collapse
Affiliation(s)
- Ting Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongyu Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu, 611130, China
| | - Xin Shi
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Liuqing Yang
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu, 611731, Sichuan, China.
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Joung JY, Choi K, Lee JH, Oh NS. Protective Potential of Limosilactobacillus fermentum Strains and Their Mixture on Inflammatory Bowel Disease via Regulating Gut Microbiota in Mice. J Microbiol Biotechnol 2024; 35:e2410009. [PMID: 39849930 PMCID: PMC11813365 DOI: 10.4014/jmb.2410.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study is to investigate the protective potential of Limosilactobacillus fermentum IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells. Subsequently, the potential protective effects of each of these three strains, along with their mixture, were evaluated in a murine colitis model induced by dextran sodium sulfate (DSS). Noteworthy improvements in physiological parameters such as body weight, disease activity index, and colon length were observed in mice treated with the mixture followed by IR62. Additionally, administration of each strain and the mixture mitigated DSS-induced changes in gut microbiota composition with increased abundance of Lactobacillus, Bifidobacterium, Ruminococcus, and Muribaculum, compared to DSS-treated mice. Interestingly, the abundance of Muribaculum increased approximately 2.4-fold after administration of the mixture compared to before administration. Additionally, the concentration of short-chain fatty acids (SCFAs) was significantly reduced in DSS-treated group compared to the control group, while the mixture treatment group had the highest concentration of SCFAs. Furthermore, due to these changes in microbiota and the leading metabolites induced by treatment of the mixture, DSS-induced dysregulation of inflammationand barrier function-related mRNA expressions was significantly inhibited in the group fed with the mixture. Consequently, this study indicates that the multi-strain mixture of L. fermentum strains may play a crucial role in modulating gut microbiota, thereby alleviating IBD through the synergistic effect of the individual effects of the three strains.
Collapse
Affiliation(s)
- Jae Yeon Joung
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Kayoung Choi
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Chen Y, Chen L, Huang S, Yang L, Wang L, Yang F, Huang J, Ding X. Predicting novel biomarkers for early diagnosis and dynamic severity monitoring of human ulcerative colitis. Front Genet 2024; 15:1429482. [PMID: 39144720 PMCID: PMC11321978 DOI: 10.3389/fgene.2024.1429482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background Ulcerative colitis is an emerging global health concern that poses a significant threat to human health and can progress to colorectal cancer if not diagnosed and treated promptly. Currently, the biomarkers used clinically for diagnosis and dynamic severity monitoring lack disease specificity. Methods Mouse models induced with 2%, 2.5%, and 3% DSS were utilized to simulate human UC with varying severities of inflammation. Transcriptome sequencing technology was employed to identify differentially expressed genes (DEGs) between the control group and each treatment group. Functional enrichment analysis of the KEGG database was performed for shared DEGs among the three treatment groups. DEGs that were significantly and strongly correlated with DSS concentrations were identified using Spearman correlation analysis. Human homologous genes of the interested DEGs were searched in the HomoloGene database, and their regulation patterns in UC patients were validated using the GSE224758 dataset. These genes were then submitted to the DisGeNET database to identify their known associations with human diseases. Online tools, including SignalP 6.0 and DeepTMHMM 1.0, were used to predict signal peptides and transmembrane helices in the amino acid sequences of human genes homologous to the DEGs of interest. Results A total of 1,230, 995, and 2,214 DEGs were identified in the 2%, 2.5%, and 3% DSS-induced groups, respectively, with 668 DEGs common across all three groups. These shared DEGs were primarily associated with signaling transport, pathogenesis, and immune response. Through extensive screening, LGI2 and PRSS22 were identified as potentially novel biomarkers with higher specificity and ease of detection for the early diagnosis and dynamic severity monitoring of human UC, respectively. Conclusion We have identified two potentially novel biomarkers, LGI2 and PRSS22, which are easy of detection and more specific for human UC. These findings provide new insights into the accurate diagnosis and dynamic monitoring of this persistent disease.
Collapse
Affiliation(s)
- Yu Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Wang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xiuliang Ding
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
4
|
Zhong Y, Guo J, Zheng Y, Lin H, Su Y. Metabolomics analysis of the lactobacillus plantarum ATCC 14917 response to antibiotic stress. BMC Microbiol 2024; 24:229. [PMID: 38943061 PMCID: PMC11212188 DOI: 10.1186/s12866-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Huale Lin
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
He C, Mao Y, Wei L, Zhao A, Chen L, Zhang F, Cui X, Pan MH, Wang B. Lactiplantibacillusplantarum JS19-adjunctly fermented goat milk alleviates D-galactose-induced aging by modulating oxidative stress and intestinal microbiota in mice. J Dairy Sci 2024:S0022-0302(24)00860-9. [PMID: 38825119 DOI: 10.3168/jds.2024-24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Oxidative stress is a crucial factor in the age-related decline in physiological, genomic, metabolic, and immunological functions. We screened Lactiplantibacillus plantarum JS19 (L. plantarum JS19), which has been shown to possess therapeutic properties in mice with ulcerative colitis. In this study, L. plantarum JS19-adjunctly fermented goat milk (LAF) was employed to alleviate D-galactose-induced aging and regulate intestinal flora in an aging mouse model. The oral administration of LAF effectively improved the health of spleen and kidney in mice, while mitigating the hepatocyte and oxidative damage induced by D-galactose. Additionally, LAF alleviated D-galactose-induced dysbiosis of the intestinal flora by reducing the abundance of harmful bacteria Desulfovibrio and Helicobacter, while greatly promoting the growth of beneficial Rikenellaceae_RC9_gut_group and Eubacterium. Biomarker 5-hydroxyindole-3-acetic acid was found to be positively linked with those harmful bacteria, while bio-active metabolites were strongly correlated with the beneficial genus. These observations suggest that LAF possesses the capability to mitigate the effects of D-galactose-induced aging in a mouse model through the regulation of oxidative stress, the gut microbiota composition, and levels of fecal metabolites. Consequently, these findings shed light on the potential of LAF as a functional food with anti-aging properties.
Collapse
Affiliation(s)
- Chao He
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yazhou Mao
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lusha Wei
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Li Chen
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Fuxin Zhang
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd., Xi'an 710000, China
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Bini Wang
- College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Filidou E, Kandilogiannakis L, Shrewsbury A, Kolios G, Kotzampassi K. Probiotics: Shaping the gut immunological responses. World J Gastroenterol 2024; 30:2096-2108. [PMID: 38681982 PMCID: PMC11045475 DOI: 10.3748/wjg.v30.i15.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Probiotics are live microorganisms exerting beneficial effects on the host's health when administered in adequate amounts. Among the most popular and adequately studied probiotics are bacteria from the families Lactobacillaceae, Bifidobacteriaceae and yeasts. Most of them have been shown, both in vitro and in vivo studies of intestinal inflammation models, to provide favorable results by means of improving the gut microbiota composition, promoting the wound healing process and shaping the immunological responses. Chronic intestinal conditions, such as inflammatory bowel diseases (IBD), are characterized by an imbalance in microbiota composition, with decreased diversity, and by relapsing and persisting inflammation, which may lead to mucosal damage. Although the results of the clinical studies investigating the effect of probiotics on patients with IBD are still controversial, it is without doubt that these microorganisms and their metabolites, now named postbiotics, have a positive influence on both the host's microbiota and the immune system, and ultimately alter the topical tissue microenvironment. This influence is achieved through three axes: (1) By displacement of potential pathogens via competitive exclusion; (2) by offering protection to the host through the secretion of various defensive mediators; and (3) by supplying the host with essential nutrients. We will analyze and discuss almost all the in vitro and in vivo studies of the past 2 years dealing with the possible favorable effects of certain probiotic genus on gut immunological responses, highlighting which species are the most beneficial against intestinal inflammation.
Collapse
Affiliation(s)
- Eirini Filidou
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Leonidas Kandilogiannakis
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Anne Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - George Kolios
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| |
Collapse
|
7
|
Wang Z, Zhang Z, Shi Q, Liu S, Wu Q, Wang Z, Saiding E, Han J, Zhou J, Wang R, Su X. Comparison of Lactiplantibacillus plantarum isolates from the gut of mice supplemented with different types of nutrients: a genomic and metabolomic study. Front Microbiol 2023; 14:1295058. [PMID: 38033563 PMCID: PMC10684713 DOI: 10.3389/fmicb.2023.1295058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Many studies have focused on the influence of dietary supplements on gut microbiota composition, but limited research have reported their effects on specific bacterial species in the gut. Lactiplantibacillus plantarum is one of the most widely studied probiotics, with a wide range of sources and good environmental adaptability. In this study, in order to elucidate the adaptation strategies of L. plantarum to the gut of mice supplemented with carbohydrates, peptides and minerals, whole genome resequencing and intracellular metabolites detection were performed, and high-frequency mutant genes and differential metabolites were screened. The results suggested different types of dietary supplements do have different effects on L. plantarum from the gut of mice. Additionally, KEGG annotation unveiled that the effects of these dietary supplements on the gene level of L. plantarum primarily pertained to environmental information processing, while the differential metabolites were predominantly associated with metabolism. This study provided new perspectives on the adaptive mechanism of L. plantarum in response to the host's gut environment, suggesting that the diversity of the genome and metabolome of L. plantarum was correlated with dietary supplements. Furthermore, this study offered useful guidance in the effective utilization of dietary supplements.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiuyue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Yuan Y, Yang Y, Xiao L, Qu L, Zhang X, Wei Y. Advancing Insights into Probiotics during Vegetable Fermentation. Foods 2023; 12:3789. [PMID: 37893682 PMCID: PMC10606808 DOI: 10.3390/foods12203789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Fermented vegetables have a long history and are enjoyed worldwide for their unique flavors and health benefits. The process of fermentation improves the nutritional value, taste, and shelf life of foods. Microorganisms play a crucial role in this process through the production of metabolites. The flavors of fermented vegetables are closely related to the evaluation and succession of microbiota. Lactic acid bacteria (LABs) are typically the dominant bacteria in fermented vegetables, and they help inhibit the growth of spoilage bacteria and maintain a healthy gut microbiota in humans. However, homemade and small-scale artisanal products rely on spontaneous fermentation using bacteria naturally present on fresh vegetables or from aged brine, which may introduce external microorganisms and lead to spoilage and substandard products. Hence, understanding the role of LABs and other probiotics in maintaining the quality and safety of fermented vegetables is essential. Additionally, selecting probiotic fermentation microbiota and isolating beneficial probiotics from fermented vegetables can facilitate the use of safe and healthy starter cultures for large-scale industrial production. This review provides insights into the traditional fermentation process of making fermented vegetables, explains the mechanisms involved, and discusses the use of modern microbiome technologies to regulate fermentation microorganisms and create probiotic fermentation microbiota for the production of highly effective, wholesome, safe, and healthy fermented vegetable foods.
Collapse
Affiliation(s)
- Yingzi Yuan
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Yutong Yang
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lele Xiao
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lingbo Qu
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoling Zhang
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| |
Collapse
|
9
|
Liu M, Wang Y, Guan G, Lu X, Zhu Y, Duan X. Dietary Supplementation of Ancientino Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress. Nutrients 2023; 15:2798. [PMID: 37375702 DOI: 10.3390/nu15122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Ancientino, a complex dietary fiber supplement mimicking the ancient diet, has improved chronic heart failure, kidney function, and constipation. However, its effect on ulcerative colitis is unknown. This study explores the impact of Ancientino on colitis caused by dextran sulfate sodium (DSS) and its mechanisms. Data analyses showed that Ancientino alleviated bodyweight loss, colon shortening and injury, and disease activity index (DAI) score, regulated levels of inflammatory factors (tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), interleukin-1 beta (IL-1β), and interleukin 6 (IL-6)), reduced intestinal permeability (d-lactate and endotoxin), fluorescein isothiocyanate-dextran (FITC-dextran), and diamine oxidase (DAO), repaired colonic function (ZO-1 and occludin), and suppressed oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)) in vivo and in vitro. In short, this study demonstrated that Ancientino alleviates colitis and exerts an anticolitis effect by reducing inflammatory response, suppressing oxidative stress, and repairing intestinal barrier function. Thus, Ancientino may be an effective therapeutic dietary resource for ulcerative colitis.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Yuhui Wang
- School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
- Industrial Technology Research Institute, Guilin Medical University, Guilin 541199, China
| | - Guoqiang Guan
- School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
- Industrial Technology Research Institute, Guilin Medical University, Guilin 541199, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xi Lu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Xiaoqun Duan
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
- Industrial Technology Research Institute, Guilin Medical University, Guilin 541199, China
| |
Collapse
|