1
|
Li C, Sun Y, Pan D, Zhou C, He J, Du L. Contribution of ultrasound-assisted protein structural changes in marinated beef to the improved binding ability of spices and flavor enhancement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1239-1250. [PMID: 39297357 DOI: 10.1002/jsfa.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Marination is an important part of air-dried beef processing, and traditional methods are inefficient and produce inconsistent results. Ultrasound, as a novel technology, can be combined with traditional marination methods. The study aimed to investigate the improvement of beef flavor by ultrasound-assisted marination. At the same time, the potential relationship between the alteration of meat protein and flavor quality by ultrasound-assisted marinating was further investigated to enable better flavor modulation and research. RESULTS Headspace solid-phase microextraction-gas chromatography-mass spectrometry revealed that the spice flavor of beef was significantly enhanced by 500 W ultrasound-assisted marination. Meanwhile, the experimental results demonstrated that the ultrasound-assisted marination promoted the unfolding of beef myofibrillar protein structure, which increased the number of hydrophobic and hydrogen bonding sites, enhanced the electrostatic effect and improved the functional properties of the protein. Ultrasound-assisted marination significantly enhanced the binding ability of beef myofibrillar proteins to flavor compounds compared with conventional marination. An electronic nose confirmed that this resulted in a significant increase in the flavor of the marinated meat. CONCLUSION Ultrasound-assisted marination effectively enhanced the flavor of marinated meat, which was closely related to the development of protein conformation. The results of this study have important implications for the food industry and the role of protein unfolding processes in flavor modulation. In particular, the findings can be practically applied to improving meat flavor under ultrasound-assisted marination. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chukai Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yangying Sun
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Daodong Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Changyu Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Jun He
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lihui Du
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Lou K, Zheng Y, Wang L, Zhou C, Wang J, Pan D, Wu Z, Cao J, Zhang H, Xia Q. Molten globule-state protein structure: Perspectives from food processing applications. Food Res Int 2024; 198:115318. [PMID: 39643361 DOI: 10.1016/j.foodres.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Under specific pretreatment or processing conditions, spheroprotein can be transformed into a molten globule state, a typical protein conformation with enhanced functionality. Analyzing the correlation between the formation of molten-globule structures and their quality and functional characteristics is critical for developing tailored processing features, especially for minimally processed future foods. This review outlines the mechanisms driving the formation of molten globule proteins through various processes including ultra-high pressure pretreatments, heating, ultrasonication, pH-shifting, macromolecular crowding and exposure to small-molecule denaturants. These treatments yield proteins that retain structural compactness and primary and secondary structures of their native forms, but with modified conformations and increased hydrophobicity. Common methods for characterizing molten globule proteins include fluorescence spectroscopy, circular dichroism spectroscopy, and nuclear magnetic resonance. The review also explores the application of molten globule proteins in food processing, highlighting their potential significance in advancing the field. The detailed elucidation and exploration of the microstructural transition and conformational features of molten globule proteins, together with their quantitative relationship with processibility of proteins from various sources, holds significant implications for optimizing protein-based food processing techniques and achieving targeted improvements in food quality.
Collapse
Affiliation(s)
- Kangshuai Lou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changyu Zhou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Daodong Pan
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiang Xia
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Wang X, Zhu J, Tang T, Yang L, Chen X, Meng S, Zheng R, Wu H. Carboxymethyl chitosan coating infused with linalool-loaded molten globular β-Lactoglobulin nanoparticles for extended preservation of fresh-cut apples. Food Chem 2024; 460:140578. [PMID: 39106811 DOI: 10.1016/j.foodchem.2024.140578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
This investigation employed molten globule state β-lactoglobulin nanoparticles (MG-BLGNPs) for encapsulating linalool (LN) combined with carboxymethyl chitosan (CMC) coating to enhance the shelf-life of fresh-cut apples. The effect of different MG structures on the encapsulation efficiency of BLGNPs and the properties of coating was studied. Structural characterization and molecular simulation showed structural differences between heat-induced MG state (70-BLGNPs, heated at 70 °C for 1 h) and sodium dodecyl sulfate-co-heat-induced MG state (SDS/70-BLGNPs, treated with 0.192 mg/mL SDS for 10 min, then heated at 70 °C for 1 h), with the latter being more unfolded. LN self-assembles into MG-BLGNPs, among the generated particles, SDS/70-BLG@LN exhibits stronger binding effect and higher LN loading capacity. Integration of MG-BLG@LN into CMC enhanced coating's mechanical properties and adhesion to fresh-cut apples. The SDS/70-BLG@LN/CMC coating showed superior preservation on fresh-cut apples during storage, reducing enzymatic browning, membrane lipid oxidation, and microbial growth while maintaining hardness and overall quality.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Tianjin Tang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Xingyu Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Si Meng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rui Zheng
- Shimadzu China Co. LTD, Shanghai 200233, China
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
4
|
Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, Wu Z, Wang Z, Pan D, Cao J, Xia Q. Exploring the binding mechanisms of thermally and ultrasonically induced molten globule-like β-lactoglobulin with heptanal as revealed by multi-spectroscopic techniques and molecular simulation. Int J Biol Macromol 2024; 263:130300. [PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
Collapse
Affiliation(s)
- Chuanhu Han
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Siqiang Huang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Le Xu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhaoshan Wang
- Shandong Zhongke Food Co., LtD, Tai'an City 271229, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Xia Q, Zhou C, Pan D, Cao J. Food off-odor generation, characterization and recent advances in novel mitigation strategies. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:113-134. [PMID: 38460997 DOI: 10.1016/bs.afnr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
The pronounced perception of off-odors poses a prevalent issue across various categories of food ingredients and processed products, significantly exerting negative effects on the overall quality, processability, and consumer acceptability of both food items and raw materials. Conventional methods such as brining, marinating, and baking, are the main approaches to remove the fishy odor. Although these methods have shown notable efficacy, there are simultaneously inherent drawbacks that ultimately diminish the processability of raw materials, encompassing alterations in the original flavor profiles, the potential generation of harmful substances, restricted application scopes, and the promotion of excessive protein/lipid oxidation. In response to these challenges, recent endeavors have sought to explore innovative deodorization techniques, including emerging physical processing approaches, the development of high-efficiency adsorbent material, biological fermentation methods, and ozone water rinsing. However, the specific mechanisms underpinning the efficacy of these deodorization techniques remain not fully elucidated. This chapter covers the composition of major odor-causing substances in food, the methodologies for their detection, the mechanisms governing their formation, and the ongoing development of deodorization techniques associated with the comparison of their advantages, disadvantages, and application mechanisms. The objective of this chapter is to furnish a theoretical framework for enhancing deodorization efficiency through fostering the development of suitable deodorization technologies in the future.
Collapse
Affiliation(s)
- Qiang Xia
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Changyu Zhou
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing, P.R. China.
| |
Collapse
|
6
|
Liu L, Lu S, Zhang W, Bai F, Wang J, Zhang X, Xu H, Jiang X, An S, Li W, Zhao Y, Xu X. Correlation investigation between core microbe inoculation and the evolution of flavor characteristics during the storage of sturgeon caviar (Acipenser gueldenstaedtii). Food Res Int 2024; 178:113903. [PMID: 38309899 DOI: 10.1016/j.foodres.2023.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The volatile and non-volatile compounds were monitored to investigate the microbial evolution associated with the characteristic flavors for sturgeon caviar during refrigeration. The results revealed that the composition of volatile compounds changed significantly with prolonged refrigeration time, especially hexanal, nonanal, phenylacetaldehyde, 3-methyl butyraldehyde, and 1-octen-3-ol. The nonvolatile metabolites were mainly represented by the increase of bitter amino acids (Thr. Ser, Gly, Ala, and Pro) and a decrease in polyunsaturated fatty acids, especially an 18.63 % decrease in 5 months of storage. A total of 332 differential metabolites were mainly involved in the biosynthetic metabolic pathways of α-linolenic acid, linoleic acid, and arachidonic acid. The precursors associated with flavor evolution were mainly phospholipids, including oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The most abundant at the genus level was Serratia, followed by Arsenophnus, Rhodococcus, and Pseudomonas, as obtained by high-throughput sequencing. Furthermore, seven core microorganisms were isolated and characterized from refrigerated caviar. Among them, inoculation with Mammalian coccus and Bacillus chrysosporium restored the flavor profile of caviar and enhanced the content of nonvolatile precursors, contributing to the characteristic aroma attributes of sturgeon caviar. The study presents a theoretical basis for the exploitation of technologies for quality stabilization and control of sturgeon caviar during storage.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shixue Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Weijia Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Xuqing Zhang
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shucai An
- Department of General Surgery, The District Hospital of Qingdao West Coast New Area, Qingdao 266400, Shandong, China
| | - Wei Li
- Department of General Surgery, The District Hospital of Qingdao West Coast New Area, Qingdao 266400, Shandong, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Sanya Oceanographic Institution of Ocean University of China, Sanya 572024, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
7
|
Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, Sun Y, He J, Pan D, Cai Z, Xia Q. Tunability of Pickering particle features of whey protein isolate via remodeling partial unfolding during ultrasonication-assisted complexation with chitosan/chitooligosaccharide. Carbohydr Polym 2024; 325:121583. [PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
Collapse
Affiliation(s)
- Hongmei Yu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yangyin Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jun He
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Liu F, Zheng Y, Hong H, Liu L, Chen X, Xia Q. Identification of Efficacy-Associated Markers to Discriminate Flos Chrysanthemum and Flos Chrysanthemi Indici Based on Fingerprint-Activity Relationship Modeling: A Combined Evaluation over Chemical Consistence and Quality Consistence. Molecules 2023; 28:6254. [PMID: 37687083 PMCID: PMC10488643 DOI: 10.3390/molecules28176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monitoring the quality consistency of traditional Chinese medicines, or herbal medicines (HMs), is the basis of assuring the efficacy and safety of HMs during clinical applications. The purpose of this work was to characterize the difference in hydrophilic antioxidants and related bioactivities between Flos Chrysanthemum (JH) and its wild relatives (Chrysanthemum indicum L.; YJH) based on the establishment of fingerprint-efficacy relationship modeling. The concentrations of the total phenolics and flavonoids of JH samples were shown to be generally higher than those of YJH, but the concentration distribution ranges of YJH were significantly greater compared to JH samples, possibly related to environmental stress factors leading to the concentration fluctuations of phytochemicals during the growth and flowering of Chrysanthemum cultivars. Correspondingly, the total antioxidant capabilities of JH were greatly higher than those of YJH samples, as revealed by chemical assays, including DPPH and ABTS radical scavenging activities and FRAP assays. In addition, cellular-based antioxidant activities confirmed the results of chemical assays, suggesting that the differences in antioxidant activities among the different types of Chrysanthemums were obvious. The extracts from YJH and JH samples showed significant α-glucosidase inhibitory activity and lipase-inhibitory activity, implying the modulatory effects on lipid and glucose metabolisms, which were also confirmed by an untargeted cell-based metabolomics approach. The selected common peaks by similarity analysis contributed to the discrimination of YJH and JH samples, and the modeling of the fingerprint-bioactivity relationship identified neochlorogenic acid, isochlorogenic acid A, and linarin as efficacy-associated chemical markers. These results have demonstrated that integrating HPLC fingerprints and the analysis of similarity indexes coupled with antioxidant activities and enzyme-inhibitory activities provides a rapid and effective approach to monitoring the quality consistency of YJH/JH samples.
Collapse
Affiliation(s)
- Feng Liu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315100, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Huijie Hong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| |
Collapse
|