1
|
Piccolo V, Pastore A, Maisto M, Keivani N, Tenore GC, Stornaiuolo M, Summa V. Agri-Food Waste Recycling for Healthy Remedies: Biomedical Potential of Nutraceuticals from Unripe Tomatoes ( Solanum lycopersicum L.). Foods 2024; 13:331. [PMID: 38275698 PMCID: PMC10815480 DOI: 10.3390/foods13020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Unripe tomatoes represent an agri-food waste resulting from industrial by-processing products of tomatoes, yielding products with a high content of bioactive compounds with potential nutraceutical properties. The food-matrix biological properties are attributed to the high steroidal glycoalkaloid (SGA) content. Among them, α-tomatine is the main SGA reported in unripe green tomatoes. This review provides an overview of the main chemical and pharmacological features of α-tomatine and green tomato extracts. The extraction processes and methods employed in SGA identification and the quantification are discussed. Special attention was given to the methods used in α-tomatine qualitative and quantitative analyses, including the extraction procedures and the clean-up methods applied in the analysis of Solanum lycopersicum L. extracts. Finally, the health-beneficial properties and the pharmacokinetics and toxicological aspects of SGAs and α-tomatine-containing extracts are considered in depth. In particular, the relevant results of the main in vivo and in vitro studies reporting the therapeutic properties and the mechanisms of action were described in detail.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (V.P.); (A.P.); (M.M.); (N.K.); (G.C.T.); (M.S.)
| |
Collapse
|
2
|
Santonocito D, Campisi A, Pellitteri R, Sposito G, Basilicata MG, Aquino G, Pepe G, Sarpietro MG, Pittalà MGG, Schoubben A, Pignatello R, Puglia C. Lipid Nanoparticles Loading Steroidal Alkaloids of Tomatoes Affect Neuroblastoma Cell Viability in an In Vitro Model. Pharmaceutics 2023; 15:2573. [PMID: 38004552 PMCID: PMC10675799 DOI: 10.3390/pharmaceutics15112573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Manuela Giovanna Basilicata
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | | | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
3
|
Faria-Silva C, de Sousa M, Carvalheiro MC, Simões P, Simões S. Alpha-tomatine and the two sides of the same coin: An anti-nutritional glycoalkaloid with potential in human health. Food Chem 2022; 391:133261. [DOI: 10.1016/j.foodchem.2022.133261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 01/10/2023]
|
4
|
Díaz-Galiano FJ, Heinzen H, Martínez-Bueno MJ, Rajski Ł, Fernández-Alba AR. Use of high-resolution mass spectrometry for the first-time identification of gerberin as a tentative marker of the fraudulent organic production of tomatoes. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
6
|
Rocchetti G, Senizza B, Zengin G, Bonini P, Bontempo L, Camin F, Trevisan M, Lucini L. The Hierarchical Contribution of Organic vs. Conventional Farming, Cultivar, and Terroir on Untargeted Metabolomics Phytochemical Profile and Functional Traits of Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:856513. [PMID: 35401596 PMCID: PMC8992384 DOI: 10.3389/fpls.2022.856513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this work, the impact of terroir, cultivar, seasonality, and farming systems on functional traits of tomato was hierarchically investigated. Untargeted metabolomics, antioxidant capacity, colorimetric assays, and enzyme inhibition were determined. The total phenolic and carotenoid contents significantly varied between growing years, whereas an interaction between the farming system and growing year (p < 0.01) was observed for total phenolics, carotenoids, and flavonoids, and for acetylcholinesterase inhibition. Hierarchical clustering showed that geographical origin and growing year were the major contributors to the differences in phytochemical profiles. Nonetheless, supervised modeling allowed highlighting the effect of the farming system. Several antioxidants (L-ascorbic acid, α-tocopherol, and 7,3',4'-trihydroxyflavone) decreased, whereas the alkaloid emetine and phytoalexin phenolics increased under organic farming. Taken together, our findings indicate that cultivar and pedo-climatic conditions are the main determinants for the functional quality of tomato, whereas the farming system plays a detectable but hierarchically lower.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | | | - Luana Bontempo
- Traceability Unit, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Federica Camin
- Traceability Unit, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
7
|
Macieira A, Barbosa J, Teixeira P. Food Safety in Local Farming of Fruits and Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189733. [PMID: 34574658 PMCID: PMC8469988 DOI: 10.3390/ijerph18189733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The world’s population will be around 9 billion people by 2050. Humans need to feed in order to survive and thus the high demographic growth may impact the sustainability of our food systems. Sustainable food production practices such as local farming have been explored. Consumption of vegetables and fruits has been increasing due to their health benefits, but this increase is also related to a significant number of foodborne outbreaks. Foodborne outbreaks pose a threat to public health and the economy on a local and national scale. Food safety begins on the farm and proceeds over the supply chain. Thus, to provide safe products, food producers must follow specific procedures to avoid food hazards along the supply chain. This work aimed to present the importance of food safety in vegetables and fruits in local farming, as this form of production and consumption has increased in several countries of the northern hemisphere and as these are considered a form of providing more sustainable food products.
Collapse
|
8
|
Pardini A, Consumi M, Leone G, Bonechi C, Tamasi G, Sangiorgio P, Verardi A, Rossi C, Magnani A. Effect of different post-harvest storage conditions and heat treatment on tomatine content in commercial varieties of green tomatoes. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Singh M, George AK, Eyob W, Homme RP, Stansic D, Tyagi SC. High-methionine diet in skeletal muscle remodeling: epigenetic mechanism of homocysteine-mediated growth retardation. Can J Physiol Pharmacol 2020; 99:56-63. [PMID: 32799662 DOI: 10.1139/cjpp-2020-0093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epigenetic DNA methylation (1-carbon metabolism) is crucial for gene imprinting/off-printing that ensures epigenetic memory but also generates a copious amount of homocysteine (Hcy), unequivocally. That is why during pregnancy, expectant mothers are recommended "folic acid" preemptively to avoid birth defects in the young ones because of elevated Hcy levels (i.e., hyperhomocysteinemia (HHcy)). As we know, children born with HHcy have several musculoskeletal abnormalities, including growth retardation. Here, we focus on the gut-dysbiotic microbiome implication(s) that we believe instigates the "1-carbon metabolism" and HHcy causing growth retardation along with skeletal muscle abnormalities. We test our hypothesis whether high-methionine diet (HMD) (an amino acid that is high in red meat), a substrate for Hcy, can cause skeletal muscle and growth retardation, and treatment with probiotics (PB) to mitigate skeletal muscle dysfunction. To test this, we employed cystathionine β-synthase, CBS deficient mouse (CBS+/-) fed with/without HMD and with/without a probiotic (Lactobacillus rhamnosus) in drinking water for 16 weeks. Matrix metalloproteinase (MMP) activity, a hallmark of remodeling, was measured by zymography. Muscle functions were scored via electric stimulation. Our results suggest that compared to the wild-type, CBS+/- mice exhibited reduced growth phenotype. MMP-2 activity was robust in CBS+/- and HMD effects were successfully attenuated by PB intervention. Electrical stimulation magnitude was decreased in CBS+/- and CBS+/- treated with HMD. Interestingly; PB mitigated skeletal muscle growth retardation and atrophy. Collectively, results imply that individuals with mild/moderate HHcy seem more prone to skeletal muscle injury and its dysfunction.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dragana Stansic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Brimer L, Cottrill B, Dusemund B, Mulder P, Vollmer G, Binaglia M, Ramos Bordajandi L, Riolo F, Roldán‐Torres R, Grasl‐Kraupp B. Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA J 2020; 18:e06222. [PMID: 32788943 PMCID: PMC7417869 DOI: 10.2903/j.efsa.2020.6222] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of glycoalkaloids (GAs) in feed and food. This risk assessment covers edible parts of potato plants and other food plants containing GAs, in particular, tomato and aubergine. In humans, acute toxic effects of potato GAs (α-solanine and α-chaconine) include gastrointestinal symptoms such as nausea, vomiting and diarrhoea. For these effects, the CONTAM Panel identified a lowest-observed-adverse-effect level of 1 mg total potato GAs/kg body weight (bw) per day as a reference point for the risk characterisation following acute exposure. In humans, no evidence of health problems associated with repeated or long-term intake of GAs via potatoes has been identified. No reference point for chronic exposure could be identified from the experimental animal studies. Occurrence data were available only for α-solanine and α-chaconine, mostly for potatoes. The acute dietary exposure to potato GAs was estimated using a probabilistic approach and applying processing factors for food. Due to the limited data available, a margin of exposure (MOE) approach was applied. The MOEs for the younger age groups indicate a health concern for the food consumption surveys with the highest mean exposure, as well as for the P95 exposure in all surveys. For adult age groups, the MOEs indicate a health concern only for the food consumption surveys with the highest P95 exposures. For tomato and aubergine GAs, the risk to human health could not be characterised due to the lack of occurrence data and the limited toxicity data. For horses, farm and companion animals, no risk characterisation for potato GAs could be performed due to insufficient data on occurrence in feed and on potential adverse effects of GAs in these species.
Collapse
|
11
|
Min D, Li F, Cui X, Zhou J, Li J, Ai W, Shu P, Zhang X, Li X, Meng D, Guo Y, Li J. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Food Chem 2020; 310:125901. [DOI: 10.1016/j.foodchem.2019.125901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
|
12
|
Ebert SM, Al-Zougbi A, Bodine SC, Adams CM. Skeletal Muscle Atrophy: Discovery of Mechanisms and Potential Therapies. Physiology (Bethesda) 2020; 34:232-239. [PMID: 31165685 DOI: 10.1152/physiol.00003.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle atrophy proceeds through a complex molecular signaling network that is just beginning to be understood. Here, we discuss examples of recently identified molecular mechanisms of muscle atrophy and how they highlight an immense need and opportunity for focused biochemical investigations and further unbiased discovery work.
Collapse
Affiliation(s)
- Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa , Iowa City, Iowa.,Emmyon, Inc., Coralville, Iowa
| | - Asma Al-Zougbi
- Departments of Internal Medicine and Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa , Iowa City, Iowa
| | - Sue C Bodine
- Departments of Internal Medicine and Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa , Iowa City, Iowa.,Emmyon, Inc., Coralville, Iowa
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa , Iowa City, Iowa.,Emmyon, Inc., Coralville, Iowa.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
13
|
Stefanson AL, Tsao R, Liu R, Duizer L, Bakovic M, Martin RC. Effect of variety, soil fertility status and agronomic treatments on carrot mineral and phytochemical composition and consumer liking of flavor traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5457-5474. [PMID: 31087364 DOI: 10.1002/jsfa.9807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effects of variety (Nantes and Imperator), soil fertility status (high and low) and agronomic treatments on yield and quality traits of carrot composition and sensory factors. The treatments compared synthetic nitrogen at conventionally recommended amounts with compost-sourced nitrogen (high and low rates) and a range of amendments (compost, compost tea, micronutrients and foliar treatments). Additionally, we intended to identify factors affecting polyacetylene accumulation in carrots, owing to the growing interest in their health effects and paucity of agronomic information on their bioaccumulation in carrots. RESULTS Imperator accumulated more minerals, produced more phytochemicals and had higher antioxidant capacity than Nantes, which had more carotenoids. However, consumers preferred the flavor of Nantes over Imperator. High-fertility soil produced carrots of superior nutritional quality than did low-fertility soil, regardless of year-of-application amendments, the effects of which were often variety-dependent. High soil biological activity was able to overcome low fertility status and stimulate greater yield. Carrot phosphorus was correlated with falcarindiol biosynthesis. Chlorogenic acid and falcarindiol were correlated with antioxidant capacity, but not falcarinol or total phenolic compounds. CONCLUSION Carrots were not strongly affected by agronomic treatments in terms of yield or phytochemical status; however, soil biological activity overcame a soil nutrient deficit in terms of yield. Phenolic compounds and antioxidant status were generally higher in the high-fertility site, whereas polyacetylenes were variety-dependent. Chlorogenic acid and falcarindiol were associated with antioxidant capacity, but not total phenolic compounds and carotenoids. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Amanda L Stefanson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture & Agri-Food Canada, Guelph, ON, Canada
| | - Ronghua Liu
- Guelph Research & Development Centre, Agriculture & Agri-Food Canada, Guelph, ON, Canada
| | - Lisa Duizer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Ralph C Martin
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
|
15
|
Moles TM, de Brito Francisco R, Mariotti L, Pompeiano A, Lupini A, Incrocci L, Carmassi G, Scartazza A, Pistelli L, Guglielminetti L, Pardossi A, Sunseri F, Hörtensteiner S, Santelia D. Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces. FRONTIERS IN PLANT SCIENCE 2019; 10:1078. [PMID: 31611885 PMCID: PMC6769068 DOI: 10.3389/fpls.2019.01078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/07/2019] [Indexed: 05/02/2023]
Abstract
Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.
Collapse
Affiliation(s)
- Tommaso Michele Moles
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Rita de Brito Francisco
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Antonio Pompeiano
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Antonio Lupini
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giulia Carmassi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems, National Research Council, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesco Sunseri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Abstract
More understanding of the risk-benefit effect of the glycoalkaloid tomatine is required to be able to estimate the role it might play in our diet. In this work, we focused on effects towards intestinal epithelial cells based on a Caco-2 model in order to analyze the influence on the cell monolayer integrity and on the expression levels of genes involved in cholesterol/sterol biosynthesis (LDLR), lipid metabolism (NR2F2), glucose and amino acid uptake (SGLT1, PAT1), cell cycle (PCNA, CDKN1A), apoptosis (CASP-3, BMF, KLF6), tight junctions (CLDN4, OCLN2) and cytokine-mediated signaling (IL-8, IL1β, TSLP, TNF-α). Furthermore, since the bioactivity of the compound might vary in the presence of a food matrix and following digestion, the influence of both pure tomatine and in vitro digested tomatine with and without tomato fruit matrix was studied. The obtained results suggested that concentrations <20 µg/mL of tomatine, either undigested or in vitro digested, do not compromise the viability of Caco-2 cells and stimulate cytokine expression. This effect of tomatine, in vitro digested tomatine or in vitro digested tomatine with tomato matrix differs slightly, probably due to variations of bioactivity or bioavailability of the tomatine. The results lead to the hypothesis that tomatine acts as hormetic compound that can induce beneficial or risk toxic effects whether used in low or high dose.
Collapse
|
17
|
Martínez Bueno MJ, Díaz-Galiano FJ, Rajski Ł, Cutillas V, Fernández-Alba AR. A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops. J Chromatogr A 2018. [PMID: 29526497 DOI: 10.1016/j.chroma.2018.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the last decade, the consumption trend of organic food has increased dramatically worldwide. However, the lack of reliable chemical markers to discriminate between organic and conventional products makes this market susceptible to food fraud in products labeled as "organic". Metabolomic fingerprinting approach has been demonstrated as the best option for a full characterization of metabolome occurring in plants, since their pattern may reflect the impact of both endogenous and exogenous factors. In the present study, advanced technologies based on high performance liquid chromatography-high-resolution accurate mass spectrometry (HPLC-HRAMS) has been used for marker search in organic and conventional tomatoes grown in greenhouse under controlled agronomic conditions. The screening of unknown compounds comprised the retrospective analysis of all tomato samples throughout the studied period and data processing using databases (mzCloud, ChemSpider and PubChem). In addition, stable nitrogen isotope analysis (δ15N) was assessed as a possible indicator to support discrimination between both production systems using crop/fertilizer correlations. Pesticide residue analyses were also applied as a well-established way to evaluate the organic production. Finally, the evaluation by combined chemometric analysis of high-resolution accurate mass spectrometry (HRAMS) and δ15N data provided a robust classification model in accordance with the agricultural practices. Principal component analysis (PCA) showed a sample clustering according to farming systems and significant differences in the sample profile was observed for six bioactive components (L-tyrosyl-L-isoleucyl-L-threonyl-L-threonine, trilobatin, phloridzin, tomatine, phloretin and echinenone).
Collapse
Affiliation(s)
- María Jesús Martínez Bueno
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Francisco José Díaz-Galiano
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Łukasz Rajski
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Víctor Cutillas
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R Fernández-Alba
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
18
|
Friedman M, Kozukue N, Kim HJ, Choi SH, Mizuno M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Liu J, Kanetake S, Wu YH, Tam C, Cheng LW, Land KM, Friedman M. Antiprotozoal Effects of the Tomato Tetrasaccharide Glycoalkaloid Tomatine and the Aglycone Tomatidine on Mucosal Trichomonads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8806-8810. [PMID: 27934291 DOI: 10.1021/acs.jafc.6b04030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present study investigated the inhibitory effects of the commercial tetrasaccharide tomato glycoalkaloid tomatine and the aglycone tomatidine on three mucosal pathogenic protozoa that are reported to infect humans, cattle, and cats, respectively: Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus strain C1. A preliminary screen showed that tomatine at 100 μM concentration completely inhibited the growth of all three trichomonads. In contrast, the inhibition of all three pathogens by tomatidine was much lower, suggesting the involvement of the lycotetraose carbohydrate side chain in the mechanism of inhibition. Midpoints of concentration-response sigmoid plots of tomatine on the three strains correspond to IC50 values, the concentration that inhibits 50% of growth of the pathogenic protozoa. The concentration data were used to calculate the IC50 values for G3, D1, and C1 of 7.9, 1.9, and 2.2 μM, respectively. The results show an approximately 4-fold variation from the lowest to the highest value (lowest activity). Although the inhibition by tomatine was not as effective as that of the medicinal drug metronidazole, the relatively low IC50 values for both T. vaginalis and T. foetus indicated tomatine as a possible natural alternative therapeutic for trichomoniasis in humans and food-producing (cattle and pigs) and domestic (cats) animals. Because tomatine has the potential to serve as a new antiprotozoan functional (medical) food, the distribution of this glycoalkaloid in tomatoes and suggestions for further research are discussed.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Sierra Kanetake
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Yun-Hsuan Wu
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Christina Tam
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, United States Department of Agriculture , Albany, California 94556, United States
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, United States Department of Agriculture , Albany, California 94556, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Mendel Friedman
- Healthy Processed Foods Research, Agricultural Research Service, United States Department of Agriculture , Albany, California 94556, United States
| |
Collapse
|
20
|
Adams CM, Ebert SM, Dyle MC. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 2015; 18:263-8. [PMID: 25807353 PMCID: PMC5512448 DOI: 10.1097/mco.0000000000000159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. RECENT FINDINGS Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. SUMMARY Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function.
Collapse
Affiliation(s)
- Christopher M. Adams
- Department of Internal Medicine, Department of Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City
- Iowa City Veterans Affairs Medical Center, Iowa City
- Emmyon, Inc., Coralville, Iowa, USA
| | - Scott M. Ebert
- Department of Internal Medicine, Department of Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City
- Emmyon, Inc., Coralville, Iowa, USA
| | - Michael C. Dyle
- Department of Internal Medicine, Department of Molecular Physiology and Biophysics, and the Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City
| |
Collapse
|
21
|
Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3323-37. [PMID: 25821990 DOI: 10.1021/acs.jafc.5b00818] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inhibition of cancer can occur via apoptosis, a genetically directed process of cell self-destruction that involves numerous biomarkers and signaling pathways. Glycoalkaloids are nitrogen-containing secondary plant metabolites found in numerous Solanaceous plants including eggplants, potatoes, and tomatoes. Exposure of cancer cells to glycoalkaloids produced by eggplants (α-solamargine and α-solasonine), potatoes (α-chaconine and α-solanine), and tomatoes (α-tomatine) or their hydrolysis products (mono-, di-, and trisaccharide derivatives and the aglycones solasodine, solanidine, and tomatidine) inhibits the growth of the cells in culture (in vitro) as well as tumor growth in vivo. This overview comprehensively surveys and consolidates worldwide efforts to define the following aspects of these natural compounds: (a) their prevalence in the three foods; (b) their chemistry and structure-activity relationships; (c) the reported factors (biomarkers, signaling pathways) associated with apoptosis of bone, breast, cervical, colon, gastric, glioblastoma, leukemia, liver, lung, lymphoma, melanoma, pancreas, prostate, and squamous cell carcinoma cell lines in vitro and the in vivo inhibition of tumor formation and growth in fish and mice and in human skin cancers; and (d) future research needs. The described results may make it possible to better relate the structures of the active compounds to their health-promoting function, individually, in combination, and in food, and allow the consumer to select glycoalkaloid-containing food with the optimal content of nontoxic beneficial compounds. The described findings are expected to be a valuable record and resource for further investigation of the health benefits of food-related natural compounds.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department Agriculture, Albany, California 94710, United States
| |
Collapse
|
22
|
Kim SP, Nam SH, Friedman M. The Tomato Glycoalkaloid α-Tomatine Induces Caspase-Independent Cell Death in Mouse Colon Cancer CT-26 Cells and Transplanted Tumors in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1142-1150. [PMID: 25614934 DOI: 10.1021/jf5040288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomatoes (Solanum lycopersicum) produce the bioactive glycoalkaloid α-tomatine. This study determined the effect of commercial α-tomatine on CT-26 colon cancer cells in vitro and in vivo in an intracutaneously transplanted mouse tumor. Cytotoxicity experiments showed that α-tomatine induces about 50% lysis of the colon cancer cells at 3.5 μM after 24 h of treatment. Large proportions of cells were found to be in the annexin V (+)/propidium iodide (+) phase of cell death, implying late phase apoptotic/necrotic status. However, α-tomatine induced cell death in CT-26 cancer cells through caspase-independent signaling pathways. This conclusion was supported by Western blot analysis showing a localization of apoptosis-inducing mitochondrial protein (AIF) to the nucleus and down-regulation of survivin (an inhibitor of apoptosis) expression as well as failure to detect the active form of caspase-3, -8, and -9 produced by proteolytic cleavage in CT-26 cancer cells. Intraperitoneally administered α-tomatine (5 mg/kg body weight) also markedly inhibited growth of the tumor using CT-26 cancer cells without causing body and organ weight changes. The reduced tumor growth in the mice by 38% after 2 weeks was the result of increased caspase-independent apoptosis associated with increased nuclear translocation of AIF and decreased survivin expression in tumor tissues. α-Tomatine in pure form and in tomatine-rich green tomatoes might prevent colon cancer.
Collapse
Affiliation(s)
- Sung Phil Kim
- Department of Biological Science, Ajou University , Suwon 443-749, Republic of Korea
| | - Seok Hyun Nam
- Department of Biological Science, Ajou University , Suwon 443-749, Republic of Korea
| | - Mendel Friedman
- Western Regional Research Center , Agricultural Research Service, U.S Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
23
|
Dyle MC, Ebert SM, Cook DP, Kunkel SD, Fox DK, Bongers KS, Bullard SA, Dierdorff JM, Adams CM. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. J Biol Chem 2014; 289:14913-24. [PMID: 24719321 PMCID: PMC4031541 DOI: 10.1074/jbc.m114.556241] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Michael C Dyle
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Scott M Ebert
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Daniel P Cook
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Steven D Kunkel
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Daniel K Fox
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Kale S Bongers
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Steven A Bullard
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jason M Dierdorff
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Christopher M Adams
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| |
Collapse
|
24
|
Friedman M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9534-50. [PMID: 24079774 DOI: 10.1021/jf402654e] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tomatoes produce the bioactive compounds lycopene and α-tomatine that are reported to have potential health-promoting effects in animals and humans, but our understanding of the roles of these compounds in the diet is incomplete. Our current knowledge gained from the chemistry and analysis of these compounds in fresh and processed tomatoes and from studies on their bioavailability, bioactivity, and mechanisms of action against cancer cells and other beneficial bioactivities including antibiotic, anti-inflammatory, antioxidative, cardiovascular, and immunostimulating effects in cells, animals, and humans is discussed and interpreted here. Areas for future research are also suggested. The collated information and suggested research might contribute to a better understanding of the agronomical, biochemical, chemical, physiological, molecular, and cellular bases of the health-promoting effects and facilitate and guide further studies needed to optimize the use of lycopene and α-tomatine in pure form and in fresh tomatoes and processed tomato products to help prevent or treat human disease.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|