1
|
Ngongoni KN, Pfukwa TM, Mapiye C. Keeping quality of raw ground beef patties fortified with polyphenols extracted from Acacia mearnsii bark and leaves. Meat Sci 2025; 219:109665. [PMID: 39276430 DOI: 10.1016/j.meatsci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Acacia mearnsii byproducts are naturally endowed with a plethora of diverse polyphenols that exhibit antioxidant properties indicating potential application in enhancing oxidative shelf-life of perishable foods. The current study evaluated the oxidative shelf-life of raw ground beef patties fortified with 450 μg/g of polyphenolic extracts from A. mearnsii bark (AMBE) or leaves (AMLE) compared to positive (sodium metabisulphite; SMB) and negative (no extract; CTL) controls for 9 d at 4 °C in a simulated retail display. The AMBE had higher (P ≤ 0.05) contents of proanthocyanidins, and total phenols, flavonoids and tannins, and consequently demonstrated greater (P ≤ 0.05) in vitro antioxidant activity than AMLE. The polyphenolic extracts increased (P ≤ 0.05) antioxidant activity in beef patties compared to the CTL though they were outperformed (P ≤ 0.05) by the SMB. Fortification of beef patties with the polyphenolic extracts, particularly AMBE, delayed colour deterioration and oxidation of myoglobin during retail display relative to the CTL but were less efficient than SMB (P ≤ 0.05). Beef patties fortified with the polyphenolic extracts and SMB had comparable (P > 0.05) peroxide values, TBARS and p-Anisidine values which were all lower (P ≤ 0.05) than those for the CTL patties. The order of protein thiol content in beef patties was as follows: CTL ≥ AMLE ≥ AMBE ≥ SMB (P ≤ 0.05). Findings suggest that A. mearnsii-derived polyphenolic antioxidants, particularly AMBE has great potential to extend oxidative shelf-life of raw beef patties.
Collapse
Affiliation(s)
- Kudzai N Ngongoni
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Trust M Pfukwa
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Private Bag 524, Auckland Park 2006, South Africa
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
2
|
Vo QV, Hoa NT, Flavel M, Thong NM, Boulebd H, Nam PC, Quang DT, Mechler A. A Comprehensive Study of the Radical Scavenging Activity of Rosmarinic Acid. J Org Chem 2023; 88:17237-17248. [PMID: 38011833 DOI: 10.1021/acs.joc.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty. Ltd., Melbourne 3173, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Nguyen Minh Thong
- The University of Danang-University of Science and Education, Danang 550000, Vietnam
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Danang - University of Science and Technology, Danang 550000, Vietnam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City 530000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
3
|
Tian H, Yu J, Li M, Li J, Lu Y, Yu X, Lin S, Zeng X, Xu X, Han M. Effect of curcumin on the formation of polycyclic aromatic hydrocarbons in grilled chicken wings. Food Chem 2023; 414:135561. [PMID: 36827781 DOI: 10.1016/j.foodchem.2023.135561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Organic macromolecules form carcinogenic and toxic substances such as polycyclic aromatic hydrocarbons (PAHs) under high temperature baking. Thus, this study investigated the effects and inhibition pathways of different curcumin concentrations (0.01, 0.05, 0.25, 0.3 mg/g) on seven PAHs in grilled chicken wings. The results demonstrated that curcumin concentrations displayed positive effects in inhibiting the formation of PAHs (16%-72%), increasing the total phenolic content (397.5-1934.4 mg/g) and free radical scavenging activity, and reducing TBARS values (31.15%-47.76%) and fatty acid content. Additionally, PCA and Pearson correlation analyses indicated that lipid oxidation (r = 0.42) and unsaturated fatty acids (r = 0.55) could promote the production of PAHs, while DPPH, ABTS and TPC could counteract their facilitation of PAHs. In conclusion, the addition of appropriate amounts of curcumin before grilling is a feasible strategy to reduce fat oxidation levels and the number of free radicals for the purpose of limiting PAHs content.
Collapse
Affiliation(s)
- Huixin Tian
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Jing Yu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Min Li
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Illumination Industry, Zhengzhou 450001, China
| | - Jing Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Yifeng Lu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Xiaobo Yu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Shaoyan Lin
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Xianming Zeng
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Minyi Han
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Illumination Industry, Zhengzhou 450001, China; Wens Foodstuff Group Co., Ltd, Yunfu, Guangdong 527400, China.
| |
Collapse
|
4
|
Mughees M, Farooq MA, Haq IU, Zeb I, Ali M, Hussain Z, Shahzadi I, Shah MM. Quantification of rosmarinic acid from different plant species of lower Himalayan region and expression analysis of underlying L-Phenylalanine pathway. PHYSIOLOGIA PLANTARUM 2022; 174:e13758. [PMID: 36281843 DOI: 10.1111/ppl.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
This study adopts a very effective high-performance liquid chromatography (HPLC) technique for the quantitative determination of rosmarinic acid (RA) and PCR-based amplification of biosynthetic key regulators in Isodon rugosus, Daphne mucronata, and Viburnum grandiflorum from the lower Himalayan regions. Rosmarinic acid is engaged in a variety of biological processes and has significant industrial significance. In this study, it was identified from crude methanolic extract using thin-layer chromatography with a standard, and its content was quantified using HPLC without interrupting spikes using a mixture of methanol and deionized water containing acetonitrile (70:30 v/v) and acetic acid (0.1% v/v) at UV 310 nm absorption. We used RT-PCR to identify cDNAs encoding PAL, C4H, and RAS, and Image J's semi-quantitative analysis to quantify the expression levels of genes involved in RA production from chosen plant material. The highest levels of PAL, C4H, and RAS were detected, by band intensity, in the leaves and flowers of I. rugosus, which also exhibited a substantial quantity of RA. However, in V. grandiflorum and D. mucronata the transcript of the given genes was low. The concentration of RA ranged from 187.7 to 21.2 mg g-1 for I. rugosus, 17.42 to 5.42 mg g-1 for V. grandiflorum, and 15.19 mg g-1 for D. mucronata. This study demonstrated that the method for quantifying RA from a crude methanolic extract was effective, indicating that I. rugosus might be used as an indigenous alternative source of RA.
Collapse
Affiliation(s)
- Muhammad Mughees
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Asad Farooq
- Crop Disease Research Institute (CDRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Ihsan Ul Haq
- Insect Pest Management Program (IPMP), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zahoor Hussain
- Faculty of Agriculture, Department of Horticulture, Ghazi University, Punjab, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | | |
Collapse
|
5
|
Gedikoğlu A. The effect of Thymus vulgaris and Thymbra spicata essential oils and/or extracts in pectin edible coating on the preservation of sliced bolognas. Meat Sci 2021; 184:108697. [PMID: 34687928 DOI: 10.1016/j.meatsci.2021.108697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023]
Abstract
The aim of this research was to determine the effect of pectin coating made with essential oils and/or extracts of Thymus vulgaris (thyme) and Thymbra spicata (thymbra) on the preservation of aerobically packaged sliced bolognas during cold storage. The treatment made with essential oils resulted in a reduction of 1.73 log CFU/g of Salmonella typhimurium ATCC 14028. Also, pectin coating made with essential oil-treated sliced bolognas had the lowest total mesophilic bacteria (6.27 log CFU/g), and total lactic acid bacteria (1.72 CFU/g), in comparison to non-treated bolognas, with 7.65 log CFU/g for total mesophilic bacteria and 4.99 log CFU/g for lactic acid bacteria. Application of an emulsion significantly (P < 0.05) affected L*(lightness), a*(redness), and b*(yellowness) values. The essential oil treatment had the highest TBARS values at the end of the storage period. The pH was not affected by the treatment (P > 0.05), but storage had a significant (P < 0.05) effect on the pH values.
Collapse
Affiliation(s)
- Ayça Gedikoğlu
- Assistant Professor, Konya Food and Agriculture University, Faculty of Engineering and Architecture, Department of Food Engineering, Melikşah Mah. Beyşehir Cd. No:9, Meram, Konya, Turkey.
| |
Collapse
|
6
|
Zheng H, Li J, Ning F, Wijaya W, Chen Y, Xiao J, Cao Y, Huang Q. Improving in vitro bioaccessibility and bioactivity of carnosic acid using a lecithin-based nanoemulsion system. Food Funct 2021; 12:1558-1568. [PMID: 33459742 DOI: 10.1039/d0fo02636k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a phenolic terpenoid, carnosic acid (CA) mainly exists in rosemary, which can be effectively used for the treatment of degenerative and chronic diseases by taking advantage of its health-promoting bioactivities. However, the low solubility and dissolution of CA in aqueous solutions at ambient and body temperatures result in low stability and bioaccessibility during the digestion process, which limits its application scope in the functional foods industry. In this regard, a lecithin based nanoemulsion system (CA-NE) is employed in the present work to enhance the bioaccessibility and bioactivities of CA. It is revealed that the CA-NE under investigation exhibits high loading capacity (2.80 ± 0.15%), small particle size (172.0 ± 3.5 nm) with homogeneous particle distribution (polydispersity index (PDI) of 0.231± 0.025) and high repulsive force (zeta potential = -57.2 ± 0.24 mV). More importantly, the bioaccessibility of CA-NE is improved by 2.8-fold compared to that of CA in MCT oil. In addition, the cellular antioxidant assay (CAA) and cellular uptake study of the CA-NE in HepG2 cell models demonstrate a longer endocytosis process, suggesting the well-controlled release of CA from CA-NE. Furthermore, an improved anti-inflammatory activity was evaluated via the inhibition of the pro-inflammatory cytokines, nitric oxide (NO) and TNF-α production in LPS-stimulated RAW 264.7 macrophage cells. The results clearly demonstrated a promising application of CA-NE as a functional food.
Collapse
Affiliation(s)
- Huijuan Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Fangjian Ning
- State Key Laboratory of Food Science and Technology, College of Food Science, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Wahyu Wijaya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
7
|
Lee DK, Jang HD. Carnosic Acid Attenuates an Early Increase in ROS Levels during Adipocyte Differentiation by Suppressing Translation of Nox4 and Inducing Translation of Antioxidant Enzymes. Int J Mol Sci 2021; 22:ijms22116096. [PMID: 34198827 PMCID: PMC8201016 DOI: 10.3390/ijms22116096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) and 2′-7′-dichlorofluorescin diacetate (DCFH-DA), respectively. Both superoxide anion and ROS levels peaked on the second day of differentiation. They were suppressed by carnosic acid. Carnosic acid attenuates the translation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4), p47phox, and p22phox, and the phosphorylation of nuclear factor-kappa B (NF-κB) and NF-κB inhibitor (IkBa). The translocation of NF-κB into the nucleus was also decreased by carnosic acid. In addition, carnosic acid increased the translation of heme oxygenase-1 (HO-1), γ–glutamylcysteine synthetase (γ-GCSc), and glutathione S-transferase (GST) and both the translation and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, these results indicate that carnosic acid could down-regulate ROS level in an early stage of MPI-induced adipocyte differentiation by attenuating ROS generation through suppression of NF-κB-mediated translation of Nox4 enzyme and increasing ROS neutralization through induction of Nrf2-mediated translation of phase II antioxidant enzymes such as HO-1, γ-GCS, and GST, leading to its anti-adipogenetic effect.
Collapse
|
8
|
Phipps KR, Lozon D, Baldwin N. Genotoxicity and subchronic toxicity studies of supercritical carbon dioxide and acetone extracts of rosemary. Regul Toxicol Pharmacol 2020; 119:104826. [PMID: 33221424 DOI: 10.1016/j.yrtph.2020.104826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
Toxicology studies conducted with oil-soluble rosemary extracts to support authorization as a food additive (antioxidant) in the EU include an Ames test using a supercritical carbon dioxide extract (D74), a full 90-day study using D74 and an acetone extract (F62), and an investigative 90-day study with a 28-day recovery period (using D74 only). D74 was non-mutagenic in the Ames test. In the full 90-day study, where rats (20/sex/group) were either provided control diet or diets containing D74 (300, 600, or 2400 mg/kg) or F62 (3800 mg/kg), liver enlargement and hepatocellular hypertrophy were observed. To determine a mode of action and assess the reversibility of the hepatic effects, an investigative 90-day study was conducted using female rats (10/group receiving control diet or diet containing 2400 mg/kg D74). Liver enlargement was fully reversible after 28 days and microsomal enzyme analysis revealed reversible induction of cytochrome P450 enzymes (CYP2A1, CYP2A2, CYP2C11, CYP2E1, and CYP4A), demonstrating that the hepatic effects were adaptive and of no toxicological concern. Therefore, the highest dietary concentrations were established as the NOAELs. The investigative 90-day study NOAEL (providing 64 mg/kg bw/day carnosol and carnosic acid [the primary antioxidant components]) was used to establish a temporary ADI for rosemary extracts.
Collapse
Affiliation(s)
- Kirt R Phipps
- Intertek Health Sciences Inc, Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, UK.
| | - Dayna Lozon
- Intertek Health Sciences Inc, 2233 Argentia Road, Suite 201, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Health Sciences Inc, Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, UK
| |
Collapse
|
9
|
Paglarini CDS, Vidal VAS, Martini S, Cunha RL, Pollonio MAR. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit Rev Food Sci Nutr 2020; 62:640-655. [PMID: 33000627 DOI: 10.1080/10408398.2020.1825322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent consumers' concerns about diet and its health benefits has triggered a reduction in consumption of foods rich in sugar, fat, salt, and chemical additives. As a result, an expanded market for functional foods has arisen. In particular, high-fat foods normally composed by saturated fatty acids, cholesterol and trans-fatty acids have been reformulated to be healthier. The primary source of saturated fat ingested by humans includes meats and their by-products that have animal fat as lipid source. The reformulation of these products therefore represents an important strategy to make them healthier for human consumption. Substituting solid fat by unsaturated oils usually affects the texture of the products, and therefore, new structuring methods must be developed to provide vegetable oils a similar characteristic to solid fats and improve their functional and health-related properties. Among these structural models, gelled emulsions (GE) show great potential to be used as healthier lipid ingredients in low-calorie and reduced-fat products, including healthier meat products. This review addresses the GE properties to be used as structuring agent, their in vitro bioaccessibility in meat products and effect on technological, sensorial, microstructural and microbiological characteristics.
Collapse
Affiliation(s)
- Camila de Souza Paglarini
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vitor Andre Silva Vidal
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, USA
| | - Rosiane Lopes Cunha
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
10
|
Corveloni AC, Semprebon SC, Baranoski A, Biazi BI, Zanetti TA, Mantovani MS. Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:412-421. [PMID: 32456600 DOI: 10.1080/15287394.2020.1767741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carnosic acid (CA) is a phenolic diterpene with many important biological activities including antimicrobial, antioxidant, anti-inflammatory properties, and anti-proliferative properties. The aim of the present study was to investigate cytotoxic activity, cell cycle, apoptotic, and molecular effects attributed to CA in non-tumoral IMR-90 (human fetal lung fibroblasts), as well as tumoral NCI-H460 (human non-small-cell lung cancer) cell lines. Cell proliferation was evaluated by Real-Time Cell Analysis system, while apoptosis and cell cycle were assessed using flow cytometry. RT-qPCR was used to estimate the relative expression of genes involved in cell cycle regulation, DNA damage and repair, and apoptosis induction. CA inhibited proliferation of IMR-90 and NCI-H460 cells via cell cycle arrest at G0/G1 and G2/M phases, according to the treatment concentration. The mRNA levels of genes encoding cyclins A2, B1, and B2 were downregulated in response to CA treatment of IMR-90 cells. Apoptosis was induced and proapoptotic gene PUMA was upregulated in both cell lines. mRNA levels of genes ATR, CCND1, CHK1, CHK2, MYC, GADD45A, H2AFX, MTOR, TP53, and BCL2, CASP3 were not markedly changed following CA treatments. Although CA exerted antiproliferative activity against NCI-H460 tumor cells, this phytochemical induced toxic effects in non-tumoral cells, and thus needs to be considered carefully prior to pharmacological use therapeutically.
Collapse
Affiliation(s)
- Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL , Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL , Londrina, Paraná, Brazil
| | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL , Londrina, Paraná, Brazil
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL , Londrina, Paraná, Brazil
| | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL , Londrina, Paraná, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL , Londrina, Paraná, Brazil
| |
Collapse
|
11
|
Lee MA, Kim TK, Hwang KE, Choi YJ, Park SH, Kim CJ, Choi YS. Kimchi extracts as inhibitors of colour deterioration and lipid oxidation in raw ground pork meat during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2735-2742. [PMID: 30350316 DOI: 10.1002/jsfa.9441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/05/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Kimchi is a Korean, traditional fermented food made from Korean cabbage, radish, fermented jeotgal, ginger, garlic, and red pepper powder. It is a good source of natural antioxidants such as phenolic compounds, flavonoids, vitamins, and carotenoids. In this study, the antioxidant effects of various kimchi extracts on raw ground pork during refrigerated storage were investigated. Raw ground pork samples were treated with ascorbic acid, butylated hydroxyl toluene, baechu kimchi extract (BKE), gat kimchi extract (GKE), puchu kimchi extract (PKE), and white kimchi extract (WKE) and compared with raw ground pork without antioxidant treatment (NC). RESULTS Increased metmyoglobin (MetMb), thiobarbituric acid reacting substance (TBARS), and total bacterial counts (TBC) were observed in all meat samples after storage, whereas pH, lightness, and redness values tended to decrease with increased storage time. All treated samples had lower TBARS and MetMb values and TBC compared to the control samples. Various kimchi ethanol extracts protected raw ground pork from lipid oxidation. The most potent antioxidant was GKE, whereas WKE was the weakest. CONCLUSIONS This study suggests that the tested extracts, especially kimchi, have potential as natural preservatives to reduce colour degradation, lipid oxidation, and bacterial count in raw ground pork meat. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mi-Ai Lee
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwanju, Republic of Korea
| | - Tae-Kyung Kim
- Food Processing Research Center, Korean Food Research Institute, Wanju, Republic of Korea
| | - Ko-Eun Hwang
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun-Jeong Choi
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwanju, Republic of Korea
| | - Sung-Hee Park
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwanju, Republic of Korea
| | - Cheon-Jei Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Yun-Sang Choi
- Food Processing Research Center, Korean Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
12
|
Li JJ, Li Z, Gu LJ, Choi KJ, Kim DS, Kim HK, Sung CK. The promotion of hair regrowth by topical application of a Perilla frutescens extract through increased cell viability and antagonism of testosterone and dihydrotestosterone. J Nat Med 2018; 72:96-105. [PMID: 28905175 DOI: 10.1007/s11418-017-1116-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
Abstract
This study investigated the potential hair regrowth effects associated with a plant extract of Perilla frutescens, which was selected due to its putative hair regrowth activity. Extracts were prepared from dried P. frutescens suspended in distilled water, where the resultant aqueous suspension was fractionated sequentially using hexane, ethyl acetate, n-butanol, and distilled water. We observed that the n-butanol fraction resulted in the highest hair regrowth activity. The n-butanol soluble fraction of P. frutescens extract (BFPE) was further separated using AB-8 macroporous resin and silica gel chromatography to obtain rosmarinic acid (RA), which demonstrated effective hair growth regeneration potential. BFPE also showed in vivo anti-androgenic activity following the use of a hair growth assay in testosterone-sensitive male C57Bl/6NCrSlc mice. Furthermore, the effects of cell viability promotion were investigated following an in vitro analysis in primary hair follicle fibroblast cells (PHFCs) treated with RA. The results suggested that RA was the active compound in P. frutescens that triggers hair growth, and RA could be a potential therapeutic agent for the promotion of hair growth and prevention of androgenetic alopecia (AGA).
Collapse
Affiliation(s)
- Jing-Jie Li
- Mibyeong Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Zheng Li
- Intelligent Synthetic Biology Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Li-Juan Gu
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, 220 Gung-dong, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Kang-Ju Choi
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, 220 Gung-dong, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Dong-Seon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Chang-Keun Sung
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, 220 Gung-dong, Yusung-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
13
|
Fang Y, Zhang L, Feng J, Lin W, Cai Q, Peng J. Spica Prunellae extract suppresses the growth of human colon carcinoma cells by targeting multiple oncogenes via activating miR-34a. Oncol Rep 2017; 38:1895-1901. [PMID: 28713966 DOI: 10.3892/or.2017.5792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/19/2017] [Indexed: 11/05/2022] Open
Abstract
Spica Prunellae is the spike of the herb Prunella vulgaris L. in traditional Chinese medicine which is often used for the treatment of various cancers including colorectal cancer. In the present study, we found that a key tumor suppressor, microRNA-34a (miR-34a) is involved in the antitumor activity for Spica Prunellae. Human colon carcinoma HCT-8 cells treated with an ethanol extract of Spica Prunellae (EESP) had significantly decreased cell proliferation and viability, in a dose-dependent manner. Flow cytometry analysis with Annexin V/PI staining analysis revealed that EESP treatment could induce apoptosis of HCT-8 cells. The level of miR-34a was upregulated in HCT-8 cells following EESP treatment, whereas expression levels of its target genes Notch1, Notch2 and Bcl-2 were downregulated. Inhibition of miR-34a rescued the expression of these target genes. These results revealed that Spica Prunellae can suppress the growth of HCT-8 cells by targeting Notch1, Notch2 and Bcl-2 via activation of miR-34a.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ling Zhang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jianyu Feng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Qiaoyan Cai
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
14
|
Rajeev PS, Johannah NM, Gopakumar G, Maliakel B, Krishnakumar IM. Optimization of antioxidant efficacy of a deflavored and decolorized rosemary extract: effect of carnosol content on the oxidative stability of paprika colored beef patties. Journal of Food Science and Technology 2017; 54:1665-1677. [PMID: 28559626 DOI: 10.1007/s13197-017-2599-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 02/03/2023]
Abstract
Considering the significance of natural antioxidants to preserve meat, the present study was undertaken to evaluate the efficacy of a deflavored and decolorised extract of rosemary (StabilRose™) for the production and preservation of naturally colored fresh meat. Oxidative rancidity of meat and color degradation of paprika oleoresin were exploited as model systems and compared with butylated hydroxyanisole (BHA). The results showed similar efficacy for 3% carnosic acid extract and BHA, with further enhancement in efficacy with respect to the carnosic acid content. A synergetic antioxidant effect of carnosol on carnosic acid content was also noticed to an extent of 1:1 (w/w) ratio, and further increase in carnosol content showed no improvement in the antioxidant efficacy. Finally, stabilized paprika and optimized rosemary extract containing carnosic acid and carnosol in 1:1 (w/w) ratio was successfully applied to produce naturally colored meat suitable for storage at 4 ± 1 °C.
Collapse
Affiliation(s)
- P S Rajeev
- R&D Centre, Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu P.O., Cochin, 683561 India
| | - N M Johannah
- R&D Centre, Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu P.O., Cochin, 683561 India
| | - G Gopakumar
- R&D Centre, Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu P.O., Cochin, 683561 India
| | - Balu Maliakel
- R&D Centre, Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu P.O., Cochin, 683561 India
| | - I M Krishnakumar
- R&D Centre, Akay Flavours & Aromatics Pvt. Ltd., Malayidamthuruthu P.O., Cochin, 683561 India
| |
Collapse
|
15
|
Xie Z, Wan X, Zhong L, Yang H, Li P, Xu X. Carnosic acid alleviates hyperlipidemia and insulin resistance by promoting the degradation of SREBPs via the 26S proteasome. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
K.V. A, M. M, R. B, R. RM, G. S. A novel method for the extraction of prodigiosin from bacterial fermenter integrated with sequential batch extraction reactor using magnetic iron oxide. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Arivizhivendhan KV, Mahesh M, Boopathy R, Patchaimurugan K, Maharaja P, Swarnalatha S, Regina Mary R, Sekaran G. Synthesis of Surface-Modified Iron Oxides for the Solvent-Free Recovery of Bacterial Bioactive Compound Prodigiosin and Its Algicidal Activity. J Phys Chem B 2016; 120:9685-96. [DOI: 10.1021/acs.jpcb.6b03926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - M. Mahesh
- Environmental
Technology Division, Central Leather Research Institute (CSIR-CLRI), Chennai 600020, India
| | - R. Boopathy
- Environment & Sustainability Department, Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar 751013, Orissa, India
| | - K. Patchaimurugan
- Environmental
Technology Division, Central Leather Research Institute (CSIR-CLRI), Chennai 600020, India
| | - P. Maharaja
- Environmental
Technology Division, Central Leather Research Institute (CSIR-CLRI), Chennai 600020, India
| | - S. Swarnalatha
- Environmental
Technology Division, Central Leather Research Institute (CSIR-CLRI), Chennai 600020, India
| | - R. Regina Mary
- PG & Research Department of Zoology, Auxilium College, Vellore 632006, India
| | - G. Sekaran
- Environmental
Technology Division, Central Leather Research Institute (CSIR-CLRI), Chennai 600020, India
| |
Collapse
|
18
|
Naveena BM, Khansole PS, Shashi Kumar M, Krishnaiah N, Kulkarni VV, Deepak SJ. Effect of sous vide processing on physicochemical, ultrastructural, microbial and sensory changes in vacuum packaged chicken sausages. FOOD SCI TECHNOL INT 2016; 23:75-85. [DOI: 10.1177/1082013216658580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/13/2016] [Indexed: 11/15/2022]
Abstract
The processing of sous vide chicken sausages was optimized under vacuum packaging condition and cooking at 100 ℃ for 30 min (SV30), 60 min (SV60) and 120 min (SV120) and compared with aerobically cooked control at 100 ℃ for 30 min. Sous vide processing of chicken sausages (SV30) produced higher ( p < 0.05) cooking yield, Hunterlab a* values and sensory attributes without affecting proximate composition and shear force values relative to control. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis and scanning electron microscopy results revealed no significant changes in protein quality and emulsion ultra-structure due to SV30 processing relative to control sausages. Sous vide processing of chicken sausages enriched with rosemary diterpene phenols retained the freshness and quality up to 120 days during storage at 4 ± 1 ℃ relative to control sausages that were spoiled on 20th day. Lipid oxidation and microbial growth remained below the spoilage levels for all the SV-processed sausages throughout the storage and addition of rosemary diterpene mixture at 0.02% v/w reduced the microbial growth and improved ( p < 0.05) the sensory attributes. Our results demonstrate that sous vide processing minimizes lipid oxidation and microbial growth of chicken sausages with improved product quality and shelf-life at 4 ± 1 ℃.
Collapse
Affiliation(s)
| | - Panjab S Khansole
- Department of Livestock Products Technology, College of Veterinary Sciences, India
| | - M Shashi Kumar
- Department of Livestock Products Technology, College of Veterinary Sciences, India
| | - N Krishnaiah
- Department of Veterinary Public Health and Hygiene, College of Veterinary Sciences, India
| | | | - SJ Deepak
- Department of Veterinary Public Health and Hygiene, College of Veterinary Sciences, India
| |
Collapse
|
19
|
Sevgi K, Tepe B, Sarikurkcu C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem Toxicol 2015; 77:12-21. [PMID: 25542528 DOI: 10.1016/j.fct.2014.12.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 02/08/2023]
Abstract
In this study, ten different phenolic acids (caffeic, chlorogenic, cinnamic, ferulic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic, and vanillic acids) were evaluated for their antioxidant and DNA damage protection potentials. Antioxidant activity was evaluated by using four different test systems named as β-carotene bleaching, DPPH free radical scavenging, reducing power and chelating effect. In all test systems, rosmarinic acid showed the maximum activity potential, while protocatechuic acid was determined as the weakest antioxidant in β-carotene bleaching, DPPH free radical scavenging, and chelating effect assays. Phenolic acids were also screened for their protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of UV and H2O2. Ferulic acid was found as the most active phytochemical among the others. Even at the lowest concentration value (0.002 mg/ml), ferulic acid protected all of the bands in the presence of H2O2 and UV. It is followed by caffeic, rosmarinic, and vanillic acids. On the other hand, cinnamic acid (at 0.002 mg/ml), gallic acid (at 0.002 mg/ml), p-hydroxybenzoic acid (at 0.002 and 0.004 mg/ml), and protocatechuic acid (at 0.002 and 0.004 mg/ml) could not protect plasmid DNA.
Collapse
Affiliation(s)
- Kemal Sevgi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralık University, TR-79000 Kilis, Turkey
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralık University, TR-79000 Kilis, Turkey.
| | - Cengiz Sarikurkcu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, TR-32000 Isparta, Turkey
| |
Collapse
|
20
|
Krishnan KR, Babuskin S, Babu PAS, Fayidh MA, Sabina K, Archana G, Sivarajan M, Sukumar M. Bio protection and preservation of raw beef meat using pungent aromatic plant substances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2456-2463. [PMID: 24425618 DOI: 10.1002/jsfa.6580] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND This study examined the effectiveness of three individual spice (clove, cinnamon and oregano) extracts and their combinations in raw beef meat during refrigerated storage. Meat samples were monitored for microbiological (total viable count, Enterobacteriaceae, lactic acid bacteria, Brochothrix thermosphacta and Pseudomonas spp.) and physicochemical (pH, colour and thiobarbituric acid-reactive substances (TBARS)) attributes. RESULTS Samples treated with the combination of all three spice extracts showed lower bacterial counts and better L*, a* and b* values among treated samples during the storage period. Positive and negative control samples had the highest TBARS values at the end of the storage period. With the addition of spice extracts, TBARS values in raw beef samples were retarded effectively (P < 0.05) compared with control samples, especially when the combination of all three spice extracts was used. CONCLUSION The results of this study show that spice extracts were effective in inhibiting the growth of microbial populations and retarding lipid oxidation during refrigerated storage (4 °C) of raw beef meat. They also suggest that combinations of these extracts may have potential as natural preservatives in raw meat products.
Collapse
|
21
|
Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: a possible mechanism for the inhibition of cell migration. Int J Mol Sci 2014; 15:12698-713. [PMID: 25036034 PMCID: PMC4139869 DOI: 10.3390/ijms150712698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Carnosic acid is a natural benzenediol abietane diterpene found in rosemary and exhibits anti-inflammatory, antioxidant, and anti-carcinogenic activities. In this study, we evaluated the effects of carnosic acid on the metastatic characteristics of B16F10 melanoma cells. When B16F10 cells were cultured in an in vitro Transwell system, carnosic acid inhibited cell migration in a dose-dependent manner. Carnosic acid suppressed the adhesion of B16F10 cells, as well as the secretion of matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase plasminogen activator (uPA), and vascular cell adhesion molecule (VCAM)-1. Interestingly, secretion of TIMP-2 increased significantly in B16F10 cells treated with 10 μmol/L carnosic acid. Additionally, carnosic acid suppressed the mesenchymal markers snail, slug, vimentin, and N-cadherin and induced epithelial marker E-cadherin. Furthermore, carnosic acid suppressed phosphorylation of Src, FAK, and AKT. These results indicate that inhibition of the epithelial-mesenchymal transition may be important for the carnosic acid-induced inhibition of B16F10 cell migration.
Collapse
|
22
|
Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, Fang X, Liu R, Wang L, Chen X, Yang C. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS One 2013; 8:e80464. [PMID: 24260395 PMCID: PMC3834075 DOI: 10.1371/journal.pone.0080464] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/21/2013] [Indexed: 01/03/2023] Open
Abstract
Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons). NCBI non-redundant protein databases (NR) and Swiss-Prot database searches anchored 32,096 unigenes (50%) with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO) terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases). Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS), kaurene synthase-like (SmKSL) and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.
Collapse
Affiliation(s)
- Lei Yang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China ; National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|