1
|
Abdelaziz MA, Alalawy AI, Sobhi M, Alatawi OM, Alaysuy O, Alshehri MG, Mohamed ELI, Abdelaziz MM, Algrfan IA, Mohareb RM. Elaboration of chitosan nanoparticles loaded with star anise extract as a therapeutic system for lung cancer: Physicochemical and biological evaluation. Int J Biol Macromol 2024; 279:135099. [PMID: 39197631 DOI: 10.1016/j.ijbiomac.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The research study aimed to maximize the important medical role of star anise extract (SAE) through its loading on a widely available natural polymer (chitosan, Cs). Thus, SAE loaded chitosan nanoparticles (CsNPs) was prepared. The finding illustrated the formation of spherical particles of SAE loaded CsNPs as proved by transmission electron microscope (TEM). In addition, the average particle size of CsNPs and SAE loaded CsNPs are 131.8 ± 24.63 and 318.5 ± 73.94 nm, respectively. Scanning electron microscope (SEM) showed the presence of many spherical particles deposited on the surface of CsNPs owing to the deposition of SAE on the surface and encapsulated into pores of CsNPs. It also showed the presence of elements such as sodium, potassium, copper, magnesium, zinc, calcium, and iron, as well as the elements that accompanied with CsNPs: carbon, oxygen, nitrogen, and phosphorus. The extract was rich in bioactive components, such as anethole, shikimic acid, and different flavonoids, contributing to its medicinal qualities. The bioactive molecules in SAE were assessed by chromatographic analysis. Using the agar well diffusion test, the antibacterial qualities of CsNPs and SAE loaded CsNPs were evaluated against pathogenic bacteria linked to lung illnesses. The most significant inhibition zones showed that the SAE loaded CsNPs had the most antibacterial activity. The anticancer activity using MTT assay was used in the biological assessments to determine the cytotoxicity against the NCl-H460 lung cancer cell line. The results showed that CsNPs loaded with SAE considerably decreased cell viability in a dose-dependent manner, with the most significant anticancer impact by SAE loaded CsNPs. Furthermore, in vivo tests on lung cancer therapy revealed that when compared to other treatment groups, the SAE loaded CsNPs group showed the greatest reduction in tumor biomarkers and inflammation, as seen by decreased levels of Plasma malondialdehyde (MDA), tumor protein 53 (p53), Tumor necrosis factor-alpha (TNF- alpha), and fibronectin. Results concluded that these thorough characterizations, biological assessments, and antibacterial tests have confirmed the effective integration of SAE into CsNPs. Further, SAE loaded CsNPs could be a suitable option for various biomedical applications in tackling lung cancer and the inactivation of bacterial infection.
Collapse
Affiliation(s)
- Mahmoud A Abdelaziz
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohamed Sobhi
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Omar M Alatawi
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Omaymah Alaysuy
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Maryam G Alshehri
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - ELsiddig Idriss Mohamed
- Department of Statistics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Maiar M Abdelaziz
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Ibrahim A Algrfan
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Jaradat N, Hawash M, Sharifi-Rad M, Shakhshir A, Sobuh S, Hussein F, Issa L, Hamamrhe S, Al-Sheikh E, Ibrahim AN. Insights into free radicals scavenging, α-Amylase inhibition, cytotoxic and antifibrotic activities unveiled by Peganum harmala extracts. BMC Complement Med Ther 2024; 24:299. [PMID: 39135016 PMCID: PMC11320836 DOI: 10.1186/s12906-024-04602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Peganum harmala L. is used in traditional medicine to treat several health ailments. Hence, the present work aimed to investigate the DPPH free radical scavenging, α-amylase, cytotoxic, and antifibrotic effects of the hydrophilic extract and fixed oil obtained from P. harmala seeds. METHODS The hydrophilic extract and fixed oil of P. harmala were assessed for their abilities to scavenge DPPH free radicals and inhibit α-amylase using reference bioassays. The cytotoxicity was assessed on several cancer and normal cell lines, including B16F1, Caco-2, COLO205, HeLa, Hep 3B and Hep G2, MCF-7, and HEK-293 T cells. The MTS assay was used to evaluate the antifibrotic capabilities utilizing the human hepatic stellate (LX-2) cell line. RESULTS P. harmala plant fixed oil has potent DPPH free radical scavenging activity with an IC50 dose of 79.43 ± 0.08 µg/ml. Besides, the hydrophilic extract has a poor anti-α-amylase effect compared with the antidiabetic drug Acarbose, with IC50 doses of 398 ± 0.59 and 25.11 ± 1.22 µg/ml, respectively. In addition, the growth of MCF-7, Hep3B, HepG2, HeLa, COLO205, CaCo2, B16F1, and HeK293t was inhibited by P. harmala hydrophilic extract with IC50 doses of 121.34 ± 1.71, 268.3 ± 0.75, 297.20 ± 1.00, 155.60 ± 1.14, 150.01 ± 0.51, 308.35 ± 0.53, 597.93 ± 1.36, and 5.38 ± 0.99 µg/ml, respectively. In addition, at 1000 µg/ml, 5-Fluorouracil reduced fibrosis cells by 0.089%, while the hydrophilic extract decreased the number of LX-2 cells by 5.81%. CONCLUSION P. harmala plant-fixed oil exhibits potential antioxidant properties. While the hydrophilic extract showed limited effectiveness as an anti-α-amylase agent and demonstrated notable cytotoxic effects against various tested cancer cell lines. Furthermore, this extract significantly reduces the number of LX-2 fibrotic cells. These findings emphasize the therapeutic potential of these products in managing various health disorders and warrant further investigation into their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| | - Ali Shakhshir
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Fatima Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Sondos Hamamrhe
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Eman Al-Sheikh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Alaa Naser Ibrahim
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
3
|
Tedasen A, Chiabchalard A, Tencomnao T, Yamasaki K, Majima HJ, Phongphithakchai A, Chatatikun M. Anti-Melanogenic Activity of Ethanolic Extract from Garcinia atroviridis Fruits Using In Vitro Experiments, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Antioxidants (Basel) 2024; 13:713. [PMID: 38929152 PMCID: PMC11200473 DOI: 10.3390/antiox13060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Melanin, the pigment responsible for human skin color, increases susceptibility to UV radiation, leading to excessive melanin production and hyperpigmentation disorders. This study investigated the ethanolic extract of Garcinia atroviridis fruits for its phenolic and flavonoid contents, antioxidant activity, and impact on melanogenesis pathways using qRT-PCR and Western blot analysis. Utilizing network pharmacology, molecular docking, and dynamics simulations, researchers explored G. atroviridis fruit extract's active compounds, targets, and pharmacological effects on hyperpigmentation. G. atroviridis fruit extract exhibited antioxidant properties, scavenging DPPH• and ABTS•+ radicals radicals and chelating copper. It inhibited cellular tyrosinase activity and melanin content in stimulated B16F10 cells, downregulating TYR, TRP-1, phosphorylated CREB, CREB, and MITF proteins along with transcription levels of MITF, TYR, and TRP-2. LC-MS analysis identified thirty-three metabolites, with seventeen compounds selected for further investigation. Network pharmacology revealed 41 hyperpigmentation-associated genes and identified significant GO terms and KEGG pathways, including cancer-related pathways. Kaempferol-3-O-α-L-rhamnoside exhibited high binding affinity against MAPK3/ERK1, potentially regulating melanogenesis by inhibiting tyrosinase activity. Stable ligand-protein interactions in molecular dynamics simulations supported these findings. Overall, this study suggests that the ethanolic extract of G. atroviridis fruits possesses significant antioxidant, tyrosinase inhibitory, and anti-melanogenic properties mediated through key molecular targets and pathways.
Collapse
Affiliation(s)
- Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (H.J.M.)
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Anchalee Chiabchalard
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (A.C.); (T.T.)
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (A.C.); (T.T.)
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Hideyuki J. Majima
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (H.J.M.)
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (H.J.M.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Chuaijit S, Punsawad C, Winoto V, Plaingam W, Kongkaew I, Phetcharat A, Ichikawa T, Kubo M, Kawakami F, Tedasen A, Chatatikun M. Leaf extract of Garcinia atroviridis promotes anti-heat stress and antioxidant effects in Caenorhabditis elegans. Front Pharmacol 2024; 15:1331627. [PMID: 38515852 PMCID: PMC10955098 DOI: 10.3389/fphar.2024.1331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Garcinia atroviridis has been used for traditional medicines, healthy foods and tea. The chemical compositions and biological activities of fruit, stem bark and root have been widely studied. However, the phytochemical components and the biological activities in Garcinia atroviridis leaves (GAL) are limited. This research aims to study the phytochemical components and the stress resistance effects of GAL in Caenorhabditis elegans (C. elegans). Methods: To investigate the chemical components and antioxidant activities of GAL extract, the ethanol extract was characterized by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF MS) analysis and C. elegans was used to evaluate the effects of GAL extracts on longevity and stress resistance. Results and discussion: The results revealed that the ethanol extract of GAL possesses free radical scavenging activities. Furthermore, GAL extract increased the lifespan of C. elegans by 6.02%, 15.26%, and 12.75% at concentrations of 25, 50, and 100 μg/mL, respectively. GAL extract exhibited improved stress resistance under conditions of heat and hydrogen peroxide-induced stress. The survival rates of GAL extract-treated worms were significantly higher than those of untreated worms, and GAL extract reduced reactive oxygen species (ROS) accumulation. Additionally, GAL extract treatment upregulated the expression of stress resistance-associated genes, including gst-4, sod-3, skn-1, and hsp16.2. GAL extract supplementation alleviated stress and enhanced longevity by inducing stress-related genes in C. elegans. The observed effects of GAL extracts may be attributed to the stimulation of oxidant enzymes mediated through DAF-16/FOXO and SKN-1/NRF2, as well as the enhancement of thermal defense in C. elegans. Collectively, this study provides the first evidence of the antioxidant activities of GAL and elucidates the underlying mechanisms of stress resistance.
Collapse
Affiliation(s)
- Sirithip Chuaijit
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veronica Winoto
- Department of Chemical Engineering, Thammasat School of Engineering, Thammasat University Rangsit Campus, Rangsit, Pathum Thani, Thailand
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, Rangsit, Pathum Thani, Thailand
| | - Itti Kongkaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atidtaya Phetcharat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Makoto Kubo
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato, Sagamihara, Japan
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Moragot Chatatikun
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
5
|
Paraschiv M, Csiki M, Diaconeasa Z, Socaci S, Balacescu O, Rakosy-Tican E, Cruceriu D. Phytochemical Profile and Selective Cytotoxic Activity of a Solanum bulbocastanum Dun. Methanolic Extract on Breast Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3262. [PMID: 36501302 PMCID: PMC9740103 DOI: 10.3390/plants11233262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Solanum bulbocastanum is a wild potato species, intensively used in potato breeding programs due to its resistance to environmental factors. Thus, its biochemical profile and putative human health-related traits might be transferred into potato cultivars aimed for consumption. This study aims to assess the phytochemical profile and the selective cytotoxicity of an S. bulbocastanum extract against breast cancer cells. Dry leaves were subjected to ultrasonication-assisted extraction in methanol [70%]. The phenolic and glycoalkaloid profiles were determined by HPLC-PDA/-ESI+-MS. The volatile profile was investigated by nontargeted ITEX/GC-MS. The extract was tested against three breast cancer cell lines (MCF7, MDA-MB-231, HS578T) and a healthy cell line (HUVEC) by the MTT assay, to assess its selective cytotoxicity. The phenolic profile of the extract revealed high levels of phenolic acids (5959.615 µg/mL extract), and the presence of flavanols (818.919 µg/mL extract). The diversity of the volatile compounds was rather low (nine compounds), whereas no glycoalkaloids were identified, only two alkaloid precursors (813.524 µg/mL extract). The extract proved to be cytotoxic towards all breast cancer cell lines (IC50 values between 139.1 and 356,1 µg/mL), with selectivity coefficients between 1.96 and 4.96 when compared with its toxicity on HUVECs. Based on these results we conclude that the exerted cytotoxic activity of the extract is due to its high polyphenolic content, whereas the lack of Solanaceae-specific glycoalkaloids might be responsible for its high selectivity against breast cancer cells in comparison with other extract obtained from wild Solanum species. However, further research is needed in order to assess the cytotoxicity of the individual compounds found in the extract, as well as the anti-tumor potential of the S. bulbocastanum tubers.
Collapse
Affiliation(s)
- Mihnea Paraschiv
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Magda Csiki
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| | - Sonia Socaci
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Shahid M, Law D, Azfaralariff A, Mackeen MM, Chong TF, Fazry S. Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review. TOXICS 2022; 10:656. [PMID: 36355947 PMCID: PMC9692539 DOI: 10.3390/toxics10110656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Garcinia atriviridis Griff ex T. Anders (G. atroviridis) is one of the well-known species of the genus Garicinia that is native to Thailand, Myanmar, Peninsular Malaysia, and India. G. atroviridis is a perennial medium-sized tree that has a wide range of values, from food to medicinal use. Different parts of G. atroviridis are a great source of bioactive substances that have a positive impact on health. The extracts or bioactive constituents from G. atroviridis have demonstrated various therapeutic functions, including antioxidant, antimicrobial, anticancer, anti-inflammatory, antihyperlipidemic, and anti-diabetic. In this paper, we provide a critical review of G. atroviridis and its bioactive constituents in the prevention and treatment of different diseases, which will provide new insight to explore its putative domains of research.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Ahmad Azfaralariff
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Mukram M. Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Teek Foh Chong
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
7
|
Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines. Bioinorg Chem Appl 2022; 2022:8546079. [PMID: 36193250 PMCID: PMC9525761 DOI: 10.1155/2022/8546079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction. Biogenic silver nanoparticles (AgNPs-GA) were successfully synthesised using Garcinia atroviridis leaf extract as a reducing agent, which has ethnopharmacological claims against various diseases including cancer. Aim of the Study. Aim of the study is to discover whether AgNPs-GA has cytotoxic and genotoxic effects on cancerous (A549) and noncancerous (BEAS-2B) human lung cells. Materials and Methods. The cytotoxicity profiles of AgNPs-GA were characterized by MTT assay, intracellular reactive oxygen species (ROS) assay, and DAPI and AOPI double staining, whilst genotoxicity was assessed using Comet Assay analysis. The level of silver ions (Ag+) and cellular uptake of AgNPs-GA were evaluated by ICP-OES and TEM analyses, respectively. Results. A significant cytotoxic effect was observed by AgNPs-GA on both A549 and BEAS-2B cell lines, with IC50 values of 20–28 μg/ml and 12–35 μg/ml, respectively. The cytotoxicity profile of AgNPs-GA was also accompanied by a pronounced increase in ROS production, DNA damage, and apoptosis. Moreover, Ag+ was also detected in cells exposed to AgNPs-GA threefold higher compared to controls. In this study, AgNPs-GA were endocytosed within lysosomes, which may direct to secondary toxicity effects including oxidative stress, impairment of the cell membrane, DNA fragmentation, and cell death. Conclusions. Taken together, novel toxicological-related mechanisms by AgNPs-GA were proposed involving the generation of ROS that causes DNA damage which led to programmed cell death in both A549 and BEAS-2B cells. Therefore, a combination of scientific assessments is constantly needed to ensure that the quality of biosynthesized nanoparticles is controlled and their safe development is promoted.
Collapse
|
8
|
Félix G, Soto-Robles CA, Nava E, Lugo-Medina E. Principal Metabolites in Extracts of Different Plants Responsible for Antibacterial Effects. Chem Res Toxicol 2021; 34:1970-1983. [PMID: 34464103 DOI: 10.1021/acs.chemrestox.1c00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increase in bacterial resistance and decreased effectiveness of antibacterial agents has forced researchers to look for new antibacterial agents from environmentally friendly sources such as essential oils and oil extracts. The functional group of the metabolites present in the essential oils or plant extract and the synergy effects between them play an important role in the biological activity and can be the principal factor affecting the antibacterial effect. All of these bioactive oils showed the same action mechanism, and the best way to implement them is by extracting them without changing their original properties, whereby the characterization and evaluation of the compounds are important steps. All of these themes are extensively reviewed, analyzed, and discussed in this work.
Collapse
Affiliation(s)
- Guillermo Félix
- Tecnológico Nacional de México/IT de Los Mochis, C.P. 81259 Los Mochis, Sinaloa México
| | - Carlos A Soto-Robles
- Tecnológico Nacional de México/IT de Los Mochis, C.P. 81259 Los Mochis, Sinaloa México
| | - Eusebio Nava
- Centro Interdisciplinario de Investigación y Desarrollo Regional - Instituto Politécnico Nacional, C.P. 81101 Guasave, Sinaloa México
| | - Eder Lugo-Medina
- Tecnológico Nacional de México/IT de Los Mochis, C.P. 81259 Los Mochis, Sinaloa México
| |
Collapse
|
9
|
Mechanistic Actions between Garcinia atroviridis Essential Oil and 2 Deoxy-d-glucose in Cultured PANC-1 Human Pancreatic Cancer Cells. Molecules 2021; 26:molecules26123518. [PMID: 34207699 PMCID: PMC8227498 DOI: 10.3390/molecules26123518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Pancreatic cancer is an aggressive disease that progresses in a relatively symptom-free manner; thus, is difficult to detect and treat. Essential oil is reported to exhibit pharmacological properties, besides its common and well-known function as aromatherapy. Therefore, this study herein aimed to investigate the anti-proliferative effect of essential oil extracted from leaves of Garcinia atroviridis (EO-L) against PANC-1 human pancreatic cancer cell line. The cell growth inhibitory concentration at 50% (IC50) and selective index (SI) values of EO-L analyses were determined as 78 µg/mL and 1.23, respectively. Combination index (CI) analysis revealed moderate synergism (CI values of 0.36 to 0.75) between EO-L and 2 deoxy-d-glucose (2-DG) treatments. The treatments of PANC-1 cells with EO-L, 2-DG and EOL+2DG showed evidence of depolarization of mitochondrial membrane potential, cell growth arrest and apoptosis. The molecular mechanism causing the anti-proliferative effect between EO-L and 2-DG is potentially through pronounced up-regulation of P53 (4.40-fold), HIF1α (1.92-fold), HK2 (2.88-fold) and down-regulation of CYP3A5 (0.11-fold), as supported by quantitative mRNA expression analysis. Collectively, the current data suggest that the combination of two anti-proliferative agents, EO-L and 2-DG, can potentially be explored as therapeutic treatments and as potentiating agents to conventional therapy against human pancreatic cancer.
Collapse
|
10
|
Al-Mansoub MA, Asif M, Revadigar V, Hammad MA, Chear NJY, Hamdan MR, Majid AMSA, Asmawi MZ, Murugaiyah V. Chemical composition, antiproliferative and antioxidant attributes of ethanolic extract of resinous sediment from Etlingera elatior (Jack.) inflorescence. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000418954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Muhammad Asif
- Universiti Sains Malaysia, Malaysia; Government College University, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
ISHIMOTO EY, VICENTE SJV, CRUZ RJ, TORRES EAFDS. Hypolipidemic and antioxidant effects of grape processing by-products in high-fat/cholesterol diet-induced hyperlipidemic hamsters. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.32619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Zulkifli NI, Muhamad M, Mohamad Zain NN, Tan WN, Yahaya N, Bustami Y, Abdul Aziz A, Nik Mohamed Kamal NNS. A Bottom-Up Synthesis Approach to Silver Nanoparticles Induces Anti-Proliferative and Apoptotic Activities Against MCF-7, MCF-7/TAMR-1 and MCF-10A Human Breast Cell Lines. Molecules 2020; 25:molecules25184332. [PMID: 32971740 PMCID: PMC7570564 DOI: 10.3390/molecules25184332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022] Open
Abstract
A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.
Collapse
Affiliation(s)
- Nurul Izzati Zulkifli
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Musthahimah Muhamad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia;
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Nik Nur Syazni Nik Mohamed Kamal
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
- Correspondence: ; Tel.: +60-4562-2413
| |
Collapse
|
13
|
Yeow LC, Chew BL, Sreeramanan S. Elevation of secondary metabolites production through light-emitting diodes (LEDs) illumination in protocorm-like bodies (PLBs) of Dendrobium hybrid orchid rich in phytochemicals with therapeutic effects. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 27:e00497. [PMID: 32695616 PMCID: PMC7365977 DOI: 10.1016/j.btre.2020.e00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/28/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022]
Abstract
Gas-chromatography-mass-spectrometry revealed the presence of various bioactive compounds with anticancer properties in protocorm-like-body (PLB) cultures of a Dendrobium hybrid orchid (Dendrobium Enopi x Dendrobium Pink Lady). Pre-illumination of red fluorescent light lessened the stimulating effects of light-emitting diodes (LEDs) on secondary metabolites production among in vitro PLB cultures, possibly due to habituation. The highest flavonoid content of 16.79 μmol/ g of fresh weight (FW) was achieved under blue-red (1:1) LED for PLBs pre-treated with white LED for more than 3 subculture cycles. Phenolics content significantly reduced as PLBs pre-cultured under red fluorescent light for 2 subculture cycles were exposed to LED illuminations, where far red LED resulted in the lowest total phenolic content (18.85 μmol/ g FW). High intensity green LED (16.9 μmol/s) enhanced the accumulation of phenolics while amino acids such as L-leucine, glycine and proline exhibited no significant stimulating effect for secondary metabolites production.
Collapse
Key Words
- Bioactive compounds
- DDMP, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl
- GCMS, Gas chromatography-mass spectrometry
- GSH, Reduced glutathione
- Habituation
- LED, Light-emitting diode
- Light-emitting diodes
- NF-KB, Nuclear factor kappa B
- PAL, Phenylalanine ammonia-lyase
- PLB, Protocorm-like bodies
- Phenolics
- Protocorm-like-body
- ROS, Reactive oxygen species
Collapse
Affiliation(s)
- Lit Chow Yeow
- School of Biological Sciences, Universiti Sains Malaysia, 11700 Gelugor, Pulau Pinang, Malaysia
| | - Bee Lynn Chew
- School of Biological Sciences, Universiti Sains Malaysia, 11700 Gelugor, Pulau Pinang, Malaysia
| | - Subramaniam Sreeramanan
- School of Biological Sciences, Universiti Sains Malaysia, 11700 Gelugor, Pulau Pinang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
14
|
Manan M, Saleem U, Akash MS, Qasim M, Hayat M, Raza Z, Ahmad B. Antiarthritic Potential of Comprehensively Standardized Extract of Alternanthera bettzickiana: In Vitro and In Vivo Studies. ACS OMEGA 2020; 5:19478-19496. [PMID: 32803042 PMCID: PMC7424589 DOI: 10.1021/acsomega.0c01670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/21/2020] [Indexed: 05/10/2023]
Abstract
Alternanthera bettzickiana is being used as a folk remedy for treating arthritis by conventional healers in Thailand. The current research was undertaken to explore the antiarthritic potential of A. bettzickiana ethanolic extract (ABEE). Plant characterization, molecular docking, and in vitro and in vivo (ABEE at 250, 500, and 1000 mg/kg was administered orally to rats once daily for 28 days) studies to explore the antiarthritic effect and enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) analyses were performed. Oxidative stress biomarkers (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA)) in the serum and histopathological and radiographic assessment of joints were also carried out. Gallic acid, catechin, chlorogenic acid, sinapic acid, quercetin, and γ- and α-tocopherol were identified in high-performance liquid chromatography (HPLC). Molecular docking revealed a strong interaction between these compounds and cyclooxygenase (COX) enzymes. The extract significantly subdued paw swelling and arthritic scoring, inhibited cachexia, and considerably improved biochemical and hematological modifications. SOD and CAT levels increased and the MDA level decreased in ABEE-treated rats dose-dependently. Radiographic and histopathological analyses also supported the antiarthritic effect of ABEE, which was linked with the downregulation of nuclear factor (NF)-kB, COX-2, interleukin (IL)-6, tumour necrosis factor (TNF)-α, and IL-1β and upregulation of IL-10, I-kB, and IL-4 as compared to disease control rats. Results suggested that A. bettzickiana possessed antiarthritic potential, supporting its folkloric use for treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Maria Manan
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Sajid
Hamid Akash
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Qasim
- Department
of Bioinformatics & Biotechnology, Government
College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Hayat
- Department
of Biochemistry, Government College University,
Faisalabad, Faisalabad 38000, Pakistan
| | - Zohaib Raza
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Faisalabad 38000, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Shahinuzzaman M, Yaakob Z, Anuar FH, Akhtar P, Kadir NHA, Hasan AKM, Sobayel K, Nour M, Sindi H, Amin N, Sopian K, Akhtaruzzaman M. In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci Rep 2020; 10:10852. [PMID: 32616768 PMCID: PMC7331616 DOI: 10.1038/s41598-020-67765-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/08/2020] [Indexed: 12/03/2022] Open
Abstract
As synthetic antioxidants that are widely used in foods are known to cause detrimental health effects, studies on natural additives as potential antioxidants are becoming increasingly important. In this work, the total phenolic content (TPC) and antioxidant activity of Ficus carica Linn latex from 18 cultivars were investigated. The TPC of latex was calculated using the Folin–Ciocalteu assay. 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) were used for antioxidant activity assessment. The bioactive compounds from F. carica latex were extracted via maceration and ultrasound-assisted extraction (UAE) with 75% ethanol as solvent. Under the same extraction conditions, the latex of cultivar ‘White Genoa’ showed the highest antioxidant activity of 65.91% ± 1.73% and 61.07% ± 1.65% in DPPH, 98.96% ± 1.06% and 83.04% ± 2.16% in ABTS, and 27.08 ± 0.34 and 24.94 ± 0.84 mg TE/g latex in FRAP assay via maceration and UAE, respectively. The TPC of ‘White Genoa’ was 315.26 ± 6.14 and 298.52 ± 9.20 µg GAE/mL via the two extraction methods, respectively. The overall results of this work showed that F. carica latex is a potential natural source of antioxidants. This finding is useful for further advancements in the fields of food supplements, food additives and drug synthesis in the future.
Collapse
Affiliation(s)
- M Shahinuzzaman
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. .,Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Farah Hannan Anuar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Parul Akhtar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - N H A Kadir
- School of Fundamental Science, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - A K Mahmud Hasan
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - K Sobayel
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Majid Nour
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hatem Sindi
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional (@The National Energy University), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - K Sopian
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Md Akhtaruzzaman
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. .,Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
16
|
Cruceriu D, Diaconeasa Z, Socaci S, Socaciu C, Balacescu O, Rakosy-Tican E. Extracts of the Wild Potato Species Solanum chacoense on Breast Cancer Cells: Biochemical Characterization, In Vitro Selective Cytotoxicity and Molecular Effects. Nutr Cancer 2020; 73:630-641. [PMID: 32372670 DOI: 10.1080/01635581.2020.1761407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solanum chacoense (wild potato) is intensively used in breeding, its biochemical profile and putative human health-related traits being transferred into potato cultivars aimed for consumption. The goal of this study was to evaluate the biochemical profile and the anti-tumor potential of methanolic extracts obtained from S. chacoense leaves and tubers against three breast cancer cell lines in comparison to healthy endothelial cells (HUVEC). The biochemical profile of the extracts was determined by HPLC-PDA/-ESI+-MS and ITEX/GC-MS, the selective cytotoxicity by MTT assay whereas RT-qPCR was used to evaluate the expression of proliferation- and apoptosis-related genes. Both extracts proved to be rich in phenolic acids and volatile compounds, the leaf extract also containing glycoalkaloids. Both extracts proved to be cytotoxic for breast cancer cell lines, with IC50 values varying between 132.9 and 390.7 µg/ml. Both extracts had selective cytotoxicity against MCF7 cell line in comparison to HUVECs (selectivity coefficients >2.3). The treatment with the extracts induced overexpression of the pro-apoptotic gene BAX¸ down-regulation of the anti-apoptotic gene BCL-2 and the pro-proliferation genes NFkB, CCND1, and STAT3. Thus S. chacoense extracts proved to be rich in compounds with anticancer proprieties and are capable of inducing selective cytotoxicity on MCF7 cell line.
Collapse
Affiliation(s)
- Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sonia Socaci
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Ben Ahmed Z, Mohamed Y, Johan V, Dejaegher B, Demeyer K, Vander Heyden Y. Defining a standardized methodology for the determination of the antioxidant capacity: case study of Pistacia atlantica leaves. Analyst 2020; 145:557-571. [DOI: 10.1039/c9an01643k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antioxidant activity can be measured by a variety of methods, that include hydrogen atom transfer (HAT) and single electron transfer (ET) methods.
Collapse
Affiliation(s)
- Ziyad Ben Ahmed
- Laboratory of Science Fundamental University Amar Telidji
- BP37G Laghouat
- Algeria
- Department of Analytical Chemistry
- Applied Chemometricsand Molecular Modelling
| | - Yousfi Mohamed
- Laboratory of Science Fundamental University Amar Telidji
- BP37G Laghouat
- Algeria
| | - Viaene Johan
- Department of Analytical Chemistry
- Applied Chemometricsand Molecular Modelling
- Vrije Universiteit Brussel (VUB)
- B-1090 Brussels
- Belgium
| | - Bieke Dejaegher
- Department of Analytical Chemistry
- Applied Chemometricsand Molecular Modelling
- Vrije Universiteit Brussel (VUB)
- B-1090 Brussels
- Belgium
| | - Kristiaan Demeyer
- Department of Toxicology
- Dermato-Cosmetology and Pharmacognosy
- VrijeUniversiteit Brussel (VUB)
- B-1030 Brussels
- Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry
- Applied Chemometricsand Molecular Modelling
- Vrije Universiteit Brussel (VUB)
- B-1090 Brussels
- Belgium
| |
Collapse
|
18
|
Destro BGI, Jorge RMM, Mathias AL. MAXIMIZATION OF ESSENTIAL OIL ANTIOXIDANT CAPACITY VIA STAR ANISE HYDRODISTILLATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20190099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Salem GA, Alamyel FB, Abushaala FA, Hussain MS, Elnory KA, Abusheba H, Sahu RP. Evaluation of the hepatoprotective, anti-inflammatory, antinociceptive and antiepileptic activities of Chrysanthemum trifurcatum. Biomed Pharmacother 2019; 117:109123. [PMID: 31234026 DOI: 10.1016/j.biopha.2019.109123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 01/20/2023] Open
Abstract
Chrysanthemum trifurcatum is common to Mediterranean countries and widely-used in traditional medicine. Due to the scarcity of data about the pharmacological properties of C. trifurcatum, this present study was designed to determine the effects of C. trifurcatumethanolic extract (CEE) for its anti-nociceptive, anti-epileptic, anti-inflammatory, and hepatoprotective activities in mice and rat models. We demonstrate that CEE contains alkaloids, carbohydrates, and flavonoids, and in a dose-dependent (300 and 500 mg/kg) manner exhibited significant reductions in paracetamol (PCM; 500 mg/kg)-induced increased serum AST, ALT and ALP levels, similar to as seen by silymarin (25 mg/kg). Additionally, CEE (300 mg/kg) elicited inhibition in acetic acid-induced abdominal writhes, delayed latency time to paw's licking in hot plate tests, exerted an anti-convulsant effect by prolonging the onset of clonic and tonic convulsions, and reduced pentylenetetrazole (PTZ; 80 mg/kg)-induced mortality. Moreover, CEE (500 mg/kg) exhibited a prominent reduction in carrageenan-induced paw edema. These studies indicate that CEE possesses profound central and peripheral analgesic, anti-convulsant, anti-inflammatory, and hepatoprotective activities.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, P.O. Box 44511, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya.
| | - Fathi B Alamyel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Faraj A Abushaala
- Department of Micobiology, Faculty of Science, Misurata University, P.O. Box 2478, Libya
| | - Md Sarfaraj Hussain
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Khloud A Elnory
- Department of Pharmacognosy, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Hawa Abusheba
- Department of Pharmacognosy, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 45345, USA.
| |
Collapse
|
20
|
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26:5. [PMID: 30621719 PMCID: PMC6325740 DOI: 10.1186/s12929-019-0499-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Rosmarinus officinalis L. (rosemary) is a medicinal plant native to the Mediterranean region and cultivated around the world. Besides the therapeutic purpose, it is commonly used as a condiment and food preservative. R. officinalis L. is constituted by bioactive molecules, the phytocompounds, responsible for implement several pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, antiproliferative, antitumor and protective, inhibitory and attenuating activities. Thus, in vivo and in vitro studies were presented in this Review, approaching the therapeutic and prophylactic effects of R. officinalis L. on some physiological disorders caused by biochemical, chemical or biological agents. In this way, methodology, mechanisms, results, and conclusions were described. The main objective of this study was showing that plant products could be equivalent to the available medicines.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | | | - Luciane Dias de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
21
|
Gao C, Wang F, Yuan L, Liu J, Sun D, Li X. Physicochemical property, antioxidant activity, and cytoprotective effect of the germinated soybean proteins. Food Sci Nutr 2019; 7:120-131. [PMID: 30680165 PMCID: PMC6341154 DOI: 10.1002/fsn3.822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Appropriate germination can improve the nutritional value and bioactivity of soybeans; however, few studies have assessed the effect of germination on soybean proteins. This study examined the physicochemical property, antioxidation, and cytoprotective effect of the germinated soybean proteins (Gsp). Gsp was extracted from soybeans which germinated for 0-3 days using the method of alkali-solution and acid-isolation extraction. The results showed that germination could digest soybean proteins into the smaller molecules; enhance the degree of hydrolysis, emulsifiability, and foaming capacity; increase the removal rate of ABTS, DPPH, O 2 - ˙, and ˙OH radical; and decrease the reducing power and lipid peroxidation of Gsp. Additionally, Gsp was able to protect HL-7702 human hepatocyte cells against benzo(a)pyrene (BaP)-induced cytotoxicity through mediating the cell cycle arrest, suppressing apoptosis, and increasing reactive oxygen species (ROS) levels. This work demonstrated that germination could enhance the physicochemical property and antioxidant activity of Gsp, which also displayed the remarkable cytoprotective effect. This study provided a fundamental basis for substantiating dietary of Gsp used for resistance to oxidation and hepatic injury.
Collapse
Affiliation(s)
- Chunxia Gao
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Fengzhong Wang
- Institute of Food Science and Technology CAASBeijingChina
| | - Li Yuan
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Junyi Liu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Dan Sun
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Xuyan Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| |
Collapse
|
22
|
Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, Devkota HP, Orhan IE, Patra JK, Das G, Anandharamakrishnan C, Gomez-Gomez L, Nabavi SF, Nabavi SM, Atanasov AG. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Al Zarzour RH, Ahmad M, Asmawi MZ, Kaur G, Saeed MAA, Al-Mansoub MA, Saghir SAM, Usman NS, Al-Dulaimi DW, Yam MF. Phyllanthus Niruri Standardized Extract Alleviates the Progression of Non-Alcoholic Fatty Liver Disease and Decreases Atherosclerotic Risk in Sprague-Dawley Rats. Nutrients 2017; 9:E766. [PMID: 28718838 PMCID: PMC5537880 DOI: 10.3390/nu9070766] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major global health issues, strongly correlated with insulin resistance, obesity and oxidative stress. The current study aimed to evaluate anti-NAFLD effects of three different extracts of Phyllanthus niruri (P. niruri). NAFLD was induced in male Sprague-Dawley rats using a special high-fat diet (HFD). A 50% methanolic extract (50% ME) exhibited the highest inhibitory effect against NAFLD progression. It significantly reduced hepatomegaly (16%) and visceral fat weight (22%), decreased NAFLD score, prevented fibrosis, and reduced serum total cholesterol (TC) (48%), low-density lipoprotein (LDL) (65%), free fatty acids (FFAs) (25%), alanine aminotransferase (ALT) (45%), alkaline phosphatase (ALP) (38%), insulin concentration (67%), homeostatic model assessment of insulin resistance (HOMA-IR) (73%), serum atherogenic ratios TC/high-density lipoprotein (HDL) (29%), LDL/HDL (66%) and (TC-HDL)/HDL (64%), hepatic content of cholesterol (43%), triglyceride (29%) and malondialdehyde (MDA) (40%) compared to a non-treated HFD group. In vitro, 50% ME of P. niruri inhibited α-glucosidase, pancreatic lipase enzymes and cholesterol micellization. It also had higher total phenolic and total flavonoid contents compared to other extracts. Ellagic acid and phyllanthin were identified as major compounds. These results suggest that P. niruri could be further developed as a novel natural hepatoprotective agent against NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mariam Ahmad
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohd Zaini Asmawi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohammed Ali Ahmed Saeed
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Majed Ahmed Al-Mansoub
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Sultan Ayesh Mohammed Saghir
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nasiba Salisu Usman
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Dhamraa W Al-Dulaimi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mun Fei Yam
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
24
|
Tabana YM, Al-Suede FSR, Ahamed MBK, Dahham SS, Hassan LEA, Khalilpour S, Taleb-Agha M, Sandai D, Majid ASA, Majid AMSA. Cat's whiskers (Orthosiphon stamineus) tea modulates arthritis pathogenesis via the angiogenesis and inflammatory cascade. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:480. [PMID: 27881135 PMCID: PMC5122152 DOI: 10.1186/s12906-016-1467-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Background Orthosiphon stamineus is used traditionally to treat gout, arthritis, and inflammatory related conditions. The in vitro anti-inflammatory effects of the plant have been scientifically investigated. The goal of the present study was to evaluate the potential of the 50% ethanol extract of O. stamineus (EOS) to treat rheumatoid arthritis. Methods Anti-arthritic activity was assessed using the in vitro heat denaturation test and the (FCA)-induced arthritis model. Efficacy was assessed by measurements of paw edema and granulation, X-ray radiography, fluorescence molecular tomography (FMT), and histological evaluation. Levels of (TNF-α), interleukin-1 (IL-1), and (COX-1 and COX-2) were analyzed in vitro in lipopolysaccharide (LPS)-stimulated human macrophage (U937). TNF-α and IL-1 levels in the serum samples of arthritic rats were also measured using an ELISA kit. Results Treatment with EOS resulted in dose-dependent inhibition of paw edema in acute and chronic models of inflammation. It also inhibited significantly the production of TNF-α, IL-1 COX-1, and COX-2 in the LPS-stimulated U937 macrophages. EOS significantly suppressed FCA-induced paw edema as well as the serum levels of TNF-α and IL-1. X-rays of the synovial joint of the hind leg showed considerable improvement in joint integrity and recovery of tibia-talus bones from degeneration and osteoporotic lesions. Histology of proximal interphalangeal joints of EOS-treated animals showed obvious protection of cartilage and soft tissue. Finally, FMT analysis strongly supported the anti-arthritic effect of EOS. EOS had high phenolic and total flavonoid content as well as strong antioxidant activity. Conclusions Results illustrated that the anti-arthritic properties of O. stamineus could be beneficial for prevention and management of rheumatoid arthritis and other chronic inflammatory disorders. Graphical abstract Illustration of the Anti- arthritis efficacy of Orthosiphon Stamineus standardized extract. ![]()
Collapse
|
25
|
Christapher PV, Parasuraman S, Raj PV, Mohammed Saghir SA, Asmawi MZ, Vikneswaran M. Influence of Extracting Solvent on Pharmacological Activity and Cytotoxicity of Polygonum minus, a Commonly Consumed Herb in Southeast Asia. Pharmacogn Mag 2016; 12:S424-S430. [PMID: 27761069 PMCID: PMC5068118 DOI: 10.4103/0973-1296.191451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: To investigate the antihyperlipidemic, antioxidant, and cytotoxic effect of aqueous and methanol extract of leaves of Polygonum minus. Materials and Methods: Acute antihyperlipidemic effect was studied on chemically induced hyperlipidemic rat model. Treated groups received aqueous and methanol extract of leaves of P. minus respectively (1000 mg/kg; oral) whereas standard treated group received atorvastatin (60 mg/kg; oral) for 3 consecutive days. Blood samples were collected at fixed intervals for lipid profile analysis. Antioxidant effects were studied using 1,1-diphenyl-2-picrylhydrazyl, 2,2-azinobis 3-ethylbenzothiazoline 6-sulfonate, and ferric reducing antioxidant power assays. The total flavonoids content and total phenolic contents were also estimated. Cytotoxicity of both extracts was studied on one normal and three cancer cell lines using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay method. Results: The methanol extract showed significant reduction in total cholesterol (P < 0.001), triglycerides (P < 0.01), LDL (P < 0.05), VLDL (P < 0.01), atherogenic index (P < 0.001), and elevation of HDL (P < 0.05) levels than the aqueous extract. Similarly, the antioxidant investigations also demonstrated that the methanol extract had higher antioxidant capacity than aqueous extract. Both extracts were not toxic to normal (EA.hy926) as well as to cancer (HCT116, HT29, and HeLa) cells. Significant correlation was demonstrated between total phenolic and total flavonoids contents with the antioxidant activity but not with the antihyperlipidemic effect, suggesting other groups of chemical constituents may be mainly responsible for the antihyperlipidemic effect of this plant. Conclusion: The study demonstrated that the presence and extent of bioactivities are influenced by solvents used for extraction. This study confirmed the antihyperlipidemic effect of leaves of P. minus in acute hyperlipidemic rat model. SUMMARY Polygonum minus is an herbaceous flowering plant. This plant possess high amount of phenolics and flavonoids This study focused on the antioxidant, cytotoxicity and antihyperlipidemic effect of aqueous and methanol extracts of leaves of P. minus The extracts possess significant antioxidant activity and antihyperlipidemic activity but they are not toxic to normal and cancer cells tested. The antioxidant activity is well correlated with phenolic and flavonoids contents but the antihyperlipidemic activity is not correlated with antioxidant effect.
Abbreviations used: CVDs: Cardiovascular diseases, LDL: Low-density lipoprotein, DDPH: 1,1-Diphenyl-2-picrylhydrazyl radical, TPTZ: 2,4,6,-tris(1-pyridyl)-5-triazine, ABTS: 2,2’-Azino-di-[3-ethylbenzthiazoline Sulfonate], HDL: High-density lipoprotein, VLDL: Very low-density lipoprotein, TC: Total cholesterol, TG: Triglycerides, EC50: Half maximal effective concentration, LD50: Median lethal dose.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Semeling, Kedah, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Subramani Parasuraman
- Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Semeling, Kedah, Malaysia
| | - Palanimuthu Vasanth Raj
- Unit of Pharmaceutical Technology, Faculty of Pharmacy, AIMST University, Semeling, Kedah, Malaysia
| | | | - Mohd Zaini Asmawi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Murugaiyah Vikneswaran
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
26
|
Vongsak B, Kongkiatpaiboon S, Jaisamut S, Machana S, Pattarapanich C. In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Asyifah MR, Lu K, Ting HL, Zhang D. Hidden potential of tropical fruit waste components as a useful source of remedy for obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3505-3516. [PMID: 24670153 DOI: 10.1021/jf5007352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The array of comorbidities that comes with obesity and the propelling surge of this disease globally today make the urgent need for treatment vital. Although promoting a healthy physical regimen and controlled diet to affected patients are the main bulk of present treatment, prescriptions of weight-loss medications have also been introduced to complement this treatment. However, the use of synthetic medications may produce adverse side effects and consequently affect the patient's quality of life. In view of these problems, the use of natural sources as alternative remedies has recently become very popular. Tropical fruit "waste components", namely, the seed, flower, leaf, peel, and part of the fruit, which are often discarded after consumption, have recently been studied and showed evidence suggesting their potential as promising future alternative sources of remedy. The high amounts of phytochemicals present in these components were believed to be responsible for the antiobesity effect observed experimentally. This review aims to introduce some of the recently discussed tropical fruit waste components that have been discovered to possess antiobesity effects. The major bioactive compounds of the respective fruit components identified and deduced to be responsible for the overall bioactivity will be evaluated. Following this, the subsequent need for the development of an effective processing or recycling technique required to effectively tap the maximum potential of these fruit parts will also be addressed.
Collapse
Affiliation(s)
- Mohamed Rashid Asyifah
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | | | | | | |
Collapse
|