1
|
Jiang H, Zhou L, Wang Y, Liu G, Peng S, Yu W, Tian Y, Liu J, Liu W. Inhibition of cinnamic acid and its derivatives on polyphenol oxidase: Effect of inhibitor carboxyl group and system pH. Int J Biol Macromol 2024; 259:129285. [PMID: 38211907 DOI: 10.1016/j.ijbiomac.2024.129285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Phenolic acids are promising inhibitors of polyphenol oxidase (PPO), but the effects of carboxyl group and pH on their inhibition effects are still unclear. In this study, methyl cinnamate, cinnamic acid and 4-carboxycinnamic acid were investigated by their inhibitory effects with pH varied from 6.8 to 5.0. Results showed that 4-carboxycinnamic acid had the strongest inhibitory effect on PPO, followed by cinnamic acid and methyl cinnamate. Acidic pH enhanced the inhibitory effects of cinnamic acid and its derivatives on PPO, and the enhancement degree, IC50 and Ki declining degree were followed as 4-carboxycinnamic acid > cinnamic acid > methyl cinnamate. Methyl cinnamate exhibited competitive inhibition on PPO, while cinnamic acid and 4-carboxycinnamic acid exhibited mixed-type inhibition. Inhibitors induced slight changes in the secondary and tertiary structures of PPO, which were enhanced by acidic pH. Molecular docking results showed that 4-carboxycinnamic acid exhibited the strongest binding ability, and the main interaction forces were around carboxyl groups, and acidic pH enhanced the binding effect through more interactions and lower binding energy. This study could provide new insights into industrial application of cinnamic acid and its derivatives for the control of enzymatic browning of fruits and vegetables.
Collapse
Affiliation(s)
- Hongwei Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Yue Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guangxian Liu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenzhi Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Junping Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
2
|
Jiang H, Zhou L, Sun Y, Yu K, Yu W, Tian Y, Liu J, Zou L, Liu W. Polyphenol oxidase inhibited by 4-hydroxycinnamic acid and naringenin: Multi-spectroscopic analyses and molecular docking simulation at different pH. Food Chem 2022; 396:133662. [PMID: 35839725 DOI: 10.1016/j.foodchem.2022.133662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
It is still unclear how pH affects the inhibitory effects of phenolic acids and flavonoids on polyphenol oxidase (PPO). In this study, 4-hydroxycinnamic acid and naringenin were selected to investigate their interactions with PPO from pH 6.8 to 5.0. Results showed that acidic pH could enhance the inhibitory effect of inhibitors and a greater enhancement effect was observed in 4-hydroxycinnamic acid. Fluorescence emission spectra indicated that 4-hydroxycinnamic acid and naringenin interacted with PPO and quenched its intrinsic fluorescence, which was also enhanced by acidic pH. Circular dichroism suggested that 4-hydroxycinnamic acid and naringenin could reversibly bind to PPO molecules and transform α-helix into β-sheet. Molecular docking results revealed that 4-hydroxycinnamic acid and naringenin interacted with PPO through hydrogen bond and hydrophobic interaction, and more interactions were observed near the carboxyl group. These results indicated that acidic pH could significantly enhance the inhibitory effect of phenolic acid on PPO.
Collapse
Affiliation(s)
- Hongwei Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yuefang Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Kaibo Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenzhi Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junping Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Zhang S, Sun L, Dong L, Bao Z, Lin S. Targeted regulation of pulsed electric field (PEF) treatment on responsive amino acids based on the molecular dynamic simulation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zhu Y, Elliot M, Zheng Y, Chen J, Chen D, Deng S. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenol oxidase subjected to atmospheric cold plasma treatment. Food Chem 2022; 386:132707. [PMID: 35339091 DOI: 10.1016/j.foodchem.2022.132707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Atmospheric cold plasma (ACP) is a novel nonthermal technology with potential applications in maintaining and improving food quality. The effect of ACP on the activity and structure of mushroom (Agaricus bisporus) polyphenol oxidase (PPO) was evaluated. Results demonstrated that the dielectric barrier discharge (DBD) based plasma technology could inactivate PPO (up to 69%) at 50 kV with the increased concentrations of H2O2 and NOx. An obvious enhancement of surface hydrophobicity was observed, whereas a gradual reduction of total sulfhydryl content was recorded with the increasing exposure time. Data from circular dichroism, atomic force microscopy, particle size distribution and fluorescence spectra displayed the rearrangement of secondary structure and disruption of the tertiary structure. Red shifts of fluorescence spectra showed positive correlations with the inactivation rate of PPO. Therefore, ACP treatment could be served as an alternative approach to inactivate undesirable enzymes to minimize the loss of food nutrition and quality.
Collapse
Affiliation(s)
- Yifan Zhu
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mubango Elliot
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhong Zheng
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Chen
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| |
Collapse
|
5
|
Wei Y, Yu N, Zhu Y, Jia C, Xiao Y, Zhao Y, Cai P, Zhao W, Ju M, Wu T, Gan Z, Sun A. Characterization of blueberry (Vaccinium corymbosum L.) catechol oxidases III binding mechanism in response to selected substrates and inhibitors. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhou X, Iqbal A, Li J, Liu C, Murtaza A, Xu X, Pan S, Hu W. Changes in Browning Degree and Reducibility of Polyphenols during Autoxidation and Enzymatic Oxidation. Antioxidants (Basel) 2021; 10:1809. [PMID: 34829680 PMCID: PMC8615057 DOI: 10.3390/antiox10111809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
In the present study, the browning degree and reducing power of browning products of catechin (CT), epicatechin (EC), caffeic acid (CA), and chlorogenic acid (CGA) in autoxidation and enzymatic oxidation were investigated. Influencing factors were considered, such as pH, substrate species and composition, and eugenol. Results show that polyphenols' autoxidation was intensified in an alkaline environment, but the reducing power was not improved. Products of enzymatic oxidation at a neutral pH have higher reducing power than autoxidation. In enzymatic oxidation, the browning degree of mixed substrates was higher than that of a single polyphenol. The reducing power of flavonoid mixed solution (CT and EC) was higher than those of phenolic acids' (CA and CGA) in autoxidation and enzymatic oxidation. Eugenol activity studies have shown that eugenol could increase autoxidation browning but inhibit enzymatic browning. Activity test and molecular docking results show that eugenol could inhibit tyrosinase.
Collapse
Affiliation(s)
- Xuan Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jiaxing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Chang Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Ayesha Murtaza
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Wanfeng Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (A.I.); (J.L.); (C.L.); (A.M.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
7
|
Pellicer JA, Gabaldón JA, Gómez-López VM. Effect of pH on pulsed light inactivation of polyphenol oxidase. Enzyme Microb Technol 2021; 148:109812. [PMID: 34116758 DOI: 10.1016/j.enzmictec.2021.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
The inactivation of diverse food enzymes by pulsed light (PL) has been described before, including the inactivation of polyphenol oxidase (PPO) (at pH 6.5). Since the pH affects the conformation of enzymes, it may influence the inactivation of enzymes by PL. The aim of this work was to evaluate the effect of pH on the kinetics of the PL-inactivation and associated structural changes of a case enzyme. To this, PPO was treated by PL at different pHs (4.0-6.5) and its inactivation kinetics and changes in its structure were evaluated by spectrophotometric and spectrofluorometric methods. The inactivation proceeded faster at low pH and was highly correlated with the decrease in peak intrinsic fluorescence intensity. Phase diagrams and parameter A evolution indicated the absence of intermediate unfolded states during the course of the inactivation. No protein aggregation was detected by turbidimetry. Results indicate that although a low pH favors the PL-inactivation of PPO, the mechanism of inactivation is pH-independent. Beyond the specific outcome for PPO, the results are evidence of a general pH-independence in the mechanism of enzyme inactivation by PL in the pH range 4.0-6.5 and acidification can be a strategy to decrease treatment times during PL processing.
Collapse
Affiliation(s)
- José A Pellicer
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - José A Gabaldón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Vicente M Gómez-López
- Cátedra Alimentos para la Salud, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107, Murcia, Spain.
| |
Collapse
|
8
|
Liao T, Zhou L, Liu J, Zou L, Dai T, Liu W. Inhibitory mechanism of salicylic acid on polyphenol oxidase: A cooperation between acidification and binding effects. Food Chem 2021; 348:129100. [PMID: 33515954 DOI: 10.1016/j.foodchem.2021.129100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
Salicylic acid is generally considered to combine with polyphenol oxidase (PPO) to inhibit activity and enzymatic browning, while its acidification effect on PPO activity was usually neglected. In this study, the inhibitory mechanism of salicylic acid on PPO was examined from acidification and binding effects by altering the buffer conditions. As the buffer concentration increased, contribution of acidification decreased while the binding effect became more predominant. Salicylic acid exhibited competitive inhibition on PPO, inducing the changes in secondary structure with a reduction in α-helix. Molecular docking results showed that salicylic acid interacted with residues HIS61, HIS85, HIS259, HIS263 and VAL283 through hydrogen bond and hydrophobic interaction. Furthermore, acidic pH enhanced the binding of salicylic acid to PPO with lower binding energy, additional hydrogen bond and electrostatic interactions. Therefore, both acidification and binding effects were important for salicylic acid on PPO inhibition and enzymatic browning control in fruit and vegetables.
Collapse
Affiliation(s)
- Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Junping Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
9
|
Zhou L, Liao T, Liu W, Zou L, Liu C, Terefe NS. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit Rev Food Sci Nutr 2019; 60:3594-3621. [PMID: 31858810 DOI: 10.1080/10408398.2019.1702500] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic acids are widely utilized in the food industry for inhibiting the activity of polyphenol oxidase (PPO) and enzymatic browning. This review discusses the mechanisms of inhibition of PPO and enzymatic browning by various organic acids based on studies in model systems, critically evaluates the relevance of such studies to real food systems and assesses the implication of the synergistic inhibitory effects of organic acids with other physicochemical processing techniques on product quality and safety. Organic acids inhibit the activity of PPO and enzymatic browning via different mechanisms and therefore the suitability of a particular organic acid depends on the structure and the catalytic properties of PPO and the physicochemical properties of the food matrix. Studies in model systems provide an invaluable insight into the inhibitory mechanisms of various organics acids. However, the difference in the effectiveness of PPO inhibitors between model systems and food systems and the lack of correlation between the degree of PPO inhibition based on in vitro assays and enzymatic browning imply that the effectiveness of organic acids can be accurately evaluated only via direct assessment of browning inhibition in a particular food system. Combination of organic acids with physical processing techniques is one of the most viable approaches for PPO inhibition since the observed synergistic effect helps to reduce the undesirable organoleptic quality changes from the use of excessive concentration of organic acids or intense physical processing.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | |
Collapse
|
10
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 525] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Zhou L, Liao T, Liu J, Zou L, Liu C, Liu W. Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Structural changes associated with the inactivation of lipoxygenase by pulsed light. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Antonio Pellicer J, Navarro P, Gómez-López VM. Pulsed light inactivation of polygalacturonase. Food Chem 2019; 271:109-113. [DOI: 10.1016/j.foodchem.2018.07.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023]
|
14
|
Zhou L, Liu W, Terefe NS. The Inactivation Kinetics of Soluble and Membrane-Bound Polyphenol Oxidase in Pear during Thermal and High-Pressure Processing. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2070-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Zhou L, Liu W, Stockmann R, Terefe NS. Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Toledo L, Aguirre C. Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives. Crit Rev Food Sci Nutr 2018; 57:3860-3872. [PMID: 27172067 DOI: 10.1080/10408398.2016.1175416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Considering nearly 80 years of research regarding one of the enzymes responsible for catalyzing the formation of pigments in higher animals, plants, fungi and bacteria, this review will focus on collecting and categorizing the existing information about polyphenol oxidase (PPO) in fruits, with particular emphasis on the information in relation to avocado, which is one of the hardiest species in terms of inactivation, has documented dual activity (EC 1.14.18.1/EC 1.10.3.1), and represents one of the oldest challenges for food science research and fruit processors. It is expected that this review will contribute to the further development of the field by highlighting the questions that have arisen during the characterization of PPO, the progress that has been made and the questions that remain today, in addition to new methodologies that are being applied to study this system. Holistic methodologies offer unexplored potential for advancing our understanding of the complex phenomena that govern PPO activity in fruits, because these methodologies will enable the characterization of this family of enzymes in all of its complexity. Subsequently, it will be possible to develop better techniques for controlling enzymatic browning in this valuable fruit.
Collapse
Affiliation(s)
- Lea Toledo
- a School of Food Engineering , Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Carolina Aguirre
- b Research Center for Biodiversity and Sustainable Environments (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| |
Collapse
|
17
|
Pulsed Light Inactivation of Mushroom Polyphenol Oxidase: a Fluorometric and Spectrophotometric Study. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2033-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Characterization, purification, and temperature/pressure stability of polyphenol oxidase extracted from plums ( Prunus domestica ). Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
|
20
|
Stănciuc N, Banu I, Turturică M, Aprodu I. pH and heat induced structural changes of chicken ovalbumin in relation with antigenic properties. Int J Biol Macromol 2016; 93:572-581. [PMID: 27616691 DOI: 10.1016/j.ijbiomac.2016.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
Abstract
Ovalbumin is the major egg white protein known to induce allergic reactions in humans. A comprehensive evaluation of the structural and antigenicity features of ovalbumin subjected to different pH and heat treatments was performed by combining fluorescence spectroscopic measurements, ELISA and in silico prediction. The intrinsic fluorescence spectra indicated modification of the ovalbumin tertiary structure depending on pH and applied temperature. The heat treatment caused the alteration of ovalbumin structure, which exhibited gradual hydrophobic exposure. The in depths check of ovalbumin molecular model, after performing molecular dynamics simulations, indicated the slight transition toward a typical β-strand dominant structure with the temperature increase. Moreover the immunoenzymatic test was employed to estimate the effect of the pH and thermal treatment on the stability of ovalbumin epitopes. Only a 5.5% reduction of the residual antigenicity was observed when heat treating the ovalbumin samples at pH 7.0, whereas a significant reduction (over 82%) of the antigenicity was obtained at pH 9.5 and temperatures over 80°C. Both pH and thermal treatment affected the conformation of ovalbumin. The reduced recognition of the modified native ovalbumin by specific antibodies at alkaline pH is most probably a consequence of significant changes in the local conformation of the epitopes.
Collapse
Affiliation(s)
- Nicoleta Stănciuc
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1)
| | - Iuliana Banu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1)
| | - Mihaela Turturică
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1)
| | - Iuliana Aprodu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1).
| |
Collapse
|
21
|
Zhou L, Liu W, Xiong Z, Zou L, Liu J, Zhong J, Chen J. Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzyme Microb Technol 2016; 90:61-8. [DOI: 10.1016/j.enzmictec.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
22
|
Hu YH, Zhuang JX, Yu F, Cui Y, Yu WW, Yan CL, Chen QX. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase. J Biosci Bioeng 2015; 121:385-9. [PMID: 26342770 DOI: 10.1016/j.jbiosc.2015.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023]
Abstract
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, cefotaxime, a cephalosporin antibacterial drug, was tested as an inhibitor of tyrosinase. The results show that cefotaxime inhibits both the monophenolase and diphenolase activities of tyrosinase. For the monophenolase activity, cefotaxime increased the lag time and decreased the steady-state activity with an IC50 of 3.2 mM. For the diphenolase activity, the inhibition by cefotaxime is reversible and mix-I type with an IC50 of 0.14 mM. The inhibition constants (K(I) and K(IS)) were determined to be 0.14 and 0.36 mM, respectively. The molecular mechanism of inhibition of tyrosinase by cefotaxime was determined by fluorescence quenching and molecular docking. The results demonstrated that cefotaxime was a static quencher of tyrosinase and that cefotaxime could dock favorably in the active site of tyrosinase. This research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors in the future.
Collapse
Affiliation(s)
- Yong-Hua Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jiang-Xing Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Feng Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yi Cui
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wen-Wen Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chong-Ling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
23
|
Stănciuc N, Aprodu I, Ioniță E, Bahrim G, Râpeanu G. Exploring the process-structure-function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 147:43-50. [PMID: 25827765 DOI: 10.1016/j.saa.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/12/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp(117) residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His(170) and Asp(247)) might trigger miss-coordination of the heme iron atom by His(170) residue and further enzyme activity loss.
Collapse
Affiliation(s)
- Nicoleta Stănciuc
- "Dunărea de Jos" University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania
| | - Iuliana Aprodu
- "Dunărea de Jos" University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania
| | - Elena Ioniță
- "Dunărea de Jos" University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania
| | - Gabriela Bahrim
- "Dunărea de Jos" University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania
| | - Gabriela Râpeanu
- "Dunărea de Jos" University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| |
Collapse
|