1
|
Comprehensive review of liquid chromatography methods for fumonisin determination, a 2006-2022 update. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
2
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
3
|
Kornaś A, Filek M, Sieprawska A, Bednarska-Kozakiewicz E, Gawrońska K, Miszalski Z. Foliar application of selenium for protection against the first stages of mycotoxin infection of crop plant leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:482-485. [PMID: 29808470 DOI: 10.1002/jsfa.9145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The aim of this study was to investigate whether the application of selenium (Se) ions directly to the leaf surface can protect plants against infection by the fungal toxin zearalenone (ZEA). The experiments were performed for the most common and agronomically important crops such as wheat, oat, and barley (both tolerant and sensitive varieties) because mycotoxin accumulation in plants is the cause of many diseases in animals and people. RESULTS ZEA at a concentration of 10 µmol L-1 either alone or in combination with Se (5 µmol L-1 Na2 SeO4 ) was applied to the second leaf of seedlings. Visualization of leaf temperature profiles by infrared thermography demonstrated a decrease in temperature at the location of ZEA infection that was more noticeable in sensitive genotypes. The presence of Se significantly suppressed changes at the site of ZEA application in all tested plants, especially the tolerant genotypes. Microscopic observations confirmed that foliar administration of ZEA resulted in its penetration to deeper localized cells and that damage induced by ZEA (mainly to chloroplasts) decreased after Se application. Analyses of antioxidant enzymes demonstrated the involvement of Se in antioxidation mechanisms, in particular by activating SOD and CAT under ZEA-induced stress conditions. CONCLUSION The foliar application of Se to seedling leaves may be a non-invasive method of protecting crops against the first steps of ZEA infection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrzej Kornaś
- Institute of Biology, Pedagogical University, Kraków, Poland
| | - Maria Filek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Cracow, Poland
| | | | | | | | - Zbigniew Miszalski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Cracow, Poland
| |
Collapse
|
4
|
Bilska K, Kulik T, Ostrowska-Kołodziejczak A, Buśko M, Pasquali M, Beyer M, Baturo-Cieśniewska A, Juda M, Załuski D, Treder K, Denekas J, Perkowski J. Development of a Highly Sensitive FcMito qPCR Assay for the Quantification of the Toxigenic Fungal Plant Pathogen Fusarium culmorum. Toxins (Basel) 2018; 10:E211. [PMID: 29883395 PMCID: PMC5983267 DOI: 10.3390/toxins10050211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
Fusarium culmorum is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive mitochondrial-based qPCR assay (FcMito qPCR) for quantification of F. culmorum was developed in this study. To provide specificity, the FcMito assay was successfully validated against 85 F. culmorum strains and 53 isolates of 30 other fungal species. The assay efficiency and sensitivity were evaluated against different F. culmorum strains with various amounts of pure fungal DNA and in the presence of background wheat DNA. The results demonstrated the high efficiency of the assay (97.2⁻106.0%, R²-values > 0.99). It was also shown that, in the presence of background DNA, 0.01 pg of fungal template could be reliably quantified. The FcMito assay was used to quantify F. culmorum DNA using 108 grain samples with different trichothecene levels. A significant positive correlation was found between fungal DNA quantity and the total trichothecene content. The obtained results showed that the sensitivity of the FcMito assay was much higher than the nuclear-based qPCR assay for F. culmorum.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Tomasz Kulik
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | | | - Maciej Buśko
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, via Celoria 2, 20133 Milano, Italy.
| | - Marco Beyer
- Department Environmental Research and Innovation, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Anna Baturo-Cieśniewska
- Faculty of Agriculture and Biotechnology, Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego St. 20, 85-225 Bydgoszcz, Poland.
| | - Marcin Juda
- Faculty of Agriculture and Biotechnology, Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego St. 20, 85-225 Bydgoszcz, Poland.
| | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Kinga Treder
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Joerg Denekas
- Agravis Technik Heide-Altmark GmbH, Hansestrasse 30, 29525 Uelzen, Germany.
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| |
Collapse
|
5
|
Wu S, Zhang X, Yang P, Li L, Tang S. Rapid detection and toxicity assessment of citreoviridin using luminescent Vibrio qinghaiensis
sp.-Q67 in drinking water. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shizheng Wu
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Xuhui Zhang
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Panpan Yang
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Liang Li
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Shuze Tang
- Department of Food Science and Engineering; Jinan University; Guangzhou 510632 China
| |
Collapse
|
6
|
Kuzdraliński A, Kot A, Szczerba H, Ostrowska A, Nowak M, Muszyńska M, Lechowski M, Muzyka P. Novel PCR Assays for the Detection of Biological Agents Responsible for Wheat Rust Diseases: Puccinia triticina and Puccinia striiformis f. sp. tritici. J Mol Microbiol Biotechnol 2017; 27:299-305. [PMID: 29183031 DOI: 10.1159/000481799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
The species Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst) are devastating cereal pathogens that cause leaf and stripe rust diseases. We developed PCR assays for the species-specific detection of Pt and Pst, 2 biological agents that cause wheat rust disease. For each pathogen, we validated 3 primer sets that target the second largest subunits of the RNA polymerase II (rpb2) and β-tubulin 1 (tub1) genes. The specificities of the primers were verified using naturally infected plant materials with visual symptoms of disease. All primer sets amplified a single DNA fragment of the expected length. The primer sets LidPr15/16, LidPr1/2, and LidPs13/14 were able to detect small amounts of pure fungal DNA with sensitivities of 0.1, 1, and 10 pg/μL, respectively. A sufficient detection limit (1 pg/μL to 5 ng/μL) was observed for all assays when the sensitivity test was performed with host plant DNA. The study also evaluated the simultaneous detection of both rust pathogens, and the multiplex PCR assay generated amplicons of 240 and 144 bp in length for Pts (LidPs9/10) and Pt (LidPr1/2), respectively.
Collapse
Affiliation(s)
- Adam Kuzdraliński
- Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences, Lublin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67. Toxins (Basel) 2017; 9:toxins9100335. [PMID: 29065469 PMCID: PMC5666381 DOI: 10.3390/toxins9100335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98) between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin) and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96) between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50) = 17.49%) exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56%) or Fusarium oxysporum (IC50 = 28.61%), which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.
Collapse
|
8
|
El-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, Abdelmohsen UR. Antifungal potential of marine natural products. Eur J Med Chem 2016; 126:631-651. [PMID: 27936443 DOI: 10.1016/j.ejmech.2016.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022]
Abstract
Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
Collapse
Affiliation(s)
- Ebaa M El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo, Egypt
| | - Cheng Cheng
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Mostafa M Hamed
- Drug Design and Optimization Department, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
9
|
Peltomaa R, Vaghini S, Patiño B, Benito-Peña E, Moreno-Bondi MC. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples. Anal Chim Acta 2016; 935:231-8. [DOI: 10.1016/j.aca.2016.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/26/2023]
|
10
|
Berry D, Takach JE, Schardl CL, Charlton ND, Scott B, Young CA. Disparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species. Appl Environ Microbiol 2015; 81:2797-807. [PMID: 25681180 PMCID: PMC4375322 DOI: 10.1128/aem.03721-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/05/2015] [Indexed: 01/23/2023] Open
Abstract
Peramine is an insect-feeding deterrent produced by Epichloë species in symbiotic association with C3 grasses. The perA gene responsible for peramine synthesis encodes a two-module nonribosomal peptide synthetase. Alleles of perA are found in most Epichloë species; however, peramine is not produced by many perA-containing Epichloë isolates. The genetic basis of these peramine-negative chemotypes is often unknown. Using PCR and DNA sequencing, we analyzed the perA genes from 72 Epichloë isolates and identified causative mutations of perA null alleles. We found nonfunctional perA-ΔR* alleles, which contain a transposon-associated deletion of the perA region encoding the C-terminal reductase domain, are widespread within the Epichloë genus and represent a prevalent mutation found in nonhybrid species. Disparate phylogenies of adjacent A2 and T2 domains indicated that the deletion of the reductase domain (R*) likely occurred once and early in the evolution of the genus, and subsequently there have been several recombinations between those domains. A number of novel point, deletion, and insertion mutations responsible for abolishing peramine production in full-length perA alleles were also identified. The regions encoding the first and second adenylation domains (A1 and A2, respectively) were common sites for such mutations. Using this information, a method was developed to predict peramine chemotypes by combining PCR product size polymorphism analysis with sequencing of the perA adenylation domains.
Collapse
Affiliation(s)
- Daniel Berry
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | | | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|