1
|
Tao L, Wu Q, Liu H, Bi Y, Song S, Wang H, Lan W, Zhang J, Yu L, Xiong B. Improved the physicochemical properties and bioactivities of oligosaccharides by degrading self-extracting/commercial ginseng polysaccharides. Int J Biol Macromol 2024; 279:135522. [PMID: 39260648 DOI: 10.1016/j.ijbiomac.2024.135522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Degradation of polysaccharides is an effective method to improve the physicochemical properties and biological activities. In this study, self-extracting ginseng oligosaccharides (SGOs) and commercial ginseng oligosaccharides (CGOs) were compared with self-extracting ginseng polysaccharides (SGPs) and commercial ginseng polysaccharides (CGPs). The four saccharides were composed of different types and proportions of monosaccharides. And the molecular weight (Mw) size order was SGP > CGP > CGO > SGO. The SGO and CGO had better solubility with smaller particle size, 97.63 ± 0.42 % and 96.23 ± 1.12 %, respectively. Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy characterized the structures of four saccharides. It was found that the structural features of saccharides did not change after enzymatic hydrolysis. The results of bioactivities showed that SGO and CGO had better antioxidant, hypoglycemic, and hypolipidemic activities. Compared with polysaccharides, oligosaccharides could significantly promote the proliferation and phagocytic ability of RAW 264.7 cells. Oligosaccharides induced RAW 264.7 cells to produce more NO and had better immune activity. Pearson's correlation coefficient analysis confirmed the bioactivities were negatively correlated with the Mw of ginseng saccharides. This study suggests that reducing the Mw of saccharides is an effective strategy to enhance their bioactivities.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Heyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Boyu Xiong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Li F, Xu J, Xie M, Fei D, Zhou Y, Li X, Guang Y, Gong L, Hu L, Feng F. Regulatory effects of tea polysaccharides on hepatic inflammation, gut microbiota dysbiosis, and serum metabolomic signatures in beef cattle under heat stress. Front Physiol 2024; 15:1460414. [PMID: 39308975 PMCID: PMC11413490 DOI: 10.3389/fphys.2024.1460414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Long-term heat stress (HS) severely restricts the growth performance of beef cattle and causes various health problems. The gut microbiota plays a crucial role in HS-associated inflammation and immune stress involving lymphocyte function. This study investigated the effects of dietary tea polysaccharide (TPS), a natural acidic glycoprotein, on HS-induced anorexia, inflammation, and gut microbiota dysbiosis in Simmental beef cattle. Methods The cattle were divided into two groups, receiving either normal chow or normal chow plus TPS (8 g/kg, 0.8%). Transcriptome sequencing analysis was used to analysis the differential signaling pathway of liver tissue. 16S rDNA sequencing was performed to analysis gut microbiota of beef cattle. Serum metabolite components were detected by untargeted metabolomics analysis. Results Hepatic transcriptomics analysis revealed that differentially expressed genes in TPS-fed cattle were primarily enriched in immune processes and lymphocyte activation. TPS administration significantly reduced the expression of the TLR4/NF-κB inflammatory signaling pathway, alleviating HS-induced hepatic inflammation. Gut microbiota analysis revealed that TPS improved intestinal homeostasis in HS-affected cattle by increasing bacterial diversity and increasing the relative abundances of Akkermansia and Alistipes while decreasing the Firmicutes-to-Bacteroidetes ratio and the abundance of Agathobacter. Liquid chromatography-tandem mass spectrometry (LC‒MS/MS) analysis indicated that TPS significantly increased the levels of long-chain fatty acids, including stearic acid, linolenic acid, arachidonic acid, and adrenic acid, in the serum of cattle. Conclusion These findings suggest that long-term consumption of tea polysaccharides can ameliorate heat stress-induced hepatic inflammation and gut microbiota dysbiosis in beef cattle, suggesting a possible liver-gut axis mechanism to mitigate heat stress.
Collapse
Affiliation(s)
- Fan Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jun Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Min Xie
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Dan Fei
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yaomin Zhou
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xiong Li
- Pingxiang Center of Agricultural Science and Technology Research, Pingxiang, China
| | - Yelan Guang
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lihui Gong
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lizhen Hu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Fan Feng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
3
|
Yan X, Pang P, Zhang H, Mi J, Qin C, Yang L, Yang B, Nie G. In vivo evidence of sea buckthorn relieving oxidative stress and improving immune performance of common carp (Cyprinus carpio L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7118-7129. [PMID: 38619986 DOI: 10.1002/jsfa.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Sea buckthorn has the functions of antioxidation, antitumor, anti-inflammation and regulating energy metabolism. In order to investigate the effects of sea buckthorn powder and sea buckthorn flavonoids on the antioxidant properties, immune function and muscle fatty acid composition of common carp, an oral feeding experiment was carried out. RESULTS The administration of glucose significantly reduced the levels of glutathione and the activity of total antioxidant capacity enzyme in serum and hepatopancreas, while concurrently upregulating the level of malondialdehyde (MDA)(P < 0.05). Conversely, oral intake of sea buckthorn powder and flavonoids increased antioxidant enzyme activity and decreased MDA levels. In terms of antioxidant molecular indicators, sea buckthorn powder and sea buckthorn flavonoids significantly increased the mRNA levels of nuclear factor NF-E2-related factor (nrf2) in the hepatopancreas and muscle. Meanwhile, mRNA expression levels of downstream antioxidant-related genes (gr, cat, gpx, and sod) regulated by Nrf2 were also upregulated. In the immune aspects, the mRNA expression levels of proinflammatory cytokines, such as interleukin-6 (il-6), interleukin-1β (il-1β) and nuclear factor-κB (nf-κb), were reduced but the expressions of anti-inflammatory cytokines, such as growth factor-β (tgf-β) and interleukin-10 (il-10), were enhanced in the head kidney and spleen tissues after oral administration with sea buckthorn. In terms of muscle fatty acid composition, the ratio of n-3 polyunsaturated fatty acid (PUFA)/n-6 PUFA was notably higher after administering sea buckthorn flavonoids than that of the glucose group (P < 0.05). CONCLUSION This study demonstrated that oral administration of sea buckthorn powder and sea buckthorn flavonoids significantly enhanced the antioxidant capacity and immune response and improved the muscle fatty acid compositions in common carp, and also mitigated the adverse effects of glucose treatment to a certain extent. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Peng Pang
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hang Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jiali Mi
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Bowen Yang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, China
| |
Collapse
|
4
|
Winiarska-Mieczan A, Jachimowicz-Rogowska K, Kwiecień M, Borsuk-Stanulewicz M, Tomczyk-Warunek A, Stamirowska-Krzaczek E, Purwin C, Stryjecka M, Tomaszewska M. Regular Consumption of Green Tea as an Element of Diet Therapy in Drug-Induced Liver Injury (DILI). Nutrients 2024; 16:2837. [PMID: 39275155 PMCID: PMC11396919 DOI: 10.3390/nu16172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The liver is a highly metabolically active organ, and one of the causes of its dysfunction is the damage caused by drugs and their metabolites as well as dietary supplements and herbal preparations. A common feature of such damage is drugs, which allows it to be defined as drug-induced liver injury (DILI). In this review, we analysed available research findings in the global literature regarding the effects of green tea and/or its phenolic compounds on liver function in the context of protective action during prolonged exposure to xenobiotics. We focused on the direct detoxifying action of epigallocatechin gallate (EGCG) in the liver, the impact of EGCG on gut microbiota, and the influence of microbiota on liver health. We used 127 scientific research publications published between 2014 and 2024. Improving the effectiveness of DILI detection is essential to enhance the safety of patients at risk of liver damage and to develop methods for assessing the potential hepatotoxicity of a drug during the research phase. Often, drugs cannot be eliminated, but appropriate nutrition can strengthen the body and liver, which may mitigate adverse changes resulting from DILI. Polyphenols are promising owing to their strong antioxidant and anti-inflammatory properties as well as their prebiotic effects. Notably, EGCG is found in green tea. The results of the studies presented by various authors are very promising, although not without uncertainties. Therefore, future research should focus on elucidating the therapeutic and preventive mechanisms of polyphenols in the context of liver health through the functioning of gut microbiota affecting overall health, with particular emphasis on epigenetic pathways.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marta Borsuk-Stanulewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Ewa Stamirowska-Krzaczek
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Marzena Tomaszewska
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| |
Collapse
|
5
|
Martínez MA, Aedo H, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Anadón A, Martínez M, Peteiro C, Cueto M, Rubiño S, Hortos M, Ares I. Bifurcaria bifurcata extract exerts antioxidant effects on human Caco-2 cells. ENVIRONMENTAL RESEARCH 2023; 231:116141. [PMID: 37187306 DOI: 10.1016/j.envres.2023.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Hugo Aedo
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Cesar Peteiro
- Planta de Algas, Unidad de Cultivos Marinos "El Bocal", Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO, CSIC), 39012, Santander, Spain
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Spain
| | - Susana Rubiño
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - María Hortos
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
6
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Yang G, Liang X, Hu J, Li C, Hu W, Li K, Chang X, Zhang Y, Zhang X, Shen Y, Meng X. Feeding tea polysaccharides affects lipid metabolism, antioxidant capacity and immunity of common carp ( Cyprinus carpio L.). Front Immunol 2022; 13:1074198. [PMID: 36505461 PMCID: PMC9729247 DOI: 10.3389/fimmu.2022.1074198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Tea polysaccharides plays a role in lipid metabolism, antioxidant capacity and immunity of mammals. To investigate the functions of tea polysaccharides on fish, the common carp (Cyprinus carpio L.) was selected as the animal model in this study. In our study, the common carp (45±0.71g) were randomly divided into four groups and were fed fodder with 50% carbohydrate. The common carp were orally administrated with 0 mg/kg BW (control group), 200 mg/kg BW (low-dose group), 400 mg/kg BW (medium-dose group) and 800 mg/kg BW (high-dose group) tea polysaccharide for two week. At the end of experiment, the serum glucose, TG, MDA contents and antioxidase activities were measured by commercial kits. The serum immune factors levels were tested by ELISA. The genes expression levels related to antioxidant capacity, metabolism and immunity were measured by real-time PCR. The results showed that the glucose, TG and MDA contents in serum were significantly decreased by tea polysaccharides treatment. The serum activities of SOD were significantly increased by low-dose tea polysaccharides treatment. The serum activities of GPX were significantly increased by medium-dose tea polysaccharides treatment. The serum levels of IL-1β and TNFα were significantly decreased in the tea polysaccharides treatment group. In the high-dose treatment group, the serum level of TGFβ was significantly increased, and the serum level of IL-12 was markedly decreased. In the hepatopancreas, the expression of acc1, fas, srebp1c, lpl, gys and pparγ were significantly reduced, and the expression of pygl, cat, mnsod, ho-1 and gr were significantly up-regulated in the tea polysaccharides group. In the intestine, the expression of zo-1, occ and gip was significantly up-regulated in the high-dose treatment group. Moreover, the expression of glut2 and sglt1 were significantly down regulated. In the spleen, the expression of il-12, tnfα and il-6 were significantly decreased, and the expression of il-10 and tgfβ was significantly increased by the tea polysaccharides. In the spleen cells, the tea polysaccharides could relieve the LPS-induced immune damage. In conclusion, tea polysaccharides can improve antioxidant capacity, lipid metabolism and immunity of common carp.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, China,College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jihong Hu
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Wenpan Hu
- Henan JinBaiHe Biotechnology Co., Ltd, Anyang, China
| | - Keke Li
- Henan JinBaiHe Biotechnology Co., Ltd, Anyang, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, China,College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China,College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China,College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang, China,College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, China,College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China,*Correspondence: Xiaolin Meng,
| |
Collapse
|
8
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wang L, Li R, Zhang Q, Liu J, Tao T, Zhang T, Wu C, Ren Q, Pu X, Peng W. Pyracantha fortuneana (Maxim.) Li: A comprehensive review of its phytochemistry, pharmacological properties, and product development. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.940900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pyracantha fortuneana (Maxim.) Li has been used as a herbal medicine in China in its long history. Since ancient times, the fruits of P. fortuneana has been considered a functional food to improve various diseases. Many bioactive substances, including proanthocyanidins, phenols, polysaccharides, and dietary fibers, have been isolated and identified from the P. fortuneana, which possess diverse biological properties both in vitro and in vivo. Although the researches on the P. fortuneana have achieved extensive progress, the systematic study of its biological activities is still relatively lacking. In addition, accumulating researches focus on the landscape value of the P. fortuneana and the development of its by-products. The by-products of P. fortuneana, which show good development potentials in the field of agricultural production and environmental protection, are important for improving the economic value of P. fortuneana and its significance. After extensive reviewing and analyzing the existing published articles, books, and patents, this study aims to a systematic and summarized research trends of P. fortuneana and its phytochemical compositions, nutritional values, pharmacological effects and health benefits of its extracts/monomers, which would be beneficial for the future development of this medicinal plant as functional food or drugs.
Collapse
|
10
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
11
|
Yao J, Liu H, Ma C, Pu L, Yang W, Lei Z. A Review on the Extraction, Bioactivity, and Application of Tea Polysaccharides. Molecules 2022; 27:molecules27154679. [PMID: 35897856 PMCID: PMC9329993 DOI: 10.3390/molecules27154679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex composition, which significantly limits the extraction and isolation methods, thus limiting their application. This paper provides insight into the composition, methodological techniques for isolation and extraction of the components, biological activities, and functions of TPSs, as well as their application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Lei
- Correspondence: ; Tel.: +86-851-83761972
| |
Collapse
|
12
|
Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers (Basel) 2022; 14:polym14142775. [PMID: 35890551 PMCID: PMC9320580 DOI: 10.3390/polym14142775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Tea polysaccharide (TPS) is the second most abundant ingredient in tea following tea polyphenols. As a complex polysaccharide, TPS has a complex chemical structure and a variety of bioactivities, such as anti-oxidation, hypoglycemia, hypolipidemic, immune regulation, and anti-tumor. Additionally, it shows excellent development and application prospects in food, cosmetics, and medical and health care products. However, numerous studies have shown that the bioactivity of TPS is closely related to its sources, processing methods, and extraction methods. Therefore, the authors of this paper reviewed the relevant recent research and conducted a comprehensive and systematic review of the extraction methods, physicochemical properties, and bioactivities of TPS to strengthen the understanding and exploration of the bioactivities of TPS. This review provides a reference for preparing and developing functional TPS products.
Collapse
|
13
|
Antioxidative, Anti-Inflammatory, Anti-Obesogenic, and Antidiabetic Properties of Tea Polyphenols-The Positive Impact of Regular Tea Consumption as an Element of Prophylaxis and Pharmacotherapy Support in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23126703. [PMID: 35743146 PMCID: PMC9224362 DOI: 10.3390/ijms23126703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial cancer (EC) is second only to cervical carcinoma among the most commonly diagnosed malignant tumours of the female reproductive system. The available literature provides evidence for the involvement of 32 genes in the hereditary incidence of EC. The physiological markers of EC and coexisting diet-dependent maladies include antioxidative system disorders but also progressing inflammation; hence, the main forms of prophylaxis and pharmacotherapy ought to include a diet rich in substances aiding the organism’s response to this type of disorder, with a particular focus on ones suitable for lifelong consumption. Tea polyphenols satisfy those requirements due to their proven antioxidative, anti-inflammatory, anti-obesogenic, and antidiabetic properties. Practitioners ought to consider promoting tea consumption among individuals genetically predisposed for EC, particularly given its low cost, accessibility, confirmed health benefits, and above all, suitability for long-term consumption regardless of the patient’s age. The aim of this paper is to analyse the potential usability of tea as an element of prophylaxis and pharmacotherapy support in EC patients. The analysis is based on information available from worldwide literature published in the last 15 years.
Collapse
|
14
|
Zhang J, Gao S, Li H, Cao M, Li W, Liu X. Immunomodulatory effects of selenium-enriched peptides from soybean in cyclophosphamide-induced immunosuppressed mice. Food Sci Nutr 2021; 9:6322-6334. [PMID: 34760262 PMCID: PMC8565224 DOI: 10.1002/fsn3.2594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, selenium-enriched soybean peptides (<3 kDa, named Se-SPep) was isolated and purified from the selenium-enriched soybean protein (Se-SPro) hydrolysate by ultrafiltration. The in-vivo immunomodulatory effects of Se-SPep were investigated in cyclophosphamide-induced immunosuppressed mice. Se-SPep treatment could alleviate the atrophy of immune organs and weight loss observed in immunosuppressive mice. Besides, Se-SPep administration could dramatically improve total protein, albumin, white blood cell, immunoglobulin (Ig) M, IgG, and IgA levels in blood. Moreover, Se-SPep strongly stimulated interleukin-2 (IL-2), interferon-gamma (IFN-γ), nitric oxide (NO), and cyclic guanosine monophosphate productions by up-regulating mRNA expressions of IL-2, IFN-γ, and inducible NO synthase in spleen tissue. Furthermore, Se-SPep exhibits more effective immunomodulatory activity compared to Se-SPro and SPep. In conclusion, Se-SPep could effectively enhance the immune capacity of immunosuppressive mice. These findings confirm Se-SPep is an effective immunomodulator with potential application in functional foods or dietary supplements.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Siwei Gao
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - He Li
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Mengdi Cao
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
15
|
Zhao X, Gao J, Hogenkamp A, Knippels LMJ, Garssen J, Bai J, Yang A, Wu Y, Chen H. Selenium-Enriched Soy Protein Has Antioxidant Potential via Modulation of the NRF2-HO1 Signaling Pathway. Foods 2021; 10:foods10112542. [PMID: 34828827 PMCID: PMC8623322 DOI: 10.3390/foods10112542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Selenium (Se)-enriched proteins are an important dietary source of Se for humans; however, only a few Se-enriched proteins have been identified. In the present study, we tested for potential antioxidant activity by Se-enriched soy protein, both in vitro and in vivo. Se-enriched soy protein isolate (S-SPI) was shown to have a higher free radical scavenging ability compared to ordinary soy protein isolate (O-SPI). Furthermore, Caco-2 cell viability was improved by S-SPI at low doses, whereas O-SPI did not. In addition, S-SPI was shown to inhibit oxidative stress via modulation of the NRF2-HO1 signaling pathway, upregulating the expression of downstream antioxidant enzymes (GPx, SOD). To further study the antioxidant capacity of S-SPI, BALB/c female mice were given oral gavages with 0.8 mL of S-SPI or O-SPI (5 g/kg/d, 20 g/kg/d and 40 g/kg/d) or saline as control. Hepatic GPx and SOD activity increased with increasing S-SPI dosage, but not with O-SPI. Taken together, our results suggest that Se-enriched soy protein has a high antioxidant ability and may be used as a dietary supplement for people with oxidative dam-age-mediated diseases.
Collapse
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Leon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
16
|
Zhu J, Zhou H, Zhang J, Li F, Wei K, Wei X, Wang Y. Valorization of Polysaccharides Obtained from Dark Tea: Preparation, Physicochemical, Antioxidant, and Hypoglycemic Properties. Foods 2021; 10:foods10102276. [PMID: 34681325 PMCID: PMC8535028 DOI: 10.3390/foods10102276] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
The structure and hypoglycemic activity of tea polysaccharides has been extensively studied, while there are few reports on the characterization and hypoglycemic activity of dark tea polysaccharides. The crude dark tea polysaccharide (CDTPS) was optimally extracted from Fuzhuan dark tea. Six polysaccharide fractions (namely DTPS-1, DTPS-2, DTPS-3, DTPS-4, DTPS-5, and DTPS-6) were isolated from CDTPS, and their physicochemical, structural, and biological properties were compared and analyzed. The results revealed that the compositions, structural characteristics, and biological properties of the six DTPSs were different. Therein, DTPS-4 and DTPS-6 had looser morphology, faster solubility, and a more stable structure. Additionally, DTPS-4 had the optimum in vitro antioxidant capabilities, and DTPS-6 had the strongest in vitro hypoglycemic capabilities. In addition, a correlation analysis revealed that the molecular weight and uronic acid content were significantly related to their antioxidant and hypoglycemic activities. Our results indicated that DTPS-4 and DTPS-6 could be further developed into functional foods or additives, respectively.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Hui Zhou
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Junyao Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Fanglan Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Kang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China;
| | - Xinlin Wei
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China;
- Correspondence: (X.W.); (Y.W.); Tel.: +86-021-34208533 (X.W.); +86-18616184495 (Y.W.)
| | - Yuanfeng Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
- Correspondence: (X.W.); (Y.W.); Tel.: +86-021-34208533 (X.W.); +86-18616184495 (Y.W.)
| |
Collapse
|
17
|
Xia X, Wang X, Wang H, Lin Z, Shao K, Xu J, Zhao Y. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113919. [PMID: 33577915 DOI: 10.1016/j.jep.2021.113919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney damage (DKD) is one of the most common complications of diabetes, which is known as a chronic inflammatory kidney disease caused by persistent hyperglycemia. White tea was originally used as a folk medicine to treat measles in ancient China. What arouses our interest is that there is a traditional method to treat diabetes with white tea taken from over 30-year-old tree of Camellia sinensis L. However, there are few reports on the renal protection of white tea. AIM OF THE STUDY This present study was designed to study the potential protective effects of white tea (WT) and old tree white tea (OTWT) on high-fat-diet (HFD) combined with streptozotocin (STZ)-induced type 2 diabetic mice to explore the possible mechanism of WT/OTWT against DKD. MATERIALS AND METHODS C57BL/6 mice were randomly divided into four groups: NC, T2D, WT (400 mg/kg·b.w, p.o.), OTWT (400 mg/kg·b.w, p.o.). Diabetes was established in all groups except NC group, by six weeks of HFD feeding combined with STZ (50 mg/kg, i.p.) for 3 times, treatments were administered for six weeks and then all the animals were decapitated; kidney tissues and blood samples were collected for the further analysis, including: levels of insulin, lipid metabolism (TG, TC, HDL, LDL, FFA), antioxidative enzymes (catalase (CAT), super oxide dismutase (SOD), glutathione peroxidase (GPx)), blood urea nitrogen (BUN) and creatine, inflammatory cytokines (TNF-α, IL-1β, COX-2, iNOS, MCP-1), advanced glycation end products (AGE), receptor of AGE (RAGE), Nrf2, AMPK, SIRT1, and PGC-1α. H&E, PAS and Masson staining were performed to examine the histopathological alterations of the kidneys. RESULTS Our data showed that WT and OTWT reversed the abnormal serum lipids (TG, TC, HDL, LDL, FFA) in T2D mice, upregulated antioxidative enzymes levels (CAT, SOD, GPx) and inhibit the excessive production of proinflammatory mediators (including MCP-1, TNF-α, IL1β, COX-2 and iNOS) by varying degrees, and OTWT was more effective. In histopathology, OTWT could significantly alleviate the accumulation of renal AGE in T2D mice, thereby improving the structural changes of the kidneys, such as glomerular hypertrophy, glomerular basement membrane thickening and kidney FIbrosis. CONCLUSIONS Both WT and OTWT could alleviate the diabetic changes in T2D mice via hypoglycemic, hypolipidemic, anti-oxidative and anti-inflammatory effects, while OTWT was more evident. OTWT could prominently alleviate the accumulation of AGE in the kidneys of T2D mice, thereby ameliorating the renal oxidative stress and inflammatory damage, which was associated with the activation of SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Xiaoyan Xia
- School of Traditional Chinese Medicine, Shanxi Datong University, Datong, 037009, China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhenchuan Lin
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Keping Shao
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
18
|
Chen G, Bai Y, Zeng Z, Peng Y, Zhou W, Shen W, Zeng X, Liu Z. Structural Characterization and Immunostimulatory Activity of Heteropolysaccharides from Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1368-1378. [PMID: 33481588 DOI: 10.1021/acs.jafc.0c06913] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fuzhuan brick tea (FBT), one of the unique dark teas, has various health-promoting functions. In the present study, one polysaccharide fraction, namely FBTPS-2-1, was extracted and purified from FBT, and its structure and potential immunostimulatory activity were investigated. The results showed that FBTPS-2-1,one of typical heteropolysaccharides, was mainly composed of Gal, Ara, and Glc with little molar content of Man, Rha, GalA, and GlcA in molar ratio of 46.59:22.13:13.57:8.20:6.02:2.12:1.38 and molecular weight of 748 kDa. The backbone of FBTPS-2-1 contained →4)-β-d-Galp-(1→4)-β-d-Galp-(1→, →4)-β-d-Galp-(1→4)-α-d-Glcp-(1→, →4)-α-d-Glcp-(1→4)-α-d-Glcp-(1→, →4)-α-d-Glcp-(1→4)-β-d-Galp-(1→, →3)-β-d-Galp-(1→4)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→3)-β-d-Galp-(1→ and →3,6)-β-d-Galp-(1→3,6)-β-d-Galp-(1→. The linkages of branches in FBTPS-2-1 were mainly composed of α-l-Araf-(1→3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1→3,6)-β-d-Galp-(1→, →6)-β-d-Galp-(1→3,6)-β-d-Galp-(1→, α-l-Araf-(1→3,5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→5)-α-l-Araf-(1→, α-d-Galp-(1→3,5)-α-l-Araf-(1→ and →5)-α-l-Araf-(1→6)-β-d-Galp-(1→. Furthermore, FBTPS-2-1 could increase the phagocytosis of macrophages and promote the secretion of NO and a variety of inflammatory cytokines, including TNF-α, IL-1β, and IL-6, indicating noticeable immune enhancement activity. Thus, FBTPS-2-1 could serve as a potentially functional food to improve human health by modulating the host immunoreaction.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yixun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziqi Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| |
Collapse
|
19
|
Inhibition of immunotoxicity of Pb2+-induced RAW264.7 macrophages by selenium species in selenium-enriched rice. Food Chem Toxicol 2021; 148:111943. [DOI: 10.1016/j.fct.2020.111943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
|
20
|
Zhou N, Long H, Wang C, Yu L, Zhao M, Liu X. Research progress on the biological activities of selenium polysaccharides. Food Funct 2020; 11:4834-4852. [DOI: 10.1039/c9fo02026h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenium polysaccharides, an important organic selenium product, possess better antioxidant, antitumour, immune regulation, hypoglycaemic, and heavy metal removal activities than that of either polysaccharides or inorganic selenium.
Collapse
Affiliation(s)
- Ning Zhou
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| | - Hairong Long
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
- Guangxi Botanical Garden of Medicinal Plants
| | - Chenghua Wang
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| | - Lian Yu
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| | - Mouming Zhao
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
- Department of Food Science and Technology
| | - Xiaoling Liu
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| |
Collapse
|
21
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
22
|
Wang Z, Liang M, Li H, Cai L, He H, Wu Q, Yang L. l-Methionine activates Nrf2-ARE pathway to induce endogenous antioxidant activity for depressing ROS-derived oxidative stress in growing rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4849-4862. [PMID: 31001831 DOI: 10.1002/jsfa.9757] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Methionine is an essential sulfur-containing amino acid. To elucidate the influence of l-methionine on activation of the nuclear factor erythroid 2-related factor 2-antioxidant responsive element (Nrf2-ARE) antioxidant pathway to stimulate the endogenous antioxidant activity for depressing reactive oxygen species (ROS)-derived oxidative stress, male Wistar rats were orally administered l-methionine daily for 14 days. RESULTS With the intake of l-methionine, Nrf2 was activated by l-methionine through depressing Keap1 and Cul3, resulting in upregulation of ARE-driven antioxidant expression (glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modulatory subunit, glutathione synthase (GS), catalase (CAT), superoxide dismutase (SOD), heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPx)) with increasing l-methionine availability. Upon activation of Nrf2, glutathione synthesis was increased through upregulated expression of methionine adenosyltransferase, S-adenosylhomocysteine hydrolase, cystathionine β-synthase, cystathionine γ-lyse, glutamate cysteine ligase (GCL) and GS, while hepatic expressions of methionine sulfoxide reductases (MsrA, MsrB2, MsrB3) and hepatic enzyme activities (CAT, SOD, GCL, GR, GST, GPx) were uniformly stimulated with increasing consumption of l-methionine. As a result, hepatic content of ROS and MDA were effectively reduced by l-methionine intake. CONCLUSION The present study demonstrates that methionine availability plays a critical role in activation of the Nrf2-ARE pathway to induce an endogenous antioxidant response for depressing ROS-derived oxidative stress, which is primarily attributed to the stimulation of methionine sulfoxide reductase expression and glutathione synthesis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Liang Cai
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
23
|
Lee HY, Lee GH, Yoon Y, Chae HJ. R. verniciflua and E. ulmoides Extract (ILF-RE) Protects against Chronic CCl₄-Induced Liver Damage by Enhancing Antioxidation. Nutrients 2019; 11:nu11020382. [PMID: 30759889 PMCID: PMC6412399 DOI: 10.3390/nu11020382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to characterize the protective effects of R. verniciflua extract (ILF-R) and E. ulmoides extract (ILF-E), the combination called ILF-RE, against chronic CCl4-induced liver oxidative injury in rats, as well as to investigate the mechanism underlying hepatoprotection by ILF-RE against CCl4-induced hepatic dysfunction. Chronic hepatic stress was induced via intraperitoneal (IP) administration of a mixture of CCl4 (0.2 mL/100 g body weight) and olive oil [1:1(v/v)] twice a week for 4 weeks to rats. ILF-RE was administered orally at 40, 80, and 120 mg/kg to rats for 4 weeks. Alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transpeptidase (GGT), and lipid peroxidation assays were performed, and total triglyceride, cholesterol, and LDL-cholesterol levels were quantified. Furthermore, ER stress and lipogenesis-related gene expression including sterol regulatory element-binding transcription factor 1 (SREBP-1), fatty acid synthase (FAS), and P-AMPK were assessed. ILF-RE markedly protected against liver damage by inhibiting oxidative stress and increasing antioxidant enzyme activity including glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. Furthermore, hepatic dyslipidemia was regulated after ILF-RE administration. Moreover, hepatic lipid accumulation and its associated lipogenic genes, including those encoding SREBP-1 and FAS, were regulated after ILF-RE administration. This was accompanied by regulation of ER stress response signaling, suggesting a mechanism underlying ILF-RE-mediated hepatoprotection against lipid accumulation. The present results indicate that ILF-RE exerts hepatoprotective effects against chronic CCl4-induced dysfunction by suppressing hepatic oxidative stress and lipogenesis, suggesting that ILF-RE is a potential preventive/therapeutic natural product in treating hepatoxicity and associated dysfunction.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk 561-180, Korea.
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Korea.
| | - Young Yoon
- Imsil Cheese & Food Research Institute, Doin 2-gil, Seongsu-myeon, Imsil-gun, Chonbuk 55918, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk 561-180, Korea.
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
24
|
Wang J, Liu W, Chen Z, Chen H. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma. Biomed Pharmacother 2017; 90:160-170. [PMID: 28355590 DOI: 10.1016/j.biopha.2017.03.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
This study was to investigate the synergistic effects of polysaccharides with the molecular weight more than 80kDa (OTPS1) and polyphenols (OTP) isolated from oolong tea on hepatocellular carcinoma (HCC) in vitro and in vivo. The physicochemical properties of OTPS fractions were characterized. The synergistic effects of OTPS1 and OTP were evaluated based on the combination index (CI). Results showed that the highest uronic acid contents (32.96%) and viscosity (239.56mLg-1), multicavity structure of OTPS1 were contributed to the synergistic effects with OTP (52.17% content of epigallocatechin-3-gallate (EGCG)). OTPS1 and OTP showed the strongest synergism ability on SMMC7721 cells (CI<0.2). Co-administrated with OTPS1 and OTP exhibited the synergistic effects on the tumor proliferation and growth with the CI values of 0.34 and 0.39, respectively. Antioxidative and immune levels of the mice were obviously increased after combination administration. These results suggested that OTPS1 in combination with OTP might be functional supplements for the treatment of HCC.
Collapse
Affiliation(s)
- Jingya Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Wei Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
25
|
Antimutagenic Effects of Selenium-Enriched Polysaccharides from Pyracantha fortuneana through Suppression of Cytochrome P450 1A Subfamily in the Mouse Liver. Molecules 2016; 21:molecules21121731. [PMID: 27999293 PMCID: PMC6272851 DOI: 10.3390/molecules21121731] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
Both selenium (Se) and polysaccharides from Pyracantha fortuneana (Maxim.) Li (PFPs) (P. fortuneana) have been reported to possess antioxidative and immuno-protective activities. Whether or not Se-containing polysaccharides (Se-PFPs) have synergistic effect of Se and polysaccharides on enhancing the antioxidant and immune activities remains to be determined. We previously reported that polysaccharides isolated from Se-enriched P. fortuneana (Se-PFPs) possessed hepatoprotective effects. However, it is not clear whether or not they have anti-mutagenic effects. In the present study, we compared and evaluated anti-mutagenic effects of Se-PFPs at three concentrations (1.35, 2.7 and 5.4 g/kg body weight) with those of PFPs, Se alone or Se + PFPs in mice using micronucleus assay in bone marrow and peripheral blood as well as mitomycin C-induced chromosomal aberrations in mouse testicular cells. We also elucidated the underlying mechanism. Our results demonstrated that Se-PFPs inhibited cyclophosphamide (CP)-induced micronucleus formation in both bone marrow and peripheral blood, enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in mouse liver, and reduced the activity and expression of cytochrome P450 1A (CYP4501A) in mouse liver in a dose-dependent manner. In addition, we found that the anti-mutagenic potential of Se-PFPs was higher than those of PFPs, Se alone or Se + PFPs at the same level. These results suggest that the anti-mutagenic potential of Se-PFPs may be mediated through the inhibition of the activity and expression of CYP4501A. This study indicates that application of Se-PFPs may provide an alternative strategy for cancer therapy by targeting CYP1A family.
Collapse
|
26
|
Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, Ye JH, Li QS, Polito CA, Liang YR. Tea Polysaccharides and Their Bioactivities. Molecules 2016; 21:E1449. [PMID: 27809221 PMCID: PMC6274327 DOI: 10.3390/molecules21111449] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Tea (Camellia sinensis) is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP) and tea polysaccharides (TPS). TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.
Collapse
Affiliation(s)
- Ling-Ling Du
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Qiu-Yue Fu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Li-Ping Xiang
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Curt Anthony Polito
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
27
|
Guo L, Guo J, Zhu W, Jiang X. Optimized synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea and their antioxidant activities. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|