1
|
Dorbani I, Berberian A, Riedel C, Duport C, Carlin F. Comparing resistance of bacterial spores and fungal conidia to pulsed light and UVC radiation at a wavelength of 254 nm. Food Microbiol 2024; 121:104518. [PMID: 38637080 DOI: 10.1016/j.fm.2024.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Pulsed light (PL) inactivates microorganisms by UV-rich, high-irradiance and short time pulses (250 μs) of white light with wavelengths from 200 nm to 1100 nm. PL is applied for disinfection of food packaging material and food-contact equipment. Spores of seven Bacillus ssp. strains and one Geobacillus stearothermophilus strain and conidia of filamentous fungi (One strain of Aspergillus brasiliensis, A. carbonarius and Penicillium rubens) were submitted to PL (fluence from 0.23 J/cm2 to 4.0 J/cm2) and UVC (at λ = 254 nm; fluence from 0.01 J/cm2 to 3.0 J/cm2). One PL flash at 3 J/cm2 allowed at least 3 log-reduction of all tested microorganisms. The emetic B. cereus strain F4810/72 was the most resistant of the tested spore-forming bacteria. The PL fluence to 3 log-reduction (F3 PL) of its spores suspended in water was 2.9 J/cm2 and F3 UVC was 0.21 J/cm2, higher than F3 PL and F3 UVC of spores of B. pumilus SAFR-032 2.0 J/cm2 and 0.15 J/cm2, respectively), yet reported as a highly UV-resistant spore-forming bacterium. PL and UVC sensitivity of bacterial spores was correlated. Aspergillus spp. conidia suspended in water were poorly sensitive to PL. In contrast, PL inactivated Aspergillus spp. conidia spread on a dry surface more efficiently than UVC. The F2 PL of A. brasiliensis DSM1988 was 0.39 J/cm2 and F2 UVC was 0.83 J/cm2. The resistance of spore-forming bacteria to PL could be reasonably predicted from the knowledge of their UVC resistance. In contrast, the sensitivity of fungal conidia to PL must be specifically explored.
Collapse
Affiliation(s)
- Imed Dorbani
- INRAE, Avignon Université, UMR SQPOV, Avignon, France; Claranor, 862 Rue André-Jean Boudoy, 84140, Avignon, France
| | | | | | | | | |
Collapse
|
2
|
Lin L, Xu J. Production of Fungal Pigments: Molecular Processes and Their Applications. J Fungi (Basel) 2022; 9:44. [PMID: 36675865 PMCID: PMC9866555 DOI: 10.3390/jof9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly in recent decades. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing. In contrast, pigments from plants are often limited by seasonal and geographic factors. Here, we delineate the taxonomy of pigmented fungi and fungal pigments, with a focus on the biosynthesis of four major categories of pigments: carotenoids, melanins, polyketides, and azaphilones. The molecular mechanisms and metabolic bases governing fungal pigment biosynthesis are discussed. Furthermore, we summarize the environmental factors that are known to impact the synthesis of different fungal pigments. Most of the environmental factors that enhance fungal pigment production are related to stresses. Finally, we highlight the challenges facing fungal pigment utilization and future trends of fungal pigment development. This integrated review will facilitate further exploitations of pigmented fungi and fungal pigments for broad applications.
Collapse
Affiliation(s)
- Lan Lin
- Medical School, School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210009, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Chebil S, Rjiba-Bahri W, Oueslati S, Ben Ismail H, Ben-Amar A, Natskoulis P. Ochratoxigenic fungi and Ochratoxin A determination in dried grapes marketed in Tunisia. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01584-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Purpose
With the present work, we aimed to assess the occurrence of ochratoxigenic fungi and Ochratoxin A (OTA) in dried grapes from Tunisia.
Methods
Dried grapes samples (n = 90) were investigated for the presence of ochratoxigenic fungi, which were further characterized at the species level through amplification of the internal transcribed spacer (ITS) region and polymerase chain reaction (PCR) product sequencing. Fungal isolates were tested for their ochratoxigenic potential by high-performance liquid chromatography with fluorescence detection (HPLC-FLD), as well as dried grapes samples after an immunoaffinity column (IAC) clean-up procedure.
Results
Black Aspergilli isolates were the dominant genre among the filamentous fungi found in dried grapes samples and were the only OTA-producing fungi encountered. Aspergillus niger aggregate were the most frequently found isolates reaching 70%, 80%, and 85% in dried grapes samples from regions of Kelibia, Sfax, and Rafraf, respectively, while covered 100% of the relevant mycobiota found in imported samples. Aspergillus carbonarius isolates were found only in Sfax’s and Kelibia’s samples, while uniseriate Aspergilli were found between 7 and 20% in dried grapes from Kelibia, Sfax, and the imported samples. The in vitro OTA production test showed that 88.9% of OTA-producing isolates belonged to A. carbonarius with OTA levels varying from 0.06 to 1.32 μg/g of Czapek Yeast Agar (CYA). The remaining OTA-producing fungi (11.1 %) belonged to A. niger aggregate group having a maximum OTA potential of 2.88 μg/g CYA, and no uniseriate Aspergilli isolate was able to produce OTA. All dried grapes samples were free of OTA presence.
Conclusion
According to the present study’s findings, no OTA contamination was recorded in the investigated samples from Tunisian market. Nevertheless, the presence of strong OTA producers A. carbonarius in samples originated from the two out of three studied Tunisian regions, as well the high incidences of Aspergillus niger aggregate group with an attested potential for OTA production in all samples, necessitates further research on Tunisian dried grapes. Additionally, a continuous analysis of staple food of the Mediterranean diet is imperative to insure the best quality for the consumers and prevent potential health problems.
Collapse
|
4
|
Cervini C, Verheecke-Vaessen C, Ferrara M, García-Cela E, Magistà D, Medina A, Gallo A, Magan N, Perrone G. Interacting climate change factors (CO 2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biol 2019; 125:115-122. [PMID: 33518201 DOI: 10.1016/j.funbio.2019.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
Abstract
Little is known on the impact that climate change (CC) may have on Aspergillus carbonarius and Ochratoxin A (OTA) contamination of grapes, especially in the Mediterranean region where in CC scenarios temperature are expected to increase by +2-5 °C and CO2 from 400 to 800/1200 ppm. This study examined the effect of (i) current and increased temperature in the alternating 11.5 h dark/12.5 h light cycle (15-28 °C vs 18-34 °C), representative of the North Apulia area, South Italy and (ii) existing and predicted CO2 concentrations (400 vs 1000 ppm), on growth, expression of biosynthetic genes (AcOTApks, AcOTAnrps, AcOTAhal, AcOTAp450, AcOTAbZIP) and regulatory genes of Velvet complex (laeA/veA/velB, "velvet complex") involved in OTA biosynthesis and OTA phenotypic production by three strains of A. carbonarius. The experiments made on a grape-based matrix showed that elevated CO2 resulted in a general stimulation of growth and OTA production. These results were also supported by the up-regulation of both structural and regulatory genes involved in the OTA biosynthesis. Our work has shown for the first time that elevated CO2 concentration in the Mediterranean region may result in an increased risk of OTA contamination in the wine production chain.
Collapse
Affiliation(s)
- Carla Cervini
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy; Department of Economics, University of Foggia, Foggia, Italy.
| | | | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Esther García-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| |
Collapse
|
5
|
Diniz RR, Paiva JP, Aquino RM, Gonçalves TCW, Leitão AC, Santos BAMC, Pinto AV, Leandro KC, de Pádula M. Saccharomyces cerevisiae strains as bioindicators for titanium dioxide sunscreen photoprotective and photomutagenic assessment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111584. [PMID: 31434036 DOI: 10.1016/j.jphotobiol.2019.111584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022]
Abstract
Although several short-term assays are available for cosmetic photosafety assessment, cell models are usually highly sensitive to UV radiation, tending to overestimate both phototoxic and photomutagenic risks. In addition, these assays are performed with UV doses/fluences that do not correspond to actual environmental conditions. In this sense, Saccharomyces cerevisiae has already proved to be an interesting tool to predict photomutagenic potential of several compounds, including sunscreens. Yeast can support environmental UVB doses compatible with human daily sunlight exposure, allowing the use of irradiation sources to faithfully mimic the external conditions of ambient sunlight. Herein, we used a set of S. cerevisiae mutant strains sensitive to UVA, UVB and Solar Simulated Light sources in order to evaluate their potential as bioindicators for sunscreen development. The bioindicator potential of the strains was tested with the widely-used titanium dioxide inorganic sunscreen. The AWP001 (yno1) and LPW002 (ogg1yno1) strains obtained in this study stood out as promising experimental tools for the validation of this assay. Overall, our results evidenced a set of S. cerevisiae strains particularly useful for evaluating both photoprotective (efficacy) and photo/antiphotomutagenic (safety) potential of UV filters, meeting the industries and regulatory agencies demand for robust and efficient in vitro screening tests.
Collapse
Affiliation(s)
- Raiane R Diniz
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Juliana P Paiva
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Renan M Aquino
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Tula C W Gonçalves
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alvaro C Leitão
- Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Bianca Aloise M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alicia V Pinto
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Katia C Leandro
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil.
| |
Collapse
|
6
|
Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochem Photobiol Sci 2016; 15:141-74. [PMID: 26822392 DOI: 10.1039/c6pp90004f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.
Collapse
|