1
|
Yang S, Peng Z, Hardie WJ, Huang T, Tang H, Liu Z, Liu Q, Xiao M, Xiong T, Xie M. Screening of probiotic Lactobacillus to reduce peanut allergy and with potential anti-allergic activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2006-2014. [PMID: 37909354 DOI: 10.1002/jsfa.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Peanut is a significant source of nutrition and a valuable oilseed crop. It is also a serious allergy source, which poses a threat to 1.1% of the population. This study aimed to screen lactic acid bacteria (LAB) with the capacity to alleviate peanut allergenicity and exhibit anti-allergic properties. RESULT The results show that LAB can make use of substances in peanuts to reduce the pH of peanut milk from 6.603 to 3.593-4.500 by acid production and that it can utilize the protein in peanuts to reduce the allergenic content (especially Ara h 1) and improve biological activity in peanut pulp. The content of Ara h 1 peanut-sensitizing protein was reduced by 74.65% after fermentation. The protein extracted from fermented peanut pulp is more readily digestible by gastrointestinal juices. The inhibitory activity assay of hyaluronidase (an enzyme with strong correlation to allergy) increased from 46.65% to a maximum of 90.57% to reveal that LAB fermentation of peanut pulp exhibited a robust anti-allergic response. CONCLUSION The strains identified in this study exhibited the ability to mitigate peanut allergenicity partially and to possess potential anti-allergic properties. Lactobacillus plantarum P1 and Lactobacillus salivarius C24 were identified as the most promising strains and were selected for further research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | | | - Tao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Hui Tang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhuo Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiaozhen Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Gantulga P, Lee J, Jeong K, Jeon SA, Lee S. Variation in the Allergenicity of Scrambled, Boiled, Short-Baked and Long-Baked Egg White Proteins. J Korean Med Sci 2024; 39:e54. [PMID: 38374627 PMCID: PMC10876437 DOI: 10.3346/jkms.2024.39.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Hen's egg white (HEW) is the most common cause of food allergy in children which induces mild to fatal reactions. The consultation for a proper restriction is important in HEW allergy. We aimed to identify the changes in HEW allergenicity using diverse cooking methods commonly used in Korean dishes. METHODS Crude extract of raw and 4 types of cooked HEW extracts were produced and used for sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), and ELISA inhibition assays using 45 serum samples from HEW allergic and tolerant children. Extracts were prepared; scrambled without oil for 20-30 seconds in frying pan without oil, boiled at 100°C for 15 minutes, short-baked at 180°C for 20 minutes, and long-baked at 45°C for 12 hours with a gradual increase in temperature up to 110°C for additional 12 hours, respectively. RESULTS In SDS-PAGE, the intensity of bands of 50-54 kDa decreased by boiling and baking. All bands almost disappeared in long-baked eggs. The intensity of the ovalbumin (OVA) immunoglobulin E (IgE) bands did not change after scrambling; however, an evident decrease was observed in boiled egg white (EW). In contrast, ovomucoid (OM) IgE bands were darker and wider after scrambling and boiling. The IgE binding reactivity to all EW allergens were weakened in short-baked EW and considerably diminished in long-baked EW. In individual ELISA analysis using OVA+OM+ serum samples, the median of specific IgE optical density values was 0.435 in raw EW, 0.476 in scrambled EW, and 0.487 in boiled EW. Conversely, it was significantly decreased in short-baked (0.406) and long-baked EW (0.012). Significant inhibition was observed by four inhibitors such as raw, scrambled, boiled and short-baked HEW, but there was no significant inhibition by long-baked HEW (IC50 > 100 mg/mL). CONCLUSION We identified minimally reduced allergenicity in scrambled EW and extensively decreased allergenicity in long-baked EW comparing to boiled and short-baked EW as well as raw EW. By applying the results of this study, we would be able to provide safer dietary guidence with higher quality to egg allergic children.
Collapse
Affiliation(s)
- Purevsan Gantulga
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon, Korea
| | - Jeongmin Lee
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyunguk Jeong
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Se-Ah Jeon
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Sooyoung Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
3
|
Chen H, Tu Z, Zhou Y, Xie Z, Zhang S, Wen P, Liu J, Jiang Q, Wang H, Hu Y. Insight into the Mechanism Underlying the Reduction of Digestibility and IgG/IgE Binding Ability in Ovalbumin during Different High-Temperature Conduction Modes-Induced Glycation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2801-2812. [PMID: 38275225 DOI: 10.1021/acs.jafc.3c08882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Effects of different high-temperature conduction modes [high-temperature air conduction (HAC), high-temperature contact conduction (HCC), high-temperature steam conduction (HSC)]-induced glycation on the digestibility and IgG/IgE-binding ability of ovalbumin (OVA) were studied and the mechanisms were investigated. The conformation in OVA-HSC showed minimal structural changes based on circular dichroism, fluorescence, and ultraviolet spectroscopy. The degree of hydrolysis analysis indicated that glycated OVA was more resistant to digestive enzymes. Liquid chromatography-Orbitrap mass spectrometry identified 11, 14, and 15 glycation sites in OVA-HAC, OVA-HCC, and OVA-HSC, respectively. The IgG/IgE-binding ability of OVA was reduced during glycation and digestion, and the interactions among glycation, allergenicity, and digestibility were further investigated. Glycation sites masked the IgG/IgE epitopes resulting in a reduction in allergenicity. Digestion enzymes destroyed the IgG/IgE epitopes thus reducing allergenicity. Meanwhile, the glycation site in proximity to the digestion site of pepsin was observed to cause a reduction in digestibility.
Collapse
Affiliation(s)
- Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Yanru Zhou
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Zuohua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Siqiong Zhang
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| |
Collapse
|
4
|
Geng Q, Zhang Y, Song M, Zhou X, Tang Y, Wu Z, Chen H. Allergenicity of peanut allergens and its dependence on the structure. Compr Rev Food Sci Food Saf 2023; 22:1058-1081. [PMID: 36624611 DOI: 10.1111/1541-4337.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
Food allergies are a global food safety problem. Peanut allergies are common due, in part, to their popular utilization in the food industry. Peanut allergy is typically an immunoglobulin E-mediated reaction, and peanuts contain 17 allergens belonging to different families in peanut. In this review, we first introduce the mechanisms and management of peanut allergy, followed by the basic structures of associated allergens. Subsequently, we summarize methods of epitope localization for peanut allergens. These methods can be instrumental in speeding up the discovery of allergenicity-dependent structures. Many attempts have been made to decrease the allergenicity of peanuts. The structures of hypoallergens, which are manufactured during processing, were analyzed to strengthen the desensitization process and allergen immunotherapy. The identification of conformational epitopes is the bottleneck in both peanut and food allergies. Further, the identification and modification of such epitopes will lead to improved strategies for managing and preventing peanut allergy. Combining traditional wet chemistry research with structure simulation studies will help in the epitopes' localization.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Min Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Gazme B, Rezaei K, Udenigwe CC. Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food Funct 2022; 13:38-51. [PMID: 34908097 DOI: 10.1039/d1fo01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egg white has high protein content and numerous biological/functional properties. However, reported allergenicity for some of the proteins in egg white is an issue that needs to be paid exclusive attention. A consideration of the structure of IgE epitopes and their sequences, as well as a comprehensive understanding of the effects of various processes on epitopes and the impact of the gastrointestinal tract on them, can help target such issues. The current study focuses on the identified IgE epitopes in egg white proteins and evaluation of the effects of the gastrointestinal digestion, carbohydrate moiety, food matrix, microbial fermentation, recombinant allergen, heat treatment, Maillard reaction and combination of various processes and gastrointestinal digestion on egg white allergenicity. Although the gastrointestinal tract reduces the immunoreactivity of native egg white proteins, some of the IgE epitope-containing fragments remain intact during the digestion process. It has been found that the gastrointestinal tract can have both positive and negative impacts on the IgE binding activities of egg white proteins. Elimination of the carbohydrate moiety leads to a reduction in the immunoreactivity of ovalbumin. But, such effects from the carbohydrate parts in the IgE binding activity need to be explored further. In addition, the interaction between the egg white proteins and the food matrix leads to various effects from the gastrointestinal tract on the digestion of egg white proteins and their subsequent immunoreactivity. Further on this matter, studies have shown that both microbial fermentation and Maillard reaction can reduce the IgE binding activities of egg white proteins. Also, as an alternate approach, the thermal process can be used to treat the egg white proteins, which may result in the reduction or increase in their IgE binding activities depending on the conditions used in the process. Overall, based on the reported data, the allergenicity levels of egg white proteins can be mitigated or escalated depending on the conditions applied in the processing of the food products containing egg white. So far, no practical solutions have been reported to eliminate such allergenicity.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Ma J, Zhou J, Chen L, Zhang H, Wang Y, Fu L. Effects of deglycosylation and the Maillard reaction on conformation and allergenicity of the egg ovomucoid. J Food Sci 2021; 86:3014-3022. [PMID: 34151424 DOI: 10.1111/1750-3841.15791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Ovomucoid (OVM), known as the major allergen in egg white, has gained increasing concerns in industrialized countries. Here, we found the deglycosylation and Maillard reaction with galactooligosaccharide (GOS) and fructooligosaccharide (FOS) can induce conformational transformation of OVM from other structures (β-turn, strang, and random coils) to α-helix. We also introduced an approach to reduce the allergenicity of Gallus domesticus OVM by Maillard reaction with GOS and FOS. However, the OVM glycated by mannosan (MOS) and deglycosylated OVM exhibited higher allergenicity than native OVM. Therefore, GOS and FOS, especially GOS, could be applied in the reduction of the potential allergenicity of OVM through glycation. Furthermore, these findings may provide new insights into the development of hypoallergenic egg products. PRACTICAL APPLICATION: In this study, the allergenicity and conformation of OVM treated with deglycosylation and glycation (GOS, FOS, and MOS) were investigated. The results would provide a better understanding of the effects of deglycosylation and Maillard reaction with different reducing sugars on the molecular characteristics of OVM and further provide new insights into the development of hypoallergenic egg products.
Collapse
Affiliation(s)
- Junjie Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lerong Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hong Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
7
|
Pi X, Fu G, Dong B, Yang Y, Wan Y, Xie M. Effects of fermentation with Bacillus natto on the allergenicity of peanut. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
9
|
|
10
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
11
|
Impact of food processing on the structural and allergenic properties of egg white. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|