1
|
Wu Y, Yang W, Kou J, Li Q, Liu J, Chi L, Zhang Y, Liu Q, Yu Y. Impacts of phosphate-solubilizing bacterium strain MWP-1 on vegetation growth, soil characteristics, and microbial communities in the Muli coal mining area, China. Front Microbiol 2024; 15:1500070. [PMID: 39703706 PMCID: PMC11655473 DOI: 10.3389/fmicb.2024.1500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Due to the cold climate and low soil nutrient content, high-altitude mining areas are challenging to restore ecologically. Their poor nutrient content may be ameliorated by introducing specific microorganisms into the soil. This study aims to evaluate the effects of a highly efficient phosphate solubilizing bacterium MWP-1, Pseudomonas poae, on plant growth, soil nutrients in remedying the soil of the high-altitude Muli mining area in Qinghai Province, and analyze its impact on microbial communities through high-throughput sequencing soil microbial communities. The results showed that MWP-1 significantly increased the content of soil available phosphorus by >50%, soil organic matter and total nitrogen by >10%, and significantly increased the height, coverage, and aboveground biomass of vegetation by >40% in comparison with the control (p < 0.05). MWP-1 mainly affected the composition of the soil bacterial communities at the taxonomic level below the phylum. Its impact on soil fungal communities occurred at the phylum and below taxonomic levels. In addition, MWP-1 also significantly improved the diversity of soil bacterial and fungal communities (p < 0.05), and changed their functions. It also significantly altered the relative abundance of genes regulating phosphorus absorption and transport, inorganic phosphorus dissolution and organic phosphorus mineralization in the bacterial community (p < 0.05). It caused a significant increase in the relative abundance of the genes regulating nitrogen fixation and nitrification in nitrogen cycling (p < 0.05), but a significant decrease in the genes regulating phospholipase (p < 0.05). Although sequencing results indicated that Pseudomonas poae did not become the dominant species, its dissolved phosphorus elements can promote plant growth and development, enrich soil nutrient content, and affect the succession of microbial communities, enhance ecosystem stability, with an overall positive effect on soil remediation in the mining area.
Collapse
Affiliation(s)
- Yanru Wu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Wenquan Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Qinyao Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaqing Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Lu Chi
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yangcan Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yanghua Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Sai A, Ben Younes S, Ellafi A, Moula A, Sánchez-Yañez JM, Borgi MA. Exploration and impact of Metlaoui-Gafsa phosphate rock amendment: the role of Serratia plymuthica BMA1 in phosphate solubilization, heavy metal rhizoaccumulation, and enhanced nutrition in Vicia faba L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67007-67023. [PMID: 39656333 DOI: 10.1007/s11356-024-35604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/16/2024] [Indexed: 12/25/2024]
Abstract
The geochemical analysis of Gafsa rock phosphate (GRP) revealed relatively high concentrations of essential plant minerals and trace heavy metals (HMs). Environmental contamination factors indicated moderate to very strong HM contamination due to GRP soil amendment. The potential use of the Serratia plymuthica BMA1 strain, which is known for its ability to solubilize GRP, to enhance mineral nutrition in Vicia faba L. and its role in HM rhizoaccumulation from GRP were explored. Pot experiments revealed that bacterization with S. plymuthica BMA1 in V. faba grown in sand supplemented with GRP as the sole source of phosphorus significantly increased the potassium concentration by 64% in roots and 40% in shoots, iron by 20% in roots and 10% in shoots, and manganese by 27% in roots and 20% in shoots compared to that in V. faba not inoculated with S. plymuthica BMA1. The total dry biomass of V. faba increased by approximately 85%, while the accumulation of cadmium (Cd), copper (Cu), zinc (Zn), and lead (Pb) in the roots increased by 114%, 30%, 37%, and 44%, respectively. However, in the shoots, they increased by 35%, 10%, 85%, and 25%, respectively, for Cd, Cu, Zn, and Pb compared to those in the non-inoculated V. faba. The evaluation of the HM translocation factor, bioaccumulation factor, and bioconcentration factor with GRP highlighted the key role of S. plymuthica BMA1 in preventing the mobility of toxic HMs from reaching the aerial parts of plants. These findings suggest that S. plymuthica BMA1 has the potential to enhance mineral nutrition in V. faba and facilitate the rhizoaccumulation of toxic HMs, which has implications for plant cultivation and human consumption.
Collapse
Affiliation(s)
- Afef Sai
- Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEOE), Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
| | - Sonia Ben Younes
- Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia.
- Laboratory of Population Health, Faculty of Medicine of Tunis, Environmental Aggressors and Alternative Therapies (LR24ES10), Tunis, Tunisia.
| | - Ali Ellafi
- Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
- Laboratory of Analysis, Faculty of Pharmacy of Monastir, Treatment and Validation of Environmental Pollutants and Products, Monastir, Tunisia
| | - Amel Moula
- Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEOE), Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
| | - Juan Manuel Sánchez-Yañez
- Environmental Microbiology Laboratory, Research Institute in Chemistry and Biology, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Mohamed Ali Borgi
- Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEOE), Faculty of Sciences of Gafsa, University Campus of Ahmed Zarroug, University of Gafsa, 2112, Gafsa, Tunisia
| |
Collapse
|
3
|
Meng L, Ding K, Qiu Y, Chen Y, Huo H, Yu D, Tian D, Li Z. Application of phosphogypsum and phosphate-solubilizing fungi to Pb remediation: From simulation to in vivo incubation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173171. [PMID: 38740208 DOI: 10.1016/j.scitotenv.2024.173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kejin Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yige Qiu
- Jiangsu Suhe Radiation Technology Co., Ltd., Nanjing, Jiangsu 210019, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongxun Huo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dan Yu
- North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100120, China.
| | - Da Tian
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Anhui, Hefei 230036, China; Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Anhui, Hefei 230036, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Maruška A, Mickienė R, Kaškonienė V, Grigiškis S, Stankevičius M, Drevinskas T, Kornyšova O, Donati E, Tiso N, Mikašauskaitė-Tiso J, Zacchini M, Levišauskas D, Ragažinskienė O, Bimbiraitė-Survilienė K, Kanopka A, Dūda G. Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation. Microorganisms 2024; 12:1242. [PMID: 38930624 PMCID: PMC11206069 DOI: 10.3390/microorganisms12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Edible fungi are a valuable resource in the search for sustainable solutions to environmental pollution. Their ability to degrade organic pollutants, extract heavy metals, and restore ecological balance has a huge potential for bioremediation. They are also sustainable food resources. Edible fungi (basidiomycetes or fungi from other divisions) represent an underutilized resource in the field of bioremediation. By maximizing their unique capabilities, it is possible to develop innovative approaches for addressing environmental contamination. The aim of the present study was to find selective chemical agents suppressing the growth of microfungi and bacteria, but not suppressing white-rot fungi, in order to perform large-scale cultivation of white-rot fungi in natural unsterile substrates and use it for different purposes. One application could be the preparation of a matrix composed of wooden sleeper (contaminated with PAHs) and soil for further hazardous waste bioremediation using white-rot fungi. In vitro microbiological methods were applied, such as, firstly, compatibility tests between bacteria and white-rot fungi or microfungi, allowing us to evaluate the interaction between different organisms, and secondly, the addition of chemicals on the surface of a Petri dish with a test strain of microorganisms of white-rot fungi, allowing us to determine the impact of chemicals on the growth of organisms. This study shows that white-rot fungi are not compatible to grow with several rhizobacteria or bacteria isolated from soil and bioremediated waste. Therefore, the impact of several inorganic materials, such as lime (hydrated form), charcoal, dolomite powder, ash, gypsum, phosphogypsum, hydrogen peroxide, potassium permanganate, and sodium hydroxide, was evaluated on the growth of microfungi (sixteen strains), white-rot fungi (three strains), and bacteria (nine strains) in vitro. Charcoal, dolomite powder, gypsum, and phosphogypsum did not suppress the growth either of microfungi or of bacteria in the tested substrate, and even acted as promoters of their growth. The effects of the other agents tested were strain dependent. Potassium permanganate could be used for bacteria and Candida spp. growth suppression, but not for other microfungi. Lime showed promising results by suppressing the growth of microfungi and bacteria, but it also suppressed the growth of white-rot fungi. Hydrogen peroxide showed strong suppression of microfungi, and even had a bactericidal effect on some bacteria, but did not have an impact on white-rot fungi. The study highlights the practical utility of using hydrogen peroxide up to 3% as an effective biota-suppressing chemical agent prior to inoculating white-rot fungi in the large-scale bioremediation of polluted substrates, or in the large-scale cultivation for mushroom production as a foodstuff.
Collapse
Affiliation(s)
- Audrius Maruška
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Rūta Mickienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Vilma Kaškonienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | | | - Mantas Stankevičius
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Tomas Drevinskas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Olga Kornyšova
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Enrica Donati
- National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (E.D.); (M.Z.)
| | - Nicola Tiso
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Jurgita Mikašauskaitė-Tiso
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Massimo Zacchini
- National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (E.D.); (M.Z.)
| | - Donatas Levišauskas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
- Process Control Department, Kaunas University of Technology, Studentų St. 50, LT-51368 Kaunas, Lithuania
| | - Ona Ragažinskienė
- Botanical Garden of Vytautas Magnus University, Ž. E. Žilibero 6, LT-46324 Kaunas, Lithuania;
| | - Kristina Bimbiraitė-Survilienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Arvydas Kanopka
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Gediminas Dūda
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| |
Collapse
|
5
|
Li L, Yang S, Hu X, Li Z, Chen H. The combined application of salt-alkali tolerant phosphate solubilizing microorganisms and phosphogypsum is an excellent measure for the future improvement of saline-alkali soils. Front Microbiol 2024; 15:1364487. [PMID: 38463487 PMCID: PMC10920286 DOI: 10.3389/fmicb.2024.1364487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Affiliation(s)
- Lingli Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shiqi Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
6
|
Meng L, Pan S, Zhou L, Santasup C, Su M, Tian D, Li Z. Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76446-76455. [PMID: 35670942 DOI: 10.1007/s11356-022-21243-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Phosphate-solubilizing fungi (PSF) can enhance P release from phosphate minerals to immobilize heavy metals. However, this promotion substantially depends on their survival in highly polluted soils. The aim of this study was to investigate the survival of PSF after addition of phosphogypsum (PG) and bioorganic fertilizer (BF) in the soil with coexistence of multiple heavy metals, e.g., Pb, As, Cd, Sb, etc. Addition of typical PSF (Aspergillus niger) did not promote the formation of pyromorphite (the most stable form of Pb), possibly due to the buffering effect of the soil (the secreted oxalic acid was neutralized) and limited P supply. Meanwhile, despite that A. niger has high tolerance to heavy metal stress, its survival was significantly declined due to the deficiency of available P. It was also shown that PG, as the major by-product in phoschemical industry, still has relatively high available P compared with common natural soils. PG addition dramatically increased available P (up to 93.87 mg/kg) and the subsequent fungal growth. However, sole PG did not promote the formation of pyromorphite, probably as the abundant Fe2+ and Mn2+ prevented the contact between PO43- and Pb2+ in the soil system. The enhanced soil respiration after addition of BF and PG confirmed the promoted microbial activity (elevated to 3465.58 μg C kg h-1). This study showed PG's potential as P source for both microbial growth and heavy metal remediation in soil system. A combination of PG, A. niger, and BF can hence achieve long-term bioremediation of heavy metals.
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Limin Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Choochad Santasup
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Da Tian
- Research Centre of Phosphorus Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Bian Z, Wang M, Yang Y, Wu Y, Ni H, Yu X, Shi J, Chen H, Bian X, Pan D, Li T, Zhang Y, Yu L, Jiang L, Tu Q. Enhanced growth of ginger plants by an eco- friendly nitrogen-fixing Pseudomonas protegens inoculant in glasshouse fields. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3038-3046. [PMID: 34778957 PMCID: PMC9299100 DOI: 10.1002/jsfa.11645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Excessive nitrogen (N) fertilization in glasshouse fields greatly increases N loss and fossil-fuel energy consumption resulting in serious environmental risks. Microbial inoculants are strongly emerging as potential alternatives to agrochemicals and offer an eco-friendly fertilization strategy to reduce our dependence on synthetic chemical fertilizers. Effects of a N-fixing strain Pseudomonas protegens CHA0-ΔretS-nif on ginger plant growth, yield, and nutrient uptake, and on earthworm biomass and the microbial community were investigated in glasshouse fields in Shandong Province, northern China. RESULTS Application of CHA0-ΔretS-nif could promote ginger plant development, and significantly increased rhizome yields, by 12.93% and 7.09%, respectively, when compared to uninoculated plants and plants treated with the wild-type bacterial strain. Inoculation of CHA0-ΔretS-nif had little impact on plant phosphorus (P) acquisition, whereas it was associated with enhanced N and potassium (K) acquisition by ginger plants. Moreover, inoculation of CHA0-ΔretS-nif had positive effects on the bacteria population size and the number of earthworms in the rhizosphere. Similar enhanced performances were also found in CHA0-ΔretS-nif-inoculated ginger plants even when the N-fertilizer application rate was reduced by 15%. A chemical N input of 573.8 kg ha-1 with a ginger rhizome yield of 1.31 × 105 kg ha-1 was feasible. CONCLUSIONS The combined application of CHA0-ΔretS-nif and a reduced level of N-fertilizers can be employed in glasshouse ginger production for the purpose of achieving high yields while at the same time reducing the inorganic-N pollution from traditional farming practices. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhilong Bian
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Mei Wang
- Institute of Agricultural Resources and EnvironmentShandong Academy of Agricultural SciencesJinanChina
| | - Yan Yang
- Institute of Agricultural Resources and EnvironmentShandong Academy of Agricultural SciencesJinanChina
| | - Yuxia Wu
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Haiping Ni
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xu Yu
- Institute of Agricultural Resources and EnvironmentShandong Academy of Agricultural SciencesJinanChina
| | - Jing Shi
- Institute of Agricultural Resources and EnvironmentShandong Academy of Agricultural SciencesJinanChina
| | - Hanna Chen
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xiaoying Bian
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Deng Pan
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Tao Li
- Soil and Fertilizer Station of Shandong ProvinceShandong Provincial Department of AgricultureJinanChina
| | - Youming Zhang
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Lei Yu
- Soil and Fertilizer Station of Shandong ProvinceShandong Provincial Department of AgricultureJinanChina
| | - Lihua Jiang
- Institute of Agricultural Resources and EnvironmentShandong Academy of Agricultural SciencesJinanChina
| | - Qiang Tu
- Helmholtz International Laboratory for Anti‐Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
8
|
El-Shamy MA, Alshaal T, Mohamed HH, Rady AMS, Hafez EM, Alsohim AS, Abd El-Moneim D. Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil. PLANTS 2022; 11:plants11070872. [PMID: 35406852 PMCID: PMC9003221 DOI: 10.3390/plants11070872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/24/2023]
Abstract
The aim of the study was to estimate the impact of soil amendments (i.e., phosphogypsum and plant growth-promoting rhizobacteria (PGPR)) separately or their combination on exchangeable sodium percentage (ESP), soil enzymes’ activity (urease and dehydrogenase), pigment content, relative water content (RWC), antioxidant enzymatic activity, oxidative stress, productivity, and quality of quinoa under deficient irrigation conditions in two field experiments during the 2019–2020 and 2020–2021 seasons under salt-affected soil. Results revealed that ESP, soil urease activity, soil dehydrogenase activity, leaf chlorophyll a, b, and carotenoids, leaf K content, RWC, SOD (superoxide dismutase), CAT (catalase), and POD (peroxidase) activities were declined, resulting in overproduction of leaf Na content, proline content, and oxidative stress indicators (H2O2, malondialdehyde (MDA) and electrolyte leakage) under water stress and soil salinity, which negatively influence yield-related traits, productivity, and seed quality of quinoa. However, amendment of salt-affected soil with combined phosphogypsum and seed inoculation with PGPR under deficient irrigation conditions was more effective than singular application and control plots in ameliorating the harmful effects of water stress and soil salinity. Additionally, combined application limited Na uptake in leaves and increased K uptake and leaf chlorophyll a, b, and carotenoids as well as improved SOD, CAT, and POD activities to ameliorate oxidative stress indicators (H2O2, MDA, and electrolyte leakage), which eventually positively reflected on productivity and quality in quinoa. We conclude that the potential utilization of phosphogypsum and PGPR are very promising as sustainable eco-friendly strategies to improve quinoa tolerance to water stress under soil salinity.
Collapse
Affiliation(s)
- Moshira A. El-Shamy
- Crop Intensification Research Department, Field Crops Research Institute, Giza 12511, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Hossam Hussein Mohamed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11782, Egypt;
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: (E.M.H.); (A.S.A.)
| | - Abdullah S. Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia
- Correspondence: (E.M.H.); (A.S.A.)
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt;
| |
Collapse
|
9
|
Salt Stress Amelioration in Maize Plants through Phosphogypsum Application and Bacterial Inoculation. PLANTS 2021; 10:plants10102024. [PMID: 34685833 PMCID: PMC8540408 DOI: 10.3390/plants10102024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The use of phosphogypsum (PG) and plant growth-promoting rhizobacteria (PGPR) for agricultural purposes are good options to improve soil properties and increase crop yield. The objective of this study was to investigate the effect of different rates of PG (ton ha−1; 0 (PG1), 3 (PG2), 6 (PG3), and 9 (PG4)) combined with PGPR inoculation (Azospirillum lipoferum (control, T1), A. lipoferum + Bacillus coagulans (T2), A. lipoferum + B. circulance (T3), and A. lipoferum + B. subtilis (T4)) on soil properties, plant physiology, antioxidant enzymes, nutrient uptake, and yield of maize plants (Zea mays L., cv. HSC 10) grown in salt-affected soil. Over two growing seasons, 2019 and 2020, field experiments were conducted as a split-plot design with triplicates. The results show that applying PG (9 ton ha−1) and co-inoculation (A. lipoferum + B. circulance) treatment significantly increased chlorophyll and carotenoids content, antioxidant enzymes, microbial communities, soil enzymes activity, and nutrient contents, and showed inhibitory impacts on proline content and pH, as well as EC and ESP, thus improving the productivity of maize plant compared to the control treatment. It could be concluded that PG, along with microbial inoculation, may be an important approach for ameliorating the negative impacts of salinity on maize plants.
Collapse
|
10
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
11
|
Phosphate-Solubilizing Bacteria Nullify the Antagonistic Effect of Soil Calcification on Bioavailability of Phosphorus in Alkaline Soils. Sci Rep 2017; 7:16131. [PMID: 29170494 PMCID: PMC5701022 DOI: 10.1038/s41598-017-16537-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Phosphate-solubilizing bacteria (PSB) reduce the negative effects of soil calcification on soil phosphorus (P) nutrition. In this incubation study, we explored the ability of PSB (control and inoculated) to release P from different P sources [single super phosphate (SSP), rock phosphate (RP), poultry manure (PM) and farm yard manure (FYM)] with various soil lime contents (4.78, 10, 15 and 20%) in alkaline soil. PSB inoculation progressively enriched Olsen extractable P from all sources compared to the control over the course of 56 days; however, this increase was greater from organic sources (PM and FYM) than from mineral P sources (SSP and RP). Lime addition to the soil decreased bioavailable P, but this effect was largely neutralized by PSB inoculation. PSB were the most viable in soil inoculated with PSB and amended with organic sources, while lime addition decreased PSB survival. Our findings imply that PSB inoculation can counteract the antagonistic effect of soil calcification on bioavailable P when it is applied using both mineral and organic sources, although organic sources support this process more efficiently than do mineral P sources. Therefore, PSB inoculation combined with organic manure application is one of the best options for improving soil P nutrition.
Collapse
|