1
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Buchmann K, Careche M, Levsen A, Mattiucci S, Mladineo I, Santos MJ, Barcia‐Cruz R, Broglia A, Chuzhakina K, Goudjihounde SM, Guerra B, Messens W, Guajardo IM, Bolton D. Re-evaluation of certain aspects of the EFSA Scientific Opinion of April 2010 on risk assessment of parasites in fishery products, based on new scientific data. Part 1: ToRs1-3. EFSA J 2024; 22:e8719. [PMID: 38650612 PMCID: PMC11033839 DOI: 10.2903/j.efsa.2024.8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.
Collapse
|
2
|
Ben Amor M, Trabelsi N, Djebali K, Abdallah M, Hammami M, Mejri A, Hamzaoui AH, Ramadan MF, Rtimi S. Eco-friendly extraction of antibacterial compounds from enriched olive pomace: a design-of-experiments approach to sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25616-25636. [PMID: 38478307 DOI: 10.1007/s11356-024-32770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The increasing interest in utilizing olive pomace bioactive molecules to advance functional elements and produce antioxidant and antimicrobial additives underscores the need for eco-friendly extraction and purification methods. This study aims to develop an eco-friendly extraction method to evaluate the effect of extraction parameters on the recovery of bioactive molecules from enriched olive pomace. The effects were identified based on total phenolic and flavonoid contents and antioxidant activity, employing a design of experimental methodology. The positive and the negative simultaneous effects showed that among the tested enrichments, those incorporating Nigella Sativa, dates, and coffee demonstrated superior results in terms of the measured responses. Furthermore, chromatographic analysis unveiled the existence of intriguing compounds such as hydroxytyrosol, tyrosol, and squalene in distinct proportions. Beyond this, our study delved into the structural composition of the enriched pomace through FTIR analysis, providing valuable insights into the functional groups and chemical bonds present. Concurrently, antimicrobial assays demonstrated the potent inhibitory effects of these enriched extracts against various microorganisms, underscoring their potential applications in food preservation and safety. These findings highlight enriched olive pomace as a valuable reservoir of bioactive molecules for food products since they can enhance their anti-oxidative activity and contribute to a sustainable circular economy model for olive oil industries.
Collapse
Affiliation(s)
- Marwa Ben Amor
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Najla Trabelsi
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Kais Djebali
- Centre of National of Research in Materials Sciences, Valorization of Useful Materials Laboratory, Soliman, Tunisia
| | - Marwa Abdallah
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Mejdi Hammami
- Centre of Biotechnology of Borj Cedria, Laboratory of Aromatic and Medicinal Plants, Hammam-Lif, Tunisia
| | - Asma Mejri
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Ahmed Hichem Hamzaoui
- Centre of National of Research in Materials Sciences, Valorization of Useful Materials Laboratory, Soliman, Tunisia
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
3
|
Boutheina B, Leila K, Besbes N, Messina C, Santulli A, Saloua S. Evaluation of the qualitative properties and consumer perception of marinated sardine Sardina pilchardus: The effect of fucoxanthin addition. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Bouymajane A, Filali FR, Ed-Dra A, Aazza M, Nalbone L, Giarratana F, Alibrando F, Miceli N, Mondello L, Cacciola F. Chemical profile, antibacterial, antioxidant, and anisakicidal activities of Thymus zygis subsp. gracilis essential oil and its effect against Listeria monocytogenes. Int J Food Microbiol 2022; 383:109960. [DOI: 10.1016/j.ijfoodmicro.2022.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
|
5
|
Lamas S, Rodrigues N, Peres AM, Pereira JA. Flavoured and fortified olive oils - Pros and cons. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Anisakicidal Effects of R (+) Limonene: An Alternative to Freezing Treatment in the Industrial Anchovy Marinating Process. Foods 2022; 11:foods11081121. [PMID: 35454708 PMCID: PMC9028723 DOI: 10.3390/foods11081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Anisakiasis is a fish-borne zoonotic disease caused by the ingestion of raw/undercooked fishes or cephalopods parasitized by members of the genus Anisakis. Freezing ensures the inactivation of viable Anisakis larvae; however, since it affects the organoleptic properties of food, essential oils and their compounds were proposed as an alternative. In this study, fresh anchovy fillets were experimentally parasitized with L3 Anisakis larvae to test the anisakicidal efficacy of R (+) limonene (LMN) in marinated fishery products. The anisakicidal effectiveness and organoleptic influence of several LMN concentrations (0.5%, 1%, and 5%) were tested during the marinating process (MS) and storage in sunflower seed oil (SO) of marinated anchovy fillets. Double treatment (DT) with 1% LMN was also performed both during marination and subsequent storage in oil. MS treatment resulted only in a reduction in larvae viability after 48 h, while a complete inactivation was observed in SO after 8, 10, and 20 days of treatment with 5%, 1%, and 0.5% LMN, respectively. DT was the most effective with complete larval inactivation after 7 days. Only 5% LMN influenced the sensory characteristics of the fillets, resulting, however, in a pleasant lemon-like odor and taste. Considering the results obtained, LMN might be a suitable natural alternative to manage Anisakis risk in the fishery industry.
Collapse
|
7
|
Shtonda O, Semeniuk K. Aspects of the influence of vegetable-oil-based marinade on organoleptic and physicochemical indicators of the quality of semi-finished natural marinated meat products. POTRAVINARSTVO 2021. [DOI: 10.5219/1527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work evidences the expediency of marinade application based on blends of refined vegetable oils in the technology of natural marinated semi-finished meat products. Formulations of natural marinated semi-finished meat products using blends of refined vegetable oils (rapeseed, olive, and sunflower) enriched with the enzyme bromelain were developed in this work. Such formulations can provide the human body with the necessary amount of protein, released by enzymatic hydrolysis of the connective tissue proteins collagen and elastin catalyzed by the plant-based enzyme bromelain, as well as the necessary ω-3 and ω-6 polyunsaturated fatty acids, which are not synthesized in the human body but sourced from food and are one of the main structural units for many vital processes. The article presents the results of a study of organoleptic and physicochemical parameters of natural marinated semi-finished meat products from beef and pork. It is confirmed that the use of rapeseed oil and rapeseed:sunflower oil blend in a ratio of 70:30 produce the best organoleptic characteristics in both semi-finished beef and semi-finished pork: a tender, juicy texture, a pleasant taste and aroma, and an attractive appearance. It has been proven that the use of marinades based on blends of refined vegetable oils reduces the free moisture content and moisture-retaining capacity of the product, due to the presence of refined vegetable oils in the marinade, which contributes to the binding of moisture. The use of marinades based on refined vegetable oils can increase product yield. Vegetable oil, when used in meat marinade, mitigates the ill effects of acid inclusion. It dissolves well the aromas of added spices, and as it seeps through the structure of the meat, the oil gently envelops it, sealing in moisture and preventing drying out during cooking.
Collapse
|
8
|
Marinated Anchovies (Engraulis encrasicolus) Prepared with Flavored Olive Oils (Chétoui cv.): Anisakicidal Effect, Microbiological, and Sensory Evaluation. SUSTAINABILITY 2021. [DOI: 10.3390/su13095310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To meet the food demand of future generations, more sustainable food production is needed. Flavored olive oils (FOOs) have been proposed as natural additives to ensure food safety and quality through a more sustainable approach. The chemical composition and antioxidant potential of two different olive oils flavored, respectively, with cumin (Cm) and with a mixture of parsley, garlic, and lemon (Mix) were investigated. Cm-FOO and Mix-FOO were tested against Anisakis both in vitro and ex vivo through an exposure test of anchovy fillets experimentally parasitized with Anisakis larvae. Microbiological and sensory analysis were carried out on marinated anchovy fillets exposed to both FOOs to evaluate their effects on the shelf life and their sensory influence. The addition of herbs and spices did not affect the chemical composition of the olive oil (free acidity, UV absorbance, and fatty acid composition). Only Mix showed antioxidant activity, while Cm had no effect in this regard. Cm-FOO and Mix-FOO devitalized the Anisakis larvae both in vitro within 24 h and ex vivo after 8 and 10 days of exposure, respectively. The results of microbiological analyses showed that FOOs inhibited the growth of typical spoilage flora in the marinated anchovies without negatively affecting their sensory characteristics, as observed from the sensory analysis.
Collapse
|
9
|
Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria monocytogenes and different serotypes of Salmonella enterica. Microb Pathog 2020; 149:104510. [PMID: 32956790 DOI: 10.1016/j.micpath.2020.104510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
Essential oils (EOs) obtained from aromatic plants are rich in natural components with interesting antimicrobial effects. The aim of this study was to evaluate the chemical composition of EOs extracted from Origanum majorana (OM-EO), Mentha suaveolens (MS-EO), Rosmarinus officinalis (RO-EO), Salvia officinalis (SO-EO) and Mentha pulegium (MP-EO). Their antioxidant properties and antibacterial activity against Listeria monocytogenes and different serotypes of Salmonella enterica subsp. enterica were also studied. The EOs were extracted from plants by hydro-distillation and their chemical composition was determined by GC-MS. Terpinen-4-ol, 1,8-Cineole, Camphor, Limonene and Cinerone were the main chemical components found in OM-EO, RO-EO, SO-EO, MP-EO and MS-EO, respectively. To the best of our knowledge, Limonene and Cinerone were reported, for the first time, as the major components of MP-EO and MS-EO. Moreover, our results showed that MS-EO had the best antioxidant activity with an IC50 of 0.78 ± 0.05 mg/mL, EC50 of 1.53 ± 0.07 mg/mL, and RC50 of 0.98 ± 0.04 mg/mL, and the higher antibacterial activity using microdilution broth method with MIC of 0.5% for Salmonella and 0.25% for L. monocytogenes, while OM-EO had the best antibacterial activity using disc diffusion method (inhibition diameters ranged between 15.3 ± 0.3 mm and 18.5 ± 0.3 mm for Salmonella and between 20.1 ± 0.2 mm and 25.4 ± 0.4 mm for L. monocytogenes). However, OM-EO and MS-EO present the higher percentage of sub-lethally injured cells against S. enterica (5.50 ± 0.11%) and L. monocytogenes (5.23 ± 0.07%), respectively. From this study, we can conclude that the investigated EOs are rich in components with interesting antibacterial activity and they could be applied in food preparations as natural preservatives to extend the shelf life of food products and to inhibit the growth of food-borne pathogens.
Collapse
|
10
|
Trabelsi N, Nalbone L, Marotta SM, Taamali A, Abaza L, Giarratana F. Effectiveness of five flavored Tunisian olive oils on Anisakis larvae type 1: application of cinnamon and rosemary oil in industrial anchovy marinating process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4808-4815. [PMID: 30977130 DOI: 10.1002/jsfa.9736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/02/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Anisakidosis is caused by the ingestion of raw or undercooked fish or cephalopods containing viable Anisakis larvae. Several natural extracts, oils, essential oils, and their compounds have been tested against Anisakis. In this study the effectiveness of Tunisian olive oil with different spices or plants (cardamom, cinnamon, ginger, laurel, and rosemary) was tested against Anisakis larvae type 1. RESULTS For the in vitro test, larvae were submerged separately in the oils mentioned above and observed to check viability. Cinnamon oil was the most effective against parasites with lethal time (LT) scores being LT50 = 1.5 days and LT100 = 3 days, followed by rosemary. Laurel, cardamom, and ginger oils were less effective. For the ex vivo experiment, cinnamon, and rosemary oils were tested in anchovy fillets, previously artificially parasitized. Cinnamon was the most effective against parasites (dead after 4 days) as compared to rosemary (7 days). CONCLUSION The use of cinnamon and rosemary-flavored olive oil in the industrial marinating process can be considered as an efficient alternative to the freezing process required by European Regulation EC No 853/2004 to devitalize Anisakis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Najla Trabelsi
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| | - Luca Nalbone
- Department of Veterinary Science, University of Messina, Messina, Italy
| | | | - Amani Taamali
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
- Department of Chemistry, College of Sciences, University of Hafr Al-Batin, Kingdom of Saudi Arabia
| | - Leila Abaza
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| | | |
Collapse
|
11
|
Olatunde OO, Benjakul S. Natural Preservatives for Extending the Shelf-Life of Seafood: A Revisit. Compr Rev Food Sci Food Saf 2018; 17:1595-1612. [PMID: 33350137 DOI: 10.1111/1541-4337.12390] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022]
Abstract
Consumer demand for minimally processed seafood that retains its sensory and nutritional properties after handling and storage is increasing. Nevertheless, quality loss in seafood occurs immediately after death, during processing and storage, and is associated with enzymatic, microbiological, and chemical reactions. To maintain the quality, several synthetic additives (preservatives) are promising for preventing the changes in texture and color, development of unpleasant flavor and rancid odor, and loss of nutrients of seafood during storage at low temperature. However, the use of these preservatives has been linked to potential health hazards. In this regard, natural preservatives with excellent antioxidant and antimicrobial properties have been extensively searched and implemented as safe alternatives in seafood processing, with the sole purpose of extending shelf-life. Natural preservatives commonly used include plants extracts, chitosan and chitooligosaccharide, bacteriocins, bioactive peptides, and essential oils, among others. This review provides updated information about the production, mode of action, applications, and limitations of these natural preservatives in seafood preservation.
Collapse
Affiliation(s)
| | - Soottawat Benjakul
- Dept. of Food Technology, Faculty of Agro-Industry, Prince of Songkla Univ., Songkhla, 90112, Thailand
| |
Collapse
|