1
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Silva VM, Nardeli AJ, Mendes NAC, Alcock TD, Rocha MDM, Putti FF, Wilson L, Young SD, Broadley MR, White PJ, Reis ARD. Application of sodium selenate to cowpea (Vigna unguiculata L.) increases shoot and grain Se partitioning with strong genotypic interactions. J Trace Elem Med Biol 2021; 67:126781. [PMID: 34015659 DOI: 10.1016/j.jtemb.2021.126781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGORUND Cowpea is a crop widely used in developing countries due its rusticity. Besides its rich genotypic variability, most breeding programs do not explore its potential to improve elements uptake. Selenium (Se) is a scarce element in most soils, resulting in its deficiency being common in human diets. This study aimed to evaluate the interaction between biofortification with Se and genotypic variation in cowpea, on the concentrations of Se in roots, leaves + stem and grains. METHODS Twenty-nine cowpea genotypes were grown in a greenhouse in the absence (control) and presence of Se (12.5 μg Se kg-1 soil) as sodium selenate, in fully randomized scheme. The plants were cultivated until grains harvest. The following variables were determined: roots dry weight (g), leaves + stems dry weight (g), grains dry weight (g), Se concentration (mg kg-1) in roots, leaves + stems and grains, and Se partitioning to shoots and grains. RESULTS Selenium application increased the Se concentration in roots, leaves + stems and grains in all genotypes. At least twofold variation in grain Se concentration was observed among genotypes. Selenium application did not impair biomass accumulation, including grain dry weight. Genotype "BRS Guariba" had the largest Se concentration in grains and leaves + stems. Genotype MNC04-795 F-158 had the largest partitioning of Se to shoots and grain, due to elevated dry weights of leaves + stems and grain, and high Se concentrations in these tissues. CONCLUSION This information might be valuable in future breeding programs to select for genotypes with better abilities to accumulate Se in grain to reduce widespread human Se undernutrition.
Collapse
Affiliation(s)
- Vinícius Martins Silva
- São Paulo State University (UNESP), Department of Crop Production, FCAV, Postal CEP 14884-900, Jaboticabal, SP, Brazil
| | - Ana Júlia Nardeli
- São Paulo State University (UNESP), Department of Crop Production, FCAV, Postal CEP 14884-900, Jaboticabal, SP, Brazil
| | - Nandhara Angelica Carvalho Mendes
- São Paulo State University (UNESP), Department of Biosystems Engineering, Rua Domingos da Costa Lopes 780, CEP17602-496, Tupã, SP, Brazil
| | - Thomas D Alcock
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | | | - Fernando Ferrari Putti
- São Paulo State University (UNESP), Department of Biosystems Engineering, Rua Domingos da Costa Lopes 780, CEP17602-496, Tupã, SP, Brazil
| | - Lolita Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Distinguished Scientist Fellowship Program, King Saud University, Riyadh, 11451, Saudi Arabia
| | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Department of Biosystems Engineering, Rua Domingos da Costa Lopes 780, CEP17602-496, Tupã, SP, Brazil.
| |
Collapse
|
3
|
Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high efficiency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.
Collapse
|