1
|
Khalil U, Rajwana IA, Razzaq K, Singh S, Sarkhosh A, Brecht JK. Evaluation of modified atmosphere packaging system developed through breathable technology to extend postharvest life of fresh muscadine berries. Food Sci Nutr 2024; 12:3663-3673. [PMID: 38726406 PMCID: PMC11077196 DOI: 10.1002/fsn3.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/12/2024] Open
Abstract
Muscadine grapes (Vitis rotundifolia Michx.) are delicate in nature with short shelf life. Postharvest technologies like modified atmosphere packaging (MAP) with reduced oxygen (O2) and elevated carbon dioxide (CO2) could increase the postharvest storage life with better quality. In the current experiment, physical and biochemical quality attributes of black and bronze cultivars of muscadine grapes ('Supreme' and 'Granny Val', respectively) were evaluated in active MAP. Fruit were packed in plastic trays, sealed with impermeable film, and CO2 was introduced into the package. The MAP was created by a rigid microperforated plastic patch coated with a proprietary semipermeable resin, which was applied over a hole in the tray; packages with the same size hole without a patch were the control. Fruit were stored at 4°C for 42 days (6 weeks). MAP resulted in significantly lower decay incidence and better retention of fruit firmness for up to 28 days of storage in both cultivars as well as reducing color changes in 'Supreme' fruit. Although MAP did not affect the biochemical quality of muscadine grapes, total antioxidants increased initially and then decreased during storage, irrespective of packaging treatments. A significant linear increase in total phenolic content was also found during storage, regardless of treatments applied. Overall, the results of the current study demonstrate that MAP can be an affective technology to increase storage duration of muscadines with better retention of physical quality, without affecting the biochemical attributes.
Collapse
Affiliation(s)
- Uzman Khalil
- Department of HorticultureMNS‐University of AgricultureMultanPakistan
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | | | - Kashif Razzaq
- Department of HorticultureMNS‐University of AgricultureMultanPakistan
| | | | - Ali Sarkhosh
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Jeffrey K. Brecht
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Gao Q, Zheng R, Lu J, Li X, Wang D, Cai X, Ren X, Kong Q. Trends in the Potential of Stilbenes to Improve Plant Stress Tolerance: Insights of Plant Defense Mechanisms in Response to Biotic and Abiotic Stressors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7655-7671. [PMID: 38536950 DOI: 10.1021/acs.jafc.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Stilbenes belong to the naturally synthesized plant phytoalexins, produced de novo in response to various biotic and abiotic stressors. The importance of stilbenes in plant resistance to stress and disease is of increasing interest. However, the defense mechanisms and potential of stilbenes to improve plant stress tolerance have not been thoroughly reviewed. This work overviewed the pentose phosphate pathway, glycolysis pathway, shikimate pathway, and phenylalanine pathway occurred in the synthesis of stilbenes when plants are subjected to biotic and abiotic stresses. The positive implications and underlying mechanisms regarding defensive properties of stilbenes were demonstrated. Ten biomimetic chemosynthesis methods can underpin the potential of stilbenes to improve plant stress tolerance. The prospects for the application of stilbenes in agriculture, food, cosmetics, and pharmaceuticals industries are anticipated. It is hoped that some of the detailed ideas and practices may contribute to the development of stilbene-related products and improvement of plant resistance breeding.
Collapse
Affiliation(s)
- Qingchao Gao
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Renyu Zheng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Jun Lu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, Shaanxi China
| |
Collapse
|
3
|
Sanchez-Ballesta MT, Marti-Anders C, Álvarez MD, Escribano MI, Merodio C, Romero I. Are the Blueberries We Buy Good Quality? Comparative Study of Berries Purchased from Different Outlets. Foods 2023; 12:2621. [PMID: 37444359 DOI: 10.3390/foods12132621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Blueberries (Vaccinium corymbosum L.) are becoming increasingly popular for their nutritional and health benefits, and their economic value is therefore increasing. The loss of quality that can occur due to softening and fungal attack is an important consideration when marketing blueberries. Despite the added value of blueberries, no studies have been carried out on how the fruit arrives at the outlets just before purchase by the consumer in terms of firmness, physico-chemical parameters, phenolic compounds, and fungal growth. The aim of this work has been, therefore, to investigate possible differences in quality parameters between blueberries purchased from ten different outlets, regardless of the supplier. The results showed that all the samples were of acceptable quality, although they all had a low maturity index at the point of sale. None of the samples studied showed clear signs of fungal decay at the time of purchase, although we were able to grow and identify some pathogen specimens after cultivation. In terms of total phenolic and anthocyanin content, as well as antioxidant activity, all the samples showed low values, possibly due to their postharvest storage, but they were within the expected range for this fruit. On the other hand, differences in the measured parameters were observed between samples of the same cultivar while no differences were found between conventionally and organically grown blueberries. This suggests that preharvest (such as edaphoclimatic conditions, agricultural practices, and cultivars) and postharvest factors (such as treatments used, storage, and transport temperatures) could influence the berry quality when they reach the consumer.
Collapse
Affiliation(s)
- M Teresa Sanchez-Ballesta
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - Carmen Marti-Anders
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - M Dolores Álvarez
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - M Isabel Escribano
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - Carmen Merodio
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| | - Irene Romero
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, E-28040 Madrid, Spain
| |
Collapse
|
4
|
Short-Term Gaseous Treatments Improve Rachis Browning in Red and White Table Grapes Stored at Low Temperature: Molecular Mechanisms Underlying Its Beneficial Effect. Int J Mol Sci 2022; 23:ijms232113304. [DOI: 10.3390/ijms232113304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Short-term gaseous treatments improve rachis quality during table grape postharvest, but little is known about the mechanisms involved. In this work, we observed that the application of a 3-day CO2 treatment at 0 °C improved rachis browning of Superior Seedless and Red Globe bunches, affecting the non-enzymatic antioxidant system by reducing the total phenolic content, the antioxidant activity and the expression of different stilbene synthase genes. Lipid peroxidation levels revealed lower oxidative stress in CO2-treated rachis of both cultivars linked to the activation of the enzymatic antioxidant system. Furthermore, whereas a positive correlation was denoted between rachis browning and the accumulation of key ABA regulatory genes in Red Globe bunches, this effect was restricted to ACS1, a key synthetic ethylene gene, in Superior Seedless clusters. This work also corroborated the important role of ethylene-responsive factors in the beneficial effect of the gaseous treatment, not only in the berries but also in the rachis. Finally, the application of the gaseous treatment avoided the induction of cell wall-degrading enzyme-related genes in both cultivars, which could favor the maintenance of rachis quality. This work provides new insight into specific responses modulated by the gaseous treatment focused on mitigating rachis browning independently of the cultivar.
Collapse
|
5
|
Varivoda AA, Svetlakova EV, Ziruk IV, Kirichenko IS, Kolosova OY, Povetkin SN, Ivakhnenko BO. Development of a scientific concept of industrial storage systems for environmentally safe apples. POTRAVINARSTVO 2022. [DOI: 10.5219/1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The research project has developed and justified the storage modes of apples in a modified gas environment by creating an isolated "closed loop" of high-pressure polyethylene; the expediency of creating highly efficient technologies for storing fresh fruits in a controlled atmosphere, in bioactive bactericidal packages and by creating microfilm on the surface of fruits has been confirmed. The prospects of using a progressive method of storing fruits in a modified gas atmosphere by creating an isolated "closed circuit" in a separate refrigerating chamber without using expensive equipment (in normal and subnormal gas environments) are proved. New technologies have been developed for storing apple fruits susceptible to infectious and physiological diseases based on improved storage methods with minimal losses. The consumption rates of Phytosporin-M for the surface treatment of fruits were determined and optimized to control the intensity of biochemical and microbiological processes during storage. The modes and technologies of post-harvest fruit processing with the Phytosporin-M biopreparation have been substantiated.
Collapse
|
6
|
Santin M, Brizzolara S, Castagna A, Ranieri A, Tonutti P. Short-Term CO2 Treatment of Harvested Grapes (Vitis vinifera L., cv. Trebbiano) before Partial Dehydration Affects Berry Secondary Metabolism and the Aromatic Profile of the Resulting Wine. PLANTS 2022; 11:plants11151973. [PMID: 35956450 PMCID: PMC9370517 DOI: 10.3390/plants11151973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
High CO2 concentrations applied to harvested horticultural products can modify primary and secondary metabolism. This work reports the metabolic responses to short-term CO2 treatments of white-skinned grapes (cv Trebbiano) undergoing postharvest partial dehydration. The influence of CO2 treatments on the aroma profile of the derived sweet wine was also assessed. Harvested grapes were treated with gaseous CO2 (30%) or air (control) for 24 h and then dehydrated (about 45% of weight loss) before vinification. Lipophilic and phenolic compounds of grape skin and the wine aroma profile were analyzed. In CO2-treated berries, the lipophilic and phenolic compounds decreased at a reduced and faster rate, respectively, during dehydration. Aroma profile of wine from CO2-treated grapes showed a slight but significantly higher content of glycosylated C13 and terpene compounds, and a decrease/absence of free acids, vanillin derivates and other phenol volatiles. The higher content of volatile alcohols in wine from treated berries suggests that the alcoholic fermentation was triggered. CO2 application before the withering process of Trebbiano grapes affects the aroma profile of the resulting wine by altering the free:glycosylated volatiles ratio. This study provides information on the possible use of CO2 as metabolic elicitor to modulate the aroma profile of the resulting wines obtained after grape dehydration.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Via del Borghetto 80, 56100 Pisa, Italy; (M.S.); (A.C.)
| | - Stefano Brizzolara
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (S.B.); (P.T.)
| | - Antonella Castagna
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Via del Borghetto 80, 56100 Pisa, Italy; (M.S.); (A.C.)
| | - Annamaria Ranieri
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Via del Borghetto 80, 56100 Pisa, Italy; (M.S.); (A.C.)
- Correspondence:
| | - Pietro Tonutti
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (S.B.); (P.T.)
| |
Collapse
|
7
|
Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT. Postharvest High-CO 2 Treatments on the Quality of Soft Fruit Berries: An Integrated Transcriptomic, Proteomic, and Metabolomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8593-8597. [PMID: 35792090 PMCID: PMC9305969 DOI: 10.1021/acs.jafc.2c01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft fruits are appreciated for their taste qualities and for being a source of health-promoting compounds. However, their postharvest is affected by their high respiratory rates and susceptibility to fungal decay. Our aim here is to provide a perspective on the application of short-term high-CO2 treatments at a low temperature to maintain the postharvest quality of soft fruits. This work also suggests using a multi-omics approach to better understand the role of the cell wall and phenolic compounds in maintaining quality. Finally, the contribution of high-throughput transcriptomic technologies to understand the mechanisms modulated by the short-term gaseous treatments is also highlighted.
Collapse
|
8
|
Doménech-Carbó A. Electrochemistry of plants: basic theoretical research and applications in plant science. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Romero I, Vazquez-Hernandez M, Tornel M, Escribano MI, Merodio C, Sanchez-Ballesta MT. The Effect of Ethanol Treatment on the Quality of a New Table Grape Cultivar It 681-30 Stored at Low Temperature and after a 7-Day Shelf-Life Period at 20 °C: A Molecular Approach. Int J Mol Sci 2021; 22:ijms22158138. [PMID: 34360903 PMCID: PMC8347068 DOI: 10.3390/ijms22158138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681–30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681–30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681–30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.
Collapse
Affiliation(s)
- Irene Romero
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Maria Vazquez-Hernandez
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Manuel Tornel
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Mayor, s/n, La Alberca, E-30150 Murcia, Spain;
| | - M. Isabel Escribano
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Carmen Merodio
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - M. Teresa Sanchez-Ballesta
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
- Correspondence:
| |
Collapse
|
10
|
Table Grapes during Postharvest Storage: A Review of the Mechanisms Implicated in the Beneficial Effects of Treatments Applied for Quality Retention. Int J Mol Sci 2020; 21:ijms21239320. [PMID: 33297419 PMCID: PMC7730992 DOI: 10.3390/ijms21239320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Table grape is a fruit with increasing interest due to its attributes and nutritional compounds. During recent years, new cultivars such as those without seeds and with new flavors have reached countries around the world. For this reason, postharvest treatments that retain fruit quality need to be improved. However, little is known to date about the biochemical and molecular mechanisms related with observed quality improvements. This review aims to examine existing literature on the different mechanisms. Special attention will be placed on molecular mechanisms which activate and regulate the different postharvest treatments applied in order to improve table grape quality.
Collapse
|
11
|
Romero I, Domínguez I, Morales-Diaz N, Escribano MI, Merodio C, Sanchez-Ballesta MT. Regulation of flavonoid biosynthesis pathway by a single or dual short-term CO 2 treatment in black table grapes stored at low temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:30-38. [PMID: 32906019 DOI: 10.1016/j.plaphy.2020.08.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The application of one or two short-term treatments with high levels of CO2 during 3 days at 0 °C maintained the quality of Autumn Royal table grapes (Vitis vinifera) during storage at 0 °C. We have analyzed how the application of a 3-day gaseous treatment, for one or two times at 0 °C, influences on common (VviPAL, VviCHS, VviCHI, VviF3'H, VviF3'5'H, VviF3H and VviLDOX) and branch-specific (VviFLS1, VviLAR1, VviLAR2, VviANR and VviUFGT) flavonoid gene expression in the skin of Autumn Royal table grapes. Likewise, the content of flavonols, flavan-3-ols and anthocyanins were identified with Q-TOF equipment and quantified by HPLC-quadrupole together with the total phenolic content and the antioxidant capacity by the ABTS and FRAP methods. Moreover, we have also used a solid-state voltammetry methodology to compare the effect of the application of one or two gaseous treatments in the skin of table grapes stored at 0 °C. Results revealed that the application of one or two gaseous treatments modulated the expression of flavonoid gene expression and the levels of catechin, in the case of one application, or quercetin-3-glucoside and five anthocyanins in fruit treated twice, maintaining their levels after 28 days of storage at 0 °C similar to those recorded in freshly harvested fruit. Satisfactorily, the electrochemical approach was useful to distinguish between treated and non-treated samples not only in the first stage of storage but also after 16 days.
Collapse
Affiliation(s)
- Irene Romero
- Dep. of Characterization, Quality and Safety. Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Ciudad Universitaria, E-28040, Madrid, Spain
| | - Irene Domínguez
- Dep. of Chemistry and Physics, University of Almeria, Agrifood Campus of International Excellence, CeiA3, E-04120, Almería, Spain
| | - Noemia Morales-Diaz
- Dep. of Characterization, Quality and Safety. Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Ciudad Universitaria, E-28040, Madrid, Spain
| | - M Isabel Escribano
- Dep. of Characterization, Quality and Safety. Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Ciudad Universitaria, E-28040, Madrid, Spain
| | - Carmen Merodio
- Dep. of Characterization, Quality and Safety. Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Ciudad Universitaria, E-28040, Madrid, Spain
| | - M Teresa Sanchez-Ballesta
- Dep. of Characterization, Quality and Safety. Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Ciudad Universitaria, E-28040, Madrid, Spain.
| |
Collapse
|
12
|
Sanchez-Ballesta MT, Alvarez I, Escribano MI, Merodio C, Romero I. Effect of high CO 2 levels and low temperature on stilbene biosynthesis pathway gene expression and stilbenes production in white, red and black table grape cultivars during postharvest storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:334-341. [PMID: 32259674 DOI: 10.1016/j.plaphy.2020.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Phenolic compounds, such as phytoalexin resveratrol, can be induced in grapes in response to biotic and abiotic stresses and have been related in many healthy effects. Stilbene synthases (STSs) are the key enzyme responsible for resveratrol biosynthesis. They have been already isolated and characterized from several plant species, however, VviSTS is a multigene family and little is known about their modulation in response to the application of gaseous treatments that maintain table grapes quality during postharvest. In this work, we have analyzed the effect of a 3-day CO2 treatment on the modulation of 4 STSs (VviSTS6, VviSTS7, VviSTS16 and VviSTS46) and on the accumulation of different stilbene compounds (resveratrol, resveratrol-glucoside, trans-piceatannol, z-miyabenol and pallidol) during the postharvest storage at 0 °C of white (Superior Seedless, Dominga), red (Red Globe) and black (Autumn Royal) table grapes. Results indicated that the accumulation of the stilbene compounds by the application of CO2 and low temperature storage were cultivar dependent. In white Dominga fruit, accumulation of stilbene compounds increased in CO2-treated samples what seems to be modulated by VviSTS6, VviSTS7 and VviSTS46. However, in Red Globe the accumulation of compounds was mainly due to the cold storage in air and seems to be also mediated by the induction of the same VviSTSs. By contrast, in Superior Seedless and Autumn Royal table grapes the modulation of VviSTSs genes and the stilbene accumulation was independent of the atmosphere storage. Further studies would be needed to elucidate the possible role of transcription factors involved on VviSTSs modulation.
Collapse
Affiliation(s)
- M Teresa Sanchez-Ballesta
- Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Ciudad Universitaria, E-28040, Madrid, Spain
| | - Inmaculada Alvarez
- Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Ciudad Universitaria, E-28040, Madrid, Spain
| | - M Isabel Escribano
- Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Ciudad Universitaria, E-28040, Madrid, Spain
| | - Carmen Merodio
- Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Ciudad Universitaria, E-28040, Madrid, Spain
| | - Irene Romero
- Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Ciudad Universitaria, E-28040, Madrid, Spain.
| |
Collapse
|
13
|
Wang Y, Li W, Chang H, Zhou J, Luo Y, Zhang K, Zuo J, Wang B. SRNAome and transcriptome analysis provide insight into strawberry fruit ripening. Genomics 2020; 112:2369-2378. [PMID: 31945464 DOI: 10.1016/j.ygeno.2020.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022]
Abstract
Strawberry fruit ripening is a complex process affected by multiple factors at different regulation levels. To elucidate the regulation mechanisms, the combined analysis of sRNAome and transcriptome were used. A total of 124 known and 190 novel miRNAs were found, 62 of them were significantly differentially expressed (DE). The targets of the DE miRNAs were parsed and several TFs, such as SPL, ARF, WRKY, and TCP, were found to be involved in ripening. Elevated CO2 can significantly postpone ripening and miR156, miR166f, miR171a, and miR171d were the DE miRNAs. Transcriptome analysis found 313 DE genes related to fruit ripening, including cell wall metabolism-related genes, color-related genes, ethylene-related genes, and genes encoding TFs such as MYB, SPL, NAC, TCP, and ARF. Based on above, a combined regulatory model involved in fruit ripening was created. These results provide valuable information for understanding the complicated coordinated regulatory network of strawberry fruit ripening.
Collapse
Affiliation(s)
- Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; National R&D Center For Fruit Processing, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Wensheng Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; National R&D Center For Fruit Processing, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Hong Chang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; National R&D Center For Fruit Processing, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Jiahua Zhou
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; National R&D Center For Fruit Processing, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kaichun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; National R&D Center For Fruit Processing, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Baogang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; National R&D Center For Fruit Processing, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China.
| |
Collapse
|