1
|
Geng L, Liu J, Huang J, Wang H, Li P, Xu R, Li C, Dong H, Darwish IA, Guo Y, Sun X. Preparation strategy of molecularly imprinted polymers adsorbent based on multifunctional carrier for precise identification and enrichment of fenthion. Food Chem 2025; 466:142190. [PMID: 39612837 DOI: 10.1016/j.foodchem.2024.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Due to the existence of organophosphorus pesticides (OPs) in the environment and their potential hazards to ecosystems and human health, this study aimed to develop a novel adsorbent of OPs using multifunctional carriers and surface molecular imprinting technology (SMIT). SiO2-COOH served as a carrier, and molecularly imprinted polymers (MIPs) constituted a shell, creating a core-shell structured adsorbent. SMIT facilitated rapid and efficient binding between the target molecules and the imprinted cavities. The multifunctional SiO2-COOH enhanced the adsorbent's adsorption capacity, improved its mechanical stability, and strengthened the binding with the MIPs. The adsorbent demonstrated excellent specificity and reusability, achieving an adsorption capacity of 54.4 mg/g and the imprinting factor of 2.94. The relative recovery rate in actual sample detection ranged from 95.1% to 108.7%. This study provides a simple and effective method for detecting hazardous factors in environment protection and food safety fields, with significant scientific value and practical application potential.
Collapse
Affiliation(s)
- Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingjing Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Peisen Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Rui Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Chengqiang Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
2
|
Zhang Y, Lv W, Kang Z, Guo A, Li J, Dai C, Zhang M, Gao S, Li S, Miao Z, Chen S, Feng X, Li Y, Chen P, Liu BF. Drip-Dry Strategy Assisted Blu-Ray Disc Biosensor for Fast Point of Care Testing. Anal Chem 2024. [PMID: 39269278 DOI: 10.1021/acs.analchem.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Discs and numerous other consumer products have been developed for point of care testing (POCT) to replace traditional large and expensive biochemical devices in certain scenarios. Herein, we propose a drip-dry strategy (2D strategy) assisted Blu-ray disc (BD) biosensor, termed BDB, for rapid and portable POCT within 30 min with the cost of a single test < $1. The platform utilizes the covered area formed by the deposition of the substance to be measured on the activated BD surface after the evaporation of water and realizes the quantitative detection of the target through the error readout of free disc quality diagnosis software. As a proof of concept, we first demonstrated the feasibility of direct quantitative detection of substances in solution in a single system through the detection of pure proteins avoiding colorimetric reagent used in traditional optical detection. For the complex mixed systems, we then innovatively utilize the principle that soluble targets promote/inhibit the dissolution of insoluble precipitates to achieve specific detection of targets and successfully apply BDB to the indirect quantitative detection of glutathione (GSH) with LOD of 0.447 mM in the range of 2-16 mM and organophosphorus pesticides (OPs) with LOD of 2.122 × 10-7 M in the range of 1.289 × 10-7-1.289 × 10-4 M. The BDB is widely applicable, easy to operate, and less time-consuming, which is anticipated to provide an alternative method for early, on-site detection or screening.
Collapse
Affiliation(s)
- Yunhao Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjie Lv
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zixin Kang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxin Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junming Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenxi Dai
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyu Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sihan Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Mahajan MR, Patil PO. Designed fluorescence "on-off-on" probe based on cobalt, zinc, and nitrogen co-doped graphene quantum dots: A case of quinalphos sensing. LUMINESCENCE 2024; 39:e4835. [PMID: 39049704 DOI: 10.1002/bio.4835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
In this study, we developed a new fluorescence "on-off-on" sensor utilizing water-soluble cobalt/zinc-nitrogen co-doped graphene quantum dots (Co/Zn-N-GQDs) to recognize quinalphos pesticide in vegetable and fruit samples. Primarily, the synthesis method employed a one-pot hydrothermal approach, using betel leaves as a natural precursor and cobalt ("Co"), zinc ("Zn"), and urea ("N") as dopant sources. The Co/Zn-N-GQDs probes underwent comprehensive analytical characterization. The Co/Zn-N-GQDs were synthesized with a remarkable luminescence yield of 31.49%, exhibiting excitation at 320 nm and emission peak at 393 nm. Interestingly, the luminescence of Co/Zn-N-GQDs was selectively "Turned Off" by Cu2+ via a static quenching setup. Remarkably, quenched fluorescence was surprisingly reactivated upon adding quinalphos to the quench setup, indicating a direct correlation between luminescence reactivation and quinalphos concentration. Briefly, this phenomenon is ascribed to the functional groups in quinalphos, such as quinoxalinyl and phosphorothioate, which chelate with Cu2+ ions, disrupting the nonfluorescent Cu2+-Co/Zn-N-GQDs complex. The design sensor demonstrated a limit of detection (LOD) of 0.11 μM and a broad linear span of 0.5 to 200 μM. In conclusion, Cu2+-Co/Zn-N-GQDs sensor showed immediate applicability, stability, and reproducibility, making it highly effective for quinalphos sensing in various samples.
Collapse
Affiliation(s)
- Mahendra R Mahajan
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
4
|
Peng B, Xie Y, Lai Q, Liu W, Ye X, Yin L, Zhang W, Xiong S, Wang H, Chen H. Pesticide residue detection technology for herbal medicine: current status, challenges, and prospects. ANAL SCI 2024; 40:581-597. [PMID: 38367162 DOI: 10.1007/s44211-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Qingfu Lai
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Xuelan Ye
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Li Yin
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wanxin Zhang
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Suqin Xiong
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Heng Wang
- Guangdong Haid Group Co., Ltd, Guangzhou, 510000, China.
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Vadia FY, Mehta VN, Jha S, Park TJ, Malek NI, Kailasa SK. Development of Simple Fluorescence Analytical Strategy for the Detection of Triazophos Using Greenish-Yellow Emissive Carbon Dots Derived from Curcuma longa. J Fluoresc 2023:10.1007/s10895-023-03548-x. [PMID: 38109030 DOI: 10.1007/s10895-023-03548-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This study describes a new method for synthesizing water-soluble carbon dots (CDs) using "Curcuma longa" (green source) named CL-CDs via a single-step hydrothermal process. The as-synthesized CL-CDs exhibited greenish-yellow fluorescence at 548 nm upon excitation at 440 nm. It shows good water stability and exhibits a quantum yield of 19.4%. The developed probe is utilized for sensing triazophos (TZP) pesticide via a dynamic quenching mechanism, exhibiting favorable linearity ranging from 0.5-500 μM with a limit of detection of 0.0042 μM. The as-prepared CL-CDs probe was sensitive and selective towards TZP. Lastly, the successful application of the CL-CDs-based fluorescent probe in water and rice samples highlights its potential as a reliable and efficient method for the detection of TZP in various real sample matrices. Eventually, bioimaging and biocompatibility aspects of CL-CDs have been assessed on Saccharomyces cerevisiae (yeast) cell and lung cancer (A549) cell lines, respectively.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Vaibhavkumar N Mehta
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Sanjay Jha
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
6
|
Zhao L, Zhang Z, Jiang H, Guo Y, Chen Z, Wang X, Jing X. Hydrophilic and hydrophobic deep eutectic solvent-based extraction to determine parathion in cereals by digital image colorimetry integrated with smartphones. Talanta 2023; 265:124831. [PMID: 37339538 DOI: 10.1016/j.talanta.2023.124831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
To determine parathion in cereals, hydrophilic and hydrophobic deep eutectic solvents (DESs) were used by digital image colorimetry with smartphones. In the solid-liquid extraction part, hydrophilic DESs were used as extractants to extract parathion from cereals. In the liquid-liquid microextraction part, hydrophobic DESs dissociated into terpineol and tetrabutylammonium bromide in situ. The dissociated hydrophilic tetrabutylammonium ions reacted with parathion extracted in hydrophilic DESs under alkaline conditions to produce a yellow product, which was extracted and concentrated by dispersed organic phase terpinol. Digital image colorimetry integrated with the use of a smartphone was used for quantitative analysis. The limit of detection and quantification were 0.003 mg kg-1 and 0.01 mg kg-1, respectively. The recoveries for parathion were 94.8-106.2% with a relative standard deviation less than 3.6%. The proposed method was applied to analyze parathion in cereal samples: the method has the potential to be applied to pesticide residue analysis in food products.
Collapse
Affiliation(s)
- Luyao Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhuoting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Haijuan Jiang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yan Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Sereshti H, Amirafshar A, Kadi A, Rashidi Nodeh H, Rezania S, Hoang HY, Barghi A, Vasseghian Y. Isolation of organophosphate pesticides from water using gold nanoparticles doped magnetic three-dimensional graphene oxide. CHEMOSPHERE 2023; 320:138065. [PMID: 36754307 DOI: 10.1016/j.chemosphere.2023.138065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are a large group of pristine organic contaminants, which are widely discharged into environmental water due to agricultural activities. Hence, extraction, determination, and removal of pesticides from water resources are necessary for human health. In this study, novel adsorbent was developed based on three-dimensional magnetic graphene coated with gold nanoparticles (3D-MG@AuNPs) for extraction of chlorpyrifos, dicrotophos, fenitrothion, and piperophos as four specific organophosphorus pesticides (OPPs) from wastewater and tap water samples. The proposed nanocomposite was characterized; FTIR and EDX are performed for the expected functional groups and elemental analysis, SEM showed the unique and spherical AuNPs are well dispersed over graphene sheets. In this investigation, the important parameters that have effect on the extraction efficiency, including the desorbing solvent, desorbing solvent volume, vortex time, the extraction time, adsorbent dosage, pH of sample solutions, and salt effect were evaluated. In conclusion, the measured amounts of the chosen OPPs were determined using the gas chromatography microelectron capture (μECD-GC) method. Limits of quantification (S/N ratio of 10) and detection (S/N ratio of 3) were attained at concentrations of 0.26-0.43 μg.L-1 and 0.08-0.14 μg.L-1, respectively. According to the results of the investigations, the synthesized 3D-MG@AuNPs did not require any complicated sample preparation methods; therefore, it is a very good choice for solid magnetic phase extraction studies.
Collapse
Affiliation(s)
- Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Atiyeh Amirafshar
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91779-48944, Mashhad, Iran
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Hien Y Hoang
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam.
| | - Anahita Barghi
- Institute of Agricultural Life Science, Dong-A University, Busan, 49315, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
8
|
Xu ZH, Liu J, Li B, Wang JK, Zeng X, Chen ZJ, Hongsibsong S, Huang W, Lei HT, Sun YM, Xu ZL. The Simultaneous Determination of Chlorpyrifos-Ethyl and -Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. BIOSENSORS 2022; 12:1006. [PMID: 36421124 PMCID: PMC9688337 DOI: 10.3390/bios12111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The improper and excessive use in agriculture of chlorpyrifos-methyl (CPSM) and chlorpyrifos-ethyl (CPSE) may affect the health of human beings. Herein, a fluorescence-based immunochromatographic assay (FICA) was developed for the simultaneous determination of CPSM and CPSE. A monoclonal antibody (mAb) with equal recognition of CPSM and CPSE was generated by the careful designing of haptens and screening of hybridoma cells. Instead of labeling fluorescence with mAb, the probe was labeled with goat-anti-mouse IgG (GAM-IgG) and pre-incubated with mAb in the sample. The complex could compete with CPS by coating antigen in the test line. The new format of FICA used goat-anti-rabbit IgG (GAR-IgG) conjugated with rabbit IgG labeled with fluorescence microspheres as an independent quality control line (C line). The novel strategy significantly reduced nonspecific reactions and increased assay sensitivity. Under the optimal conditions, the proposed FICA showed a linear range of 0.015-64 mg/L and limit of detection (LOD) of 0.015 mg/L for both CPSE and CPSM. The average recoveries of CPS from spiked food samples by FICA were 82.0-110.0%. The accuracy was similar to the gas chromatography-tandem mass spectrometry (GC-MS/MS) results. The developed FICA was an ideal on-site tool for rapid screening of CPS residues in foods.
Collapse
Affiliation(s)
- Zi-Hong Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jia Liu
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Dayuanlvzhou Food Safety Technology Co., Ltd., Guangzhou 510530, China
| | - Jun-Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Xi Zeng
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Microextraction of organophosphorus pesticides on a screw coated with PAN/calcined ZnMgAl-LDH electrospun nanofibers. Mikrochim Acta 2022; 189:428. [PMID: 36264436 DOI: 10.1007/s00604-022-05501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 10/24/2022]
Abstract
The present research is an attempt to expand the recently reported microextraction on screw method. For this purpose, polyacrylonitrile/calcined ZnMgAl-LDH nanofiber was fabricated by the electrospinning technique on the surface of a screw. It was applied to the extraction of organophosphorus pesticides (OPP) from agricultural samples. The separation and determination of OPPs were carried out by gas chromatography-mass spectrometry. The characterization of the fabricated nanofiber was performed utilizing Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction instruments. Effective parameters on the extraction efficiency of the analytes including sample pH, ionic strength, sample flow rate and number of cycles, type, volume, and flow rate of desorption solvent were optimized by one-variable-at-a-time method. Under optimized conditions, the limits of detection were 0.03 and 0.07 μg L-1 for diazinon and chlorpyrifos, respectively. This method showed wide linearity in the range 0.10-1000 μg L-1 for diazinon and 0.25-1000 μg L-1 for chlorpyrifos with R2 > 0.996. The intra- and inter-day precisions (RSD%, n = 3) were ≤ 6.4% and ≤ 7.7%, respectively. Also, RSD% values less than 11.1% were obtained for screw-to-screw reproducibility. The applicability of the method for the extraction and determination of the analytes in complex agricultural environments such as cabbage, potato, tomato, cucumber, and beetroot was investigated. The results led to acceptable relative recoveries in the range 81.0-108.2%.
Collapse
|
10
|
Pan Y, Liu X, Liu J, Wang J, Liu J, Gao Y, Ma N. Determination of organophosphorus in dairy products by graphitic carbon nitride combined molecularly imprinted microspheres with ultra performance liquid chromatography. Food Chem X 2022; 15:100424. [PMID: 36211753 PMCID: PMC9532781 DOI: 10.1016/j.fochx.2022.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
An OPP-based molecularly imprinted microsphere was synthesized. Composite material was synthesized by polymerizing the MIM on the surface of g-C3N4. A novel SPE cartridge was prepared by using the composite material MIM/g-C3N4. An SPE-UPLC method was developed for the detection of OPPs in dairy products.
Organophosphorus (OPPs) residues in dairy products are a potential threat to human health. To extract trace amounts of OPPs in dairy products, a graphitic carbon nitride (g-C3N4) was synthesized and combined with OPPs-based molecularly imprinted microspheres (MIM) to create a composite material (MIM/g-C3N4). Then, the MIM/g-C3N4 was used to prepare a solid phase extraction (SPE) cartridge to detect the OPPs in dairy products with UPLC method. The specific surface area of MIM/g-C3N4 was 172.208 m2/g, good thermal stability under 300℃, and could reuse up to 15 times. The four OPPs had good linear relationship within the range of 1–10000 ng/mL (r2 > 0.999). The limits of detection were 0.7–2.6 ng/mL, and recoveries from blank dairy samples were 86.4 to 95.3 %. In this study, MIM combined with g-C3N4 was firstly utilized for the detection of OPPs in dairy products, which indicated it might be an ideal adsorbent for dairy products pretreatment.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Xu Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Jing Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Jianping Wang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Juxiang Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Yanxia Gao
- College of Animal Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071001, PR China
- Corresponding author.
| |
Collapse
|
11
|
Li Z, Lin H, Wang L, Cao L, Sui J, Wang K. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156515. [PMID: 35667437 DOI: 10.1016/j.scitotenv.2022.156515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the irrational use of agrochemicals has caused great harm to the environment and public health. Along with the rapid development of optical technology and nanotechnology, the research of optical sensing methods in agrochemical detection has been developed rapidly owing to its advantages of simplicity, fast response, and cost-effectiveness. In this review, the strategies of employing optical systems based on colorimetric sensor, fluorescence, chemiluminescence, terahertz spectroscopy, surface plasmon resonance, and surface-enhanced Raman spectroscopy for sensing agrochemicals were summarized. In addition, the challenges in the practical application of optical sensing technologies for agrochemical detection were discussed in-depth, and potential future trends and prospects of these techniques were addressed. A variety of nanomaterials have been developed for enhancing the sensitivity of optical sensing systems. The optical properties of nanomaterials are governed by their size, shape, and chemical structure. Although each optical sensing system holds its advantages, there are still many challenges that need to be overcome in practical applications. With the continuous developments in novel functional nanomaterials, sample preparation methods, and spectral processing algorithms, optical sensors are expected to have powerful potential for rapid testing of agrochemicals in the environment and foods.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| |
Collapse
|
12
|
Shan PH, Hu JH, Liu M, Tao Z, Xiao X, Redshaw C. Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Sha O, Yao J, Zhu Y, Liu H, Zhou Q, Chen L. Facile Preparation of Magnetic Graphene Oxide and its Application in Magnetic Dispersive Solid-Phase Extraction of Insecticides from Vegetable Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822060120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ionic liquid-based cloud point extraction five organophosphorus pesticides in coarse cereals. Food Chem 2022; 379:132161. [DOI: 10.1016/j.foodchem.2022.132161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
15
|
Pan Y, Liu X, Liu J, Wang J, Liu J, Gao Y, Ma N. Chemiluminescence sensors based on molecularly imprinted polymers for the determination of organophosphorus in milk. J Dairy Sci 2022; 105:3019-3031. [PMID: 35086700 DOI: 10.3168/jds.2021-21213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
As a food adapted to all kinds of people, milk has a high nutritional value. Because milk is a complex biological matrix, detecting illegal compounds is often difficult. As a common pesticide, organophosphorus (OP) residues caused by nonstandard use may be ignored, which is a threat to milk quality. In this study, using coumaphos as template molecule, the synthesized molecularly imprinted polymer (MIP) can specifically recognize 7 kinds of OP. Then, the MIP was used as an identification element to prepare a chemiluminescence sensor on a 96-well microplate for the determination of OP residues in milk samples. Due to the 4-(imidazol-1-yl)phenol-enhanced luminol-H2O2 system, the sensitivity of the system is very high; the detection limits of 7 OP including coumaphos, fenthion, chlorpyrifos, parathion, diazinon, fenchlorphos, and fenitrothion were 1 to 3 pg/mL, and the half maximal inhibitory concentrations were 1 to 20 ng/mL. The intraday recoveries of 7 OP were in the range of 86.1 to 86.5%, and the interday recoveries were in the range of 83.6 to 94.2%. Furthermore, the sensor can be reused up to 5 times. Therefore, the MIP-based chemiluminescence sensor can be used as a routine tool to detect OP residues in milk samples.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Xu Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Jianping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Yanxia Gao
- College of Animal Science, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, Hebei 071001, P.R. China; Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, Hebei 050221, P.R. China.
| | - Ning Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China.
| |
Collapse
|
16
|
Bhattu M, Kathuria D, Billing BK, Verma M. Chromatographic techniques for the analysis of organophosphate pesticides with their extraction approach: a review (2015-2020). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:322-358. [PMID: 34994766 DOI: 10.1039/d1ay01404h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In agriculture, a wide range of OPPs has been employed to boost crop yield, quality, and storage life. However, due to the ever-increasing population and rapid urbanization, pesticide use has surged in recent years. These compounds are exceedingly poisonous to humans, and despite the fact that specific legislation prohibits their use, the frequency of toxic and/or fatal incidents, as well as current statistics, suggest that they are currently accessible. As a result, determining the exposure to these substances as well as their detection (and that of their metabolites) in different types of exposed samples has become a hot issue in terms of quality and safety concerns. However, developing tools for the evaluation of these substances is a critical challenge for laboratories. Various chromatographic-based methods reported in the period of 2015-2020 have been developed, which are summarized and critically reviewed in this article, including the extraction of the target OPPs from different kinds of matrices. A comparison among the extraction and analysis techniques has been made in the current review article.
Collapse
Affiliation(s)
- Monika Bhattu
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Beant Kaur Billing
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| |
Collapse
|
17
|
Fei D, Wang M, Hou Y, Xie M, Zhou Y, Zhao Y, Wu L, Xu J. Determination of Organophosphorus Pesticides in Porcine Hair by a QuEChERS Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry Protocol. ANAL LETT 2022. [DOI: 10.1080/00032719.2021.2019759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Dan Fei
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yujie Hou
- Nanchang Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Min Xie
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Yaomin Zhou
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Youhua Zhao
- Lifeng Animal Husbandry, Shanggao, Jiangxi, China
| | - Lei Wu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jun Xu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Lihui X, Jinming G, Yalin G, Hemeng W, Hao W, Ying C. Albicanol inhibits the toxicity of profenofos to grass carp hepatocytes cells through the ROS/PTEN/PI3K/AKT axis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:325-336. [PMID: 34856373 DOI: 10.1016/j.fsi.2021.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Profenofos (PFF) as an environmental pollutant seriously harms the health of aquatic animals, and even endangers human safety through the food chain. Albicanol, a sesquiterpenoid extraction from the Dryopteris fragrans, has previously been shown to effectively exhibit anti-aging, anti-oxidant, and antagonize the toxicity of heavy metals. However, the mechanism of hepatocyte toxicity caused by PFF and the role that Albicanol plays in this process are still unclear. In this study, a PFF poisoning model was established by treating grass carp hepatocytes cells with PFF (150 μM) for 24 h The results of AO/EB staining, Tunel staining and flow cytometry showed that the proportion of apoptotic liver cells increased significantly after exposure. The results of ROS staining show that compared with the control group, ROS levels and PTEN/PI3K/AKT-related gene expression were up-regulated after PFF exposure. RT-qPCR and Western blotting results showed that the expression of PTEN/PI3K/AKT related genes was up-regulated. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT. We further found that the expressions of Bax, CytC, Caspase-3, Caspase-9, Caspase-8 and TNFR1 after PFF exposure were significantly higher than those of the control group, and Bcl-2/Bax was significantly lower than that of the control group. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT and activate mitochondrial apoptosis. Using Albicanol (5 × 10-5 μg mL-1) can significantly reduce the above-mentioned effects of PFF exposure on grass carp hepatocytes cells. In summary, Albicanol inhibits PFF-induced apoptosis by regulating the ROS/PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guan Yalin
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wang Hemeng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wu Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
19
|
Ghosh S, Gul AR, Park CY, Kim MW, Xu P, Baek SH, Bhamore JR, Kailasa SK, Park TJ. Facile synthesis of carbon dots from Tagetes erecta as a precursor for determination of chlorpyrifos via fluorescence turn-off and quinalphos via fluorescence turn-on mechanisms. CHEMOSPHERE 2021; 279:130515. [PMID: 33862360 DOI: 10.1016/j.chemosphere.2021.130515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Convenient one-pot synthetic route for the fabrication of carbon dots (CDs) from Tagetes erecta flower (TEF), named as "TEF-CDs', through solvo(hydro)-thermal carbonization of the TEF was developed. The TEF-CDs revealed high selectivity towards chlorpyrifos and quinalphos, acting as a fluorescent probe. The CDs synthesized from T. erecta flower showed a strong blue color at 495 nm when excited at 420 nm, along with the exhibition of a strong quantum yield of 63.7%. The synthesized CDs revealed their richness in the surface-active organic group that synthesized CDs from T. erecta flower are mainly comprised of C, O, and N, which were crystalline in structure that was revealed by TEM image and XRD spectra. Furthermore, when the probe was exposed to different pH conditions, no major noticeable changes were recorded. Moreover, when the probe was exposed to chlorpyrifos and quinalphos, we have noticed that fluorescence spectra was turned off when the probe was exposed to chlorpyrifos and "turned on" after the exposure quinalphos. Moreover, fluorescence spectral changes showed a good linearity with chlorpyrifos and quinalphos concentrations in the range of 0.05-100.0 μM for chlorpyrifos and 0.01-50.0 μM for quinalphos. The limit of detection are 2.1 ng mL-1 and 1.7 ng mL-1 for chlorpyrifos and quinalphos, respectively. Finally, the TEF-CDs-based fluorescent nanoprobe was successfully applied to estimate chlorpyrifos and quinalphos with an effective accuracy in rice and fruit samples with rapid detection time.
Collapse
Affiliation(s)
- Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chan Yeong Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min Woo Kim
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ping Xu
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seung Hoon Baek
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jigna R Bhamore
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, India.
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
20
|
ZrO 2 Nanoparticles and Poly(diallyldimethylammonium chloride)-Doped Graphene Oxide Aerogel-Coated Stainless-Steel Mesh for the Effective Adsorption of Organophosphorus Pesticides. Foods 2021; 10:foods10071616. [PMID: 34359486 PMCID: PMC8304140 DOI: 10.3390/foods10071616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
A novel sorbent based on the ZrO2 nanoparticles and poly(diallyldimethylammonium chloride)-modified graphene oxide aerogel-grafted stainless steel mesh (ZrO2/PDDA-GOA-SSM) was used for the extraction and detection of organophosphorus pesticides (OPPs). Firstly, the PDDA and GO composite was grafted onto the surface of SSM and then freeze-dried to obtain the aerogel, which efficiently reduced the accumulation of graphene nanosheets. It integrated the advanced properties of GOA with a thin coating and the three-dimensional structural geometry of SSM. The modification of ZrO2 nanoparticles brought a selective adsorption for OPPs due to the combination of the phosphate group as a Lewis base and ZrO2 nanoparticles with the Lewis acid site. The ZrO2/PDDA-GOA-SSM was packed into the solid-phase extraction (SPE) cartridge to extract OPPs. According to the investigation of different factors, the extraction recovery was mainly affected by the hydrophilic-hydrophobic properties of analytes. Effective extraction and elution parameters such as sample volume, sample pH, rate of sample loading, eluent, and eluent volume, were also investigated and discussed. Under the optimal conditions, the linearity of phoxim and fenitrothion was in the range of 1.0-200 μg L-1, and the linearity of temephos was in the range of 2.5-200 μg L-1. The limits of detection were ranged from 0.2 to 1.0 μg L-1. This established method was successfully applied to detect OPPs in two vegetables. There was no OPP detected in real samples, and results showed that the matrix effects were in the range of 46.5%-90.1%. This indicates that the ZrO2/PDDA-GOA-SSM-SPE-HPLC method could effectively extract and detect OPPs in vegetables.
Collapse
|
21
|
Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques. Processes (Basel) 2021. [DOI: 10.3390/pr9071100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study summarizes the new strategies including advanced equipment and validation parameters of liquid and gas chromatography methods i.e., thin-layer chromatography (TLC), column liquid chromatography (CLC), and gas chromatography (GC) suitable for the identification and quantitative determination of different natural and synthetic bioactive compounds present in food and food products, which play an important role in human health, within the period of 2019–2021 (January). Full characteristic of some of these procedures with their validation parameters is discussed in this work. The present review confirms the vital role of HPLC methodology in combination with different detection modes i.e., HPLC-UV, HPLC-DAD, HPLC-MS, and HPLC-MS/MS for the determination of natural and synthetic bioactive molecules for different purposes i.e., to characterize the chemical composition of food as well as in the multi-residue analysis of pesticides, NSAIDs, antibiotics, steroids, and others in food and food products.
Collapse
|
22
|
Dispersive micro solid-phase extraction with gas chromatography for determination of Diazinon and Ethion residues in biological, vegetables and cereal grain samples, employing D-optimal mixture design. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105680] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Choline proline ionic liquid-modified magnetic graphene oxide combined with HPLC for analysis of fenthion. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Ge W, Suryoprabowo S, Kuang H, Liu L, Song S. Rapid detection of triazophos in cucumber using lateral flow immunochromatographic assay. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1816919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wenliang Ge
- Wuxi No.2 people’s hospital, Wuxi, People’s Republic of China
| | - Steven Suryoprabowo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
25
|
Ionic Liquid–Based Dispersive Liquid–Liquid Micro-extraction of Five Organophosphorus Pesticides in Coarse Cereals. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01851-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Jang I, Carrão DB, Menger RF, Moraes de Oliveira AR, Henry CS. Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sens 2020; 5:2230-2238. [PMID: 32583663 DOI: 10.1021/acssensors.0c00937] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capillary forces are commonly employed to transport fluids in pump-free microfluidic platforms such as paper-based microfluidics. However, since paper is a porous material consisting of nonuniform cellulose fibers, it has some limitations in performing stable flow functions like mixing. Here, we developed a pump-free microfluidic device that enables rapid mixing by combining paper and plastic. The device was fabricated by laminating transparency film and double-sided adhesive and is composed of an overlapping inlet ending in a paper-based reaction area. The mixing performance of the developed device was confirmed experimentally using aqueous dyes and pH indicators. In addition, the absolute mixing index was evaluated by numerically calculating the concentration field across the microfluidic channels. To demonstrate the utility of the new approach, the detection of an organophosphate pesticide was carried out using a colorimetric enzymatic inhibition assay. The developed device and a smartphone application were used to detect organophosphate pesticide on food samples, demonstrating the potential for onsite analysis.
Collapse
Affiliation(s)
- Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| | - Daniel B. Carrão
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14090-901, SP, Brazil
| | - Ruth F. Menger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Anderson R. Moraes de Oliveira
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14090-901, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT—DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
27
|
Nehru R, Chen SM. A La 3+-doped TiO 2 nanoparticle decorated functionalized-MWCNT catalyst: novel electrochemical non-enzymatic sensing of paraoxon-ethyl. NANOSCALE ADVANCES 2020; 2:3033-3049. [PMID: 36132402 PMCID: PMC9419074 DOI: 10.1039/d0na00260g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2020] [Indexed: 06/13/2023]
Abstract
The development of novel chemical sensors for pesticide detection has found particular application in the area of environmental monitoring. However, designing primary sensors as weapons to destroy contaminants (e.g., paraoxon-ethyl) in water and soil remains a challenge. Herein, we show different strategies, such as modification of TiO2 NPs through La3+ doping and decoration of f-MWCNTs, which can provide possibilities for notable developments in electrocatalytic performance. Using this approach, we introduce an active La3+ doped TiO2 NP decorated f-MWCNT electrocatalyst for pollutant monitoring applications. Thereby, our findings move towards an outstanding LOD (0.0019 μM) performance, high selectivity, and exceptional sensitivity (7.6690 μA μM-1 cm-2) on an as-presented catalytic platform for a PE sensor. Interestingly, the practical applicability of the suggested catalyst shows a rich sensing platform for PE-contaminated environmental samples.
Collapse
Affiliation(s)
- Raja Nehru
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology Taipei 10608 Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology Taipei 10608 Taiwan
| |
Collapse
|
28
|
Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples. Anal Bioanal Chem 2020; 412:1835-1846. [DOI: 10.1007/s00216-020-02431-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
|