1
|
Marni R, Malla M, Chakraborty A, Voonna MK, Bhattacharyya PS, Kgk D, Malla RR. Combination of ionizing radiation and 2-thio-6-azauridine induces cell death in radioresistant triple negative breast cancer cells by downregulating CD151 expression. Cancer Chemother Pharmacol 2024; 94:685-706. [PMID: 39167147 DOI: 10.1007/s00280-024-04709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer and is frequently resistant to therapy, ultimately resulting in treatment failure. Clinical trials have demonstrated the potential of sensitizing radiation therapy (RT)-resistant TNBC through the combination of chemotherapy and RT. This study sought to explore the potential of CD151 as a therapy response marker in the co-treatment strategy involving ionizing radiation (IR) and the repurposed antiviral drug 2-Thio-6-azauridine (TAU) for sensitizing RT-resistant TNBC (TNBC/RR). METHODS The investigation encompassed a variety of assessments, including viability using MTT and LDH assays, cell proliferation through BrdU incorporation and clonogenic assays, cell cycle analysis via flow cytometry, cell migration using wound scratch and Boyden chamber invasion assays, DNA damage assessment through γH2AX analysis, apoptosis evaluation through acridine-orange and ethidium bromide double staining assays, as well as caspase 3 activity measurement using a colorimetric assay. CD151 expression was examined through ELISA, flow cytometry and RT-qPCR. RESULTS The results showed a significant reduction in TNBC/RR cell viability following co-treatment. Moreover, the co-treatment reduced cell migration, induced apoptosis, downregulated CD151 expression, and increased caspase 3 activity in TNBC/RR cells. Additionally, CD151 was predicted to serve as a therapy response marker for co-treatment with TAU and IR. CONCLUSION These findings suggest the potential of combination treatment with IR and TAU as a promising strategy to overcome RT resistance in TNBC. Furthermore, CD151 emerges as a valuable therapy response marker for chemoradiotherapy.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India
| | - Manas Malla
- Department of Computer Science and Engineering, GITAM (Deemed to Be University), GITAM School of Technology, Visakhapatnam, 530045, A.P, India
| | | | - Murali Krishna Voonna
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | | | - Deepak Kgk
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
2
|
Wong AH, Nga ME, Chin CY, Tai YK, Wong HC, Soo R, An O, Yang H, Seet JE, Lim YC, Tam JKC, Tran T. Impact of CD151 overexpression on prognosis and therapy in non-small cell lung cancer patients lacking EGFR mutations. Cell Prolif 2024; 57:e13708. [PMID: 38982031 PMCID: PMC11503249 DOI: 10.1111/cpr.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
This study investigates CD151, a protein linked to cancer progression, in non-small cell lung cancer (NSCLC) patients without epidermal growth factor receptor (EGFR) mutations. These patients often have limited treatment options. The study used retrospective analysis to examine 157 adenocarcinoma biopsy specimens and 199 patient cases from The Cancer Genome Atlas, correlating CD151 expression with patient survival. Cellular studies revealed that CD151 interacts with EGFR, influencing epidermal growth factor (EGF)-induced cell proliferation and the effectiveness of the EGFR inhibitor, erlotinib. A strong association was found between CD151 expression and EGFR mutation status. High CD151 expression in the absence of EGFR mutations is correlated with poorer survival outcomes. Biological assays showed that CD151 colocalizes and associates with EGFR, playing a crucial role in regulating EGF-induced cell proliferation via the AKT and ERK1/2 pathways. Importantly, CD151 expression was found to influence the anti-proliferative effects of the EGFR tyrosine kinase inhibitor, erlotinib. High CD151 expression, in the absence of EGFR mutations, was associated with poorer survival outcomes. It could serve as a potential prognostic marker and influence cellular responses to EGFR-targeted treatments. This study highlights CD151 as a potential novel target for therapeutic intervention in NSCLC, especially in populations lacking EGFR mutations.
Collapse
Affiliation(s)
- Amanda Huee‐Ping Wong
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Min En Nga
- Department of PathologyNational University HospitalSingaporeSingapore
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chin Yein Chin
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Yee Kit Tai
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Hung Chew Wong
- Department of Biostatistics, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Ross Soo
- Department of Haematology‐OncologyNational University HospitalSingaporeSingapore
| | - Omer An
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Henry Yang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Ju Ee Seet
- Department of PathologyNational University HospitalSingaporeSingapore
| | - Yaw Chyn Lim
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - John Kit Chung Tam
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, SingaporeNational University Health SystemSingaporeSingapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
3
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
4
|
McAleenan A, Kelly C, Spiga F, Kernohan A, Cheng HY, Dawson S, Schmidt L, Robinson T, Brandner S, Faulkner CL, Wragg C, Jefferies S, Howell A, Vale L, Higgins JPT, Kurian KM. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst Rev 2021; 3:CD013316. [PMID: 33710615 PMCID: PMC8078495 DOI: 10.1002/14651858.cd013316.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O6-methylguanine-DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan-Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS Two review authors independently undertook all steps of the identification and data extraction process for multiple-method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'-cytosine-phosphate-guanine-3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta-analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good-quality studies making such comparisons.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hung-Yuan Cheng
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Amy Howell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kathreena M Kurian
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Samson GPB, Legler DF. Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Front Cell Dev Biol 2020; 8:285. [PMID: 32411706 PMCID: PMC7198906 DOI: 10.3389/fcell.2020.00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023] Open
Abstract
Leukocyte migration across vessels into and within peripheral and lymphoid tissues is essential for host defense against invading pathogens. Leukocytes are specialized in sensing a variety of guidance cues and to integrate environmental stimuli to navigate in a timely and spatially controlled manner. These extracellular signals must be transmitted across the leukocyte’s plasma membrane in a way that intracellular signaling cascades enable directional cell movement. Therefore, the composition of the membrane in concert with proteins that influence the compartmentalization of the plasma membrane or contribute to delineate intracellular signaling molecules are key in controlling leukocyte navigation. This becomes evident by the fact that mislocalization of membrane proteins is known to deleteriously affect cellular functions that may cause diseases. In this review we summarize recent advances made in the understanding of how membrane cholesterol levels modulate chemokine receptor signaling and hence leukocyte trafficking. Moreover, we provide an overview on the role of membrane scaffold proteins, particularly tetraspanins, flotillins/reggies, and caveolins in controlling leukocyte migration both in vitro and in vivo.
Collapse
Affiliation(s)
- Guerric P B Samson
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Dong H, Wang Q, Li N, Lv J, Ge L, Yang M, Zhang G, An Y, Wang F, Xie L, Li Y, Zhu W, Zhang H, Zhang M, Guo X. OSgbm: An Online Consensus Survival Analysis Web Server for Glioblastoma. Front Genet 2020; 10:1378. [PMID: 32153627 PMCID: PMC7046682 DOI: 10.3389/fgene.2019.01378] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the prognostic value of candidate genes. Currently, OSgbm contains 684 samples with transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with Hazard ratio (HR) and log-rank p value. As demonstration, the prognostic value of 51 previously reported survival associated biomarkers, such as PROM1 (HR = 2.4120, p = 0.0071) and CXCR4 (HR = 1.5578, p < 0.001), were confirmed in OSgbm. In summary, OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.
Collapse
Affiliation(s)
- Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ning Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jiajia Lv
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Linna Ge
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mengsi Yang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Fengling Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Wong AH, Tran T. CD151 in Respiratory Diseases. Front Cell Dev Biol 2020; 8:64. [PMID: 32117989 PMCID: PMC7020194 DOI: 10.3389/fcell.2020.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
The tetraspanin, Cluster of Differentiation 151 (CD151), is ubiquitously expressed in adult tissue, especially in the lungs where it has been implicated in lung cancer, asthma, influenza, and idiopathic pulmonary fibrosis (IPF). CD151 interacts with laminin-binding integrins and growth factor receptors, and is reported in cancer-promoting processes such as tumor initiation, metastasis, and angiogenesis. In asthma, CD151 was shown to promote airways hyperresponsiveness through calcium signaling whereas in influenza, CD151 was shown to be a novel host factor for nuclear viral export signaling. Furthermore, CD151 was shown to be associated with increased disease severity and poorer survival outcome in asthma and lung cancer, respectively. In this review, we provide an update on the current understanding of CD151 with regards to its contribution to lung pathophysiology. We also summarize factors that have been shown to regulate CD151 expression and identify key areas that need to be taken into consideration for its utility as a screening or prognostic tool in disease management and/or as a therapeutic target for the treatment of lung diseases.
Collapse
Affiliation(s)
- Amanda H Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Zhao YH, Wang ZF, Cao CJ, Weng H, Xu CS, Li K, Li JL, Lan J, Zeng XT, Li ZQ. The Clinical Significance of O 6-Methylguanine-DNA Methyltransferase Promoter Methylation Status in Adult Patients With Glioblastoma: A Meta-analysis. Front Neurol 2018; 9:127. [PMID: 29619003 PMCID: PMC5873285 DOI: 10.3389/fneur.2018.00127] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background and objective Promoter status of O6-methylguanine-DNA methyltransferase (MGMT) has been widely established as a clinically relevant factor in glioblastoma (GBM) patients. However, in addition to varied therapy schedule, the prognosis of GBM patients is also affected by variations of age, race, primary or recurrent tumor. This study comprehensively investigated the association between MGMT promoter status and prognosis in overall GBM patients and in different GBM subtype including new diagnosed patients, recurrent patients and elderly patients. Methods A comprehensive search was performed using PubMed, EMBASE, Cochrane databases to identify literatures (published from January 1, 2005 to April 1, 2017) that evaluated the associations between MGMT promoter methylation and prognosis of GBM patients. Results Totally, 66 studies including 7,886 patients met the inclusion criteria. Overall GBM patients with a methylated status of MGMT receiving temozolomide (TMZ)-containing treatment had better overall survival (OS) and progression-free survival (PFS) [OS: hazard ratio (HR) = 0.46, 95% confidence interval (CI): 0.41–0.52, p < 0.001, Bon = 0.017; PFS: HR = 0.48, 95% CI 0.40–0.57, p < 0.001, Bon = 0.014], but no significant advantage on OS or PFS in GBM patients with TMZ-free treatment was observed (OS: HR = 0.97, 95% CI 0.91–1.03, p = 0.08, Bon = 1; PFS: HR = 0.76, 95% CI 0.57–1.02, p = 0.068, Bon = 0.748). These different impacts of MGMT status on OS were similar in newly diagnosed GBM patients, elderly GBM patients and recurrent GBM. Among patients receiving TMZ-free treatment, survival benefit in Asian patients was not observed anymore after Bonferroni correction (Asian OS: HR = 0.78, 95% CI 0.64–0.95, p = 0.02, Bon = 0.24, I2 = 0%; PFS: HR = 0.69, 95% CI 0.50–0.94, p = 0.02, Bon = 0.24). No benefit was observed in Caucasian receiving TMZ-free therapy regardless of Bonferroni adjustment. Conclusion The meta-analysis highlights the universal predictive value of MGMT methylation in newly diagnosed GBM patients, elderly GBM patients and recurrent GBM patients. For elderly methylated GBM patients, TMZ alone therapy might be a more suitable option than radiotherapy alone therapy. Future clinical trials should be designed in order to optimize therapeutics in different GBM subpopulation.
Collapse
Affiliation(s)
- Yu-Hang Zhao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chang-Jun Cao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Cheng-Shi Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Kai Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jie-Li Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jing Lan
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Zeng P, Wang YH, Si M, Gu JH, Li P, Lu PH, Chen MB. Tetraspanin CD151 as an emerging potential poor prognostic factor across solid tumors: a systematic review and meta-analysis. Oncotarget 2018; 8:5592-5602. [PMID: 27888619 PMCID: PMC5354932 DOI: 10.18632/oncotarget.13532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023] Open
Abstract
Tetraspanin CD151, also known as PETA-3 or SFA-1, has been reported to predict prognosis in various solid tumors. Yet, the results of these studies remained inconclusive. Here, we performed this meta-analysis of relevant studies published on the topic to quantitatively evaluate the clinicopathological significance of CD151 in solid tumors. The relevant articles were identified via searching the PubMed, Web of Science and Embase database. The pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CI) of overall survival (OS) and disease-free survival (DFS) were calculated to evaluate the prognostic value of CD151 expression in patients with solid tumors. A total of 19 studies involving 4, 270 participants were included in the study, we drew the conclusion that CD151 overexpression was associated with statistically significant poor OS (pooled HR = 1.498, 95% CI = 1.346-1.667, P<0.001) and poor DFS (pooled HR = 1.488, 95% CI = 1.314-1.685, P<0.001). Furthermore, the subgroup analysis revealed that the associations between CD151 overexpression and the outcome endpoints (OS or TTP) were significant within the Asian region and European, as well in patients with breast cancer or gastric cancer. Taken together, the incorporative HR showed CD151 overexpression was associated with poor survival in human solid tumors. CD151 could be a valuable prognosis biomarker or a potential therapeutic target of solid tumors.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yin-Hua Wang
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China.,Department of Oncology, Changshu Second People's Hospital Affiliated to Yangzhou University, Changshu 215500, Jiangsu Province, China
| | - Meng Si
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Li
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| |
Collapse
|
11
|
Tilghman J, Schiapparelli P, Lal B, Ying M, Quinones-Hinojosa A, Xia S, Laterra J. Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia 2016; 18:185-98. [PMID: 26992919 PMCID: PMC4796809 DOI: 10.1016/j.neo.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) represent tumor-propagating cells with stem-like characteristics (stemness) that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing therapeutic strategies for targeting GSC-dependent oncogenic mechanisms. Using GBM-derived neurospheres, we identified the cell surface tetraspanin family member CD151 as a novel regulator of glioma cell stemness, GSC self-renewal capacity, migration, and tumor growth. CD151 was found to be overexpressed in GBM tumors and GBM neurospheres enriched in GSCs. Silencing CD151 inhibited neurosphere forming capacity, neurosphere cell proliferation, and migration and attenuated the expression of markers and transcriptional drivers of the GSC phenotype. Conversely, forced CD151 expression promoted neurosphere self-renewal, cell migration, and expression of stemness-associated transcription factors. CD151 was found to complex with integrins α3, α6, and β1 in neurosphere cells, and blocking CD151 interactions with integrins α3 and α6 inhibited AKT phosphorylation, a downstream effector of integrin signaling, and impaired sphere formation and neurosphere cell migration. Additionally, targeting CD151 in vivo inhibited the growth of GBM neurosphere-derived xenografts. These findings identify CD151 and its interactions with integrins α3 and α6 as potential therapeutic targets for inhibiting stemness-driving mechanisms and stem cell populations in GBM.
Collapse
Affiliation(s)
- Jessica Tilghman
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bachuchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Zhou P, Erfani S, Liu Z, Jia C, Chen Y, Xu B, Deng X, Alfáro JE, Chen L, Napier D, Lu M, Huang JA, Liu C, Thibault O, Segal R, Zhou BP, Kyprianou N, Horbinski C, Yang XH. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget 2016; 6:29675-93. [PMID: 26377974 PMCID: PMC4745755 DOI: 10.18632/oncotarget.4896] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Zeyi Liu
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA.,Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Changhe Jia
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA.,Department of Gastroenterology, Provincial People's Hospital, Zhengzhou, Henan Province, P. R. China
| | - Yecang Chen
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Xinyu Deng
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Jose E Alfáro
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Li Chen
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pathology and Laboratory Medicine, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Michael Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Rosalind Segal
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Natasha Kyprianou
- Department of Urology, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Craig Horbinski
- Department of Pathology and Laboratory Medicine, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Li P, Zeng H, Qin J, Zou Y, Peng D, Zuo H, Liu Z. Effects of tetraspanin CD151 inhibition on A549 human lung adenocarcinoma cells. Mol Med Rep 2014; 11:1258-65. [PMID: 25351816 DOI: 10.3892/mmr.2014.2774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Tetraspanin protein CD151 is overexpressed in a wide variety of cancer types, including lung cancer, and is closely associated with metastasis and poor prognosis of carcinoma. To investigate whether knockdown of CD151 expression can inhibit the malignant biological behavior of lung adenocarcinoma (LAC), RNA interference technology (RNAi) was used to silence CD151 expression in the A549 LAC cell line. Specific small interfering RNA (siRNA) for targeting human endogenous CD151 were delivered into A549 cells in order to examine the effects on cell proliferation, survival, migration, invasion and colony formation. The expression levels of CD151 were assayed by western blotting, proliferation was evaluated by MTT method and apoptosis was determined by flow cytometry. The invasive and metastatic ability of A549 cells was investigated by wound healing and Boyden chamber assays. Colony formation analysis was used to determine the A549 cell growth properties. Finally, the expression of phosphorylated FAK, PI3K‑AKT, MEK‑Erk1/2, MMPs, and VEGF was detected by western blotting. The results demonstrated that CD151‑siRNA significantly decreased the expression level of CD151 in A549 cells. Reduced CD151 expression in A549 cells lead to the inhibition of cellular proliferation, migration, invasion and colony formation and an enhancement of apoptosis. Furthermore, the expression of tumor development‑related proteins, including FAK, PI3K‑AKT, MEK‑ERK1/2MAPK as well as the expression of MMP9 and VEGF, were restrained. Taken together, the present study has shown that CD151 expression is essential for LAC progression. Thus, knockdown CD151 expression by targeted siRNA could inhibit the related downstream intercellular signaling pathways, and this may provide a novel gene therapy for patients with LAC.
Collapse
Affiliation(s)
- Pengcheng Li
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hesong Zeng
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jin Qin
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanlin Zou
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dan Peng
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Houjuan Zuo
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengxiang Liu
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
14
|
Identification of sexually dimorphic genes in the neonatal mouse cortex and hippocampus. Brain Res 2014; 1562:23-38. [PMID: 24661915 DOI: 10.1016/j.brainres.2014.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/08/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023]
Abstract
The cerebral cortex and hippocampus are important for the control of cognitive functions and social behaviors, many of which are sexually dimorphic and tightly regulated by gonadal steroid hormones via activation of their respective nuclear receptors. As different levels of sex steroid hormones are present between the sexes during early development and their receptors act as transcription factors to regulate gene expression, we hypothesize that sexually dimorphic gene expression in the developing mouse cortex and hippocampus might result in sex differences in brain structures and neural circuits governing distinct behaviors between the sexes as adults. To test our hypothesis, we used gene expression microarrays to identify 90 candidate genes differentially expressed in the neonatal cortex/hippocampus between male and female mice, including 55 male-biased and 35 female-biased genes. Among these genes, sexually dimorphic expression of eight sex chromosome genes was confirmed by reverse transcription with quantitative PCR (RT-qPCR), including three located on the X chromosome (Xist, Eif2s3x, and Kdm6a), three on the Y chromosome (Ddx3y, Eif2s3y, and Kdm5d), and two in the pseudoautosomal region of the X and Y chromosomes (Erdr1 and Mid1). In addition, five autosomal genes (Cd151, Dab2, Klk8, Meg3, and Prkdc) were also validated for their sexually dimorphic expression in the neonatal mouse cortex/hippocampus. Gene Ontology annotation analysis suggests that many of these sexually dimorphic genes are involved in histone modifications, cell proliferation/death, androgen/estrogen signaling pathways, and synaptic organization, and these biological processes have been implicated in differential neural development, cognitive function, and neurological diseases between the sexes.
Collapse
|
15
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
16
|
Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. J Transl Med 2014; 94:41-51. [PMID: 24247563 DOI: 10.1038/labinvest.2013.136] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
Originally identified as a molecular organizer of interacting proteins into tetraspanin-enriched microdomains, the tetraspanin CD151 has now been shown to be involved in tumour progression. Increasing evidence emerging from in vitro, in vivo and clinical analyses implicates this tetraspanin in supporting growth of various types of tumours at different levels. It affects both cell autonomous behavior and communication with neighboring cells and the microenvironment. CD151 regulates post-adhesion events, that is, cell spreading, migration and invasion including subsequent intravasation and formation of metastasis. Present on both neoplastic and endothelial cells, CD151 is engaged in promotion of tumour neovascularization. The molecular mechanism of CD151 in cancer is based on its ability to organize distribution and function of interacting proteins, ie, laminin-binding integrins (α3β1, α6β1 and α6β4), receptors for growth factors (HGFR, EGFR and TGF-β1R) and matrix metalloproteinases (MMP-7, MMP-2 and MMP-9), which indicates its importance in disease development. Results of clinical analyses of CD151 expression in different types of cancer and a large number of in vivo models demonstrate its impact on tumour growth and invasion and implicate CD151 as a valuable diagnostic and prognostic marker as well as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Alicja Grudowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| | - Hanna M Romanska
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
17
|
Kang BW, Lee D, Chung HY, Han JH, Kim YB. Tetraspanin CD151 expression associated with prognosis for patients with advanced gastric cancer. J Cancer Res Clin Oncol 2013; 139:1835-43. [PMID: 24005419 DOI: 10.1007/s00432-013-1503-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/26/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Tetraspanin CD151 is known to be involved in cancer invasion and metastasis, and its overexpression appears to be associated with a poor prognosis for various types of cancer. However, the expression status of CD151 and its prognostic impact in advanced gastric cancer (AGC) has not yet been clarified. METHODS Immunohistochemistry was used to investigate the expression of CD151, c-erbB2, and c-Met in 159 cases of AGC. The clinicopathological and prognostic significance of these biomarkers were then evaluated. RESULTS The overexpression of CD151 was observed in a subset of advanced gastric adenocarcinomas (25.8 %), and c-erbB2 and c-Met were overexpressed in 15.1 and 35.2 % of the cohort, respectively. CD151 overexpression was more frequently observed in tumors from younger patients (P = 0.028). There were close associations between CD151 and c-erbB2 overexpression (P = 0.033) and between c-erbB2 and c-Met overexpression (P = 0.001). CD151 overexpression was closely correlated with patient' overall survival (OS; P < 0.001) and disease-free survival (DFS; P < 0.001). Furthermore, the expression rate of CD151 seemed to increase gradually according to the depth of invasion (T stage) (χ(2) test for trend; P = 0.101), N stage (P = 0.238), and pathologic stage (P = 0.153), although trends were not statistically significant. In a multivariate analysis, CD151 overexpression was an independent prognostic factor predicting worse OS (P = 0.002) and DFS (P = 0.005), along with the T and N stage. CONCLUSIONS CD151 was found to be an independent prognostic marker for patients with AGC.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Hematology/Oncology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Prognostic significance of CD151 overexpression in non-small cell lung cancer. Lung Cancer 2013; 81:109-16. [PMID: 23570797 DOI: 10.1016/j.lungcan.2013.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023]
Abstract
The overexpression of tetraspanin CD151 - a transmembrane protein that promotes tumor invasion and metastasis - is associated with poor prognosis in various cancers. However, its clinical significance in non-small cell lung cancers (NSCLCs) has not been fully elucidated. We investigated CD151 expression status by immunohistochemical analysis in paraffin-embedded specimens obtained from 380 patients with surgically resected NSCLCs (245 squamous cell carcinomas [SCCs] and 135 adenocarcinomas [ADCs]) between 1994 and 2001. High CD151 expression was detected in 28.7% NSCLCs (20.8% of SCCs and 42.9% of ADCs) and was significantly associated with male gender, smokers, and ADCs. Moreover, elevated CD151 levels were correlated with reduced overall (OS) and disease-free survival (DFS), and were an independent negative prognostic factor for OS in NSCLC. According to histological type, high CD151 expression was an independent prognostic factor for lower OS in ADC, although not in each subtype, and the elevated CD151 expression levels were more common in solid-predominant tumors (48.3%). In contrast, there was no prognostic correlation in SCC. High CD151 expression appeared to correlate with aggressive behavior in NSCLC, suggesting that it may be a useful prognostic marker for lung ADC patients and a potential molecular target for NSCLC treatment.
Collapse
|