1
|
Yue F, Zhao Y, Lv Y, Li S, Wang W, Li Y, Wang S, Wang C. Anti-Tumor Effects of Sheep Umbilical Cord Mesenchymal Stem Cells on Melanoma Cells. Int J Mol Sci 2025; 26:426. [PMID: 39796281 PMCID: PMC11720557 DOI: 10.3390/ijms26010426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment. Our findings indicate that, in vitro, SUCMSCs reduce melanin content and tyrosinase activity, inhibit melanoma cell viability, proliferation, migration, and invasion, and promote melanoma cell apoptosis. Subsequent in vivo experiments confirmed that SUCMSCs effectively suppress tumor growth, and histological analysis via HE staining revealed notable differences. Additionally, transcriptome sequencing analysis indicated that the anti-tumor effects were primarily mediated through autophagy, apoptosis, and the TGF-β and NF-κB signaling pathways. The RT-qPCR validation results aligned with the transcriptome data. In summary, SUCMSCs exert anti-melanogenesis effects through the interaction of multiple signaling pathways and cytokines, demonstrating significant potential for melanoma treatment.
Collapse
Affiliation(s)
- Fengjiao Yue
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Yuqing Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Yiting Lv
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Songmei Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Weihai Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Yajun Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| |
Collapse
|
2
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Chopra N, Melrose J, Gu Z, Diwan AD. Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration. Biomimetics (Basel) 2024; 9:722. [PMID: 39727726 DOI: 10.3390/biomimetics9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties. Furthermore, biomimetic proteoglycans (PGs) represent an established polymer that strengthens osteoarthritis cartilage and improves its biomechanical properties, actively promoting biological repair processes. Biomimetic PGs have superior water imbibing properties compared to native aggrecan and are more resistant to proteolytic degradation, increasing their biological half-life in cartilaginous tissues. Methods have also now been developed to chemically edit the structure of biomimetic proteoglycans, allowing for the incorporation of bioactive peptide modules and equipping biomimetic proteoglycans as delivery vehicles for drugs and growth factors, further improving their biotherapeutic credentials. This article aims to provide a comprehensive overview of prospective orthobiological strategies that leverage engineered proteoglycans, paving the way for novel therapeutic interventions in IVD degeneration and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Zi Gu
- NanoBiotechnology Research Group, School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish D Diwan
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
- Discipline of Orthopaedic Surgery, Royal Adelaide Hospital and University of Adelaide, Adelaide, ADL 5005, Australia
| |
Collapse
|
4
|
Melrose J, Guilak F. Diverse and multifunctional roles for perlecan ( HSPG2) in repair of the intervertebral disc. JOR Spine 2024; 7:e1362. [PMID: 39081381 PMCID: PMC11286675 DOI: 10.1002/jsp2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Perlecan is a widely distributed, modular, and multifunctional heparan sulfate proteoglycan, which facilitates cellular communication with the extracellular environment to promote tissue development, tissue homeostasis, and optimization of biomechanical tissue functions. Perlecan-mediated osmotic mechanotransduction serves to regulate the metabolic activity of cells in tissues subjected to tension, compression, or shear. Perlecan interacts with a vast array of extracellular matrix (ECM) proteins through which it stabilizes tissues and regulates the proliferation or differentiation of resident cell populations. Here we examine the roles of the HS-proteoglycan perlecan in the normal and destabilized intervertebral disc. The intervertebral disc cell has evolved to survive in a hostile weight bearing, acidic, low oxygen tension, and low nutrition environment, and perlecan provides cytoprotection, shields disc cells from excessive compressive forces, and sequesters a range of growth factors in the disc cell environment where they aid in cellular survival, proliferation, and differentiation. The cells in mechanically destabilized connective tissues attempt to re-establish optimal tissue composition and tissue functional properties by changing the properties of their ECM, in the process of chondroid metaplasia. We explore the possibility that perlecan assists in these cell-mediated tissue remodeling responses by regulating disc cell anabolism. Perlecan's mechano-osmotic transductive property may be of potential therapeutic application.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling InstituteNorthern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington UniversitySt. LouisMissouriUSA
- Department of OrthopaedicsShriners Hospitals for ChildrenSt. LouisMissouriUSA
| |
Collapse
|
5
|
Yang J, Dong Y, Hu L, Wang W, Li Y, Wang S, Wang C. Immortalization of Mesenchymal Stem Cell Lines from Sheep Umbilical Cord Tissue. BIOLOGY 2024; 13:551. [PMID: 39056743 PMCID: PMC11274198 DOI: 10.3390/biology13070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Mesenchymal stem cells (MSCs) possess significant differentiation potential, making them highly promising in medicine and immunotherapy due to their regenerative capabilities and exosome secretion. However, challenges such as limited cell divisions and complex testing hinder large-scale MSC production. In this study, we successfully established an immortalized MSC line by transfecting the human telomerase reverse transcriptase (TERT) gene into MSCs isolated from pregnant sheep umbilical cords. This approach effectively inhibits cell senescence and promotes cell proliferation, enabling the generation of umbilical cord mesenchymal stem cells (UCMSCs) on a larger scale. Our findings demonstrate that these transfected TERT-UCMSCs exhibit enhanced proliferative capacity and a reduced aging rate compared to regular UCMSCs while maintaining their stemness without tumorigenicity concerns. Consequently, they hold great potential for medical applications requiring large quantities of functional MSCs.
Collapse
Affiliation(s)
- Jinwei Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yitong Dong
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lixinyi Hu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weihai Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yajun Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Mohd Isa IL, Zulkiflee I, Ogaili RH, Mohd Yusoff NH, Sahruddin NN, Sapri SR, Mohd Ramli ES, Fauzi MB, Mokhtar SA. Three-dimensional hydrogel with human Wharton jelly-derived mesenchymal stem cells towards nucleus pulposus niche. Front Bioeng Biotechnol 2023; 11:1296531. [PMID: 38149172 PMCID: PMC10749916 DOI: 10.3389/fbioe.2023.1296531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: A regenerative strategy employing extracellular matrix (ECM)-based biomaterials and stem cells provide a better approach to mimicking the three-dimensional (3D) microenvironment of intervertebral disc for endogenous tissue regeneration. However, there is currently limited understanding regarding the human Wharton Jelly derived-mesenchymal stem cells (hWJ-MSCs) towards nucleus pulposus (NP)-like cells. Our study focused on the development of 3D bioengineered hydrogel based on the predominant ECM of native NP, including type II collagen (COLII) and hyaluronic acid (HA), which aims to tailor the needs of the microenvironment in NP. Methods: We have fabricated a 3D hydrogel using from COLII enriched with HA by varying the biomacromolecule concentration and characterised it for degradation, stability and swelling properties. The WJ-MSC was then encapsulated in the hydrogel system to guide the cell differentiation into NP-like cells. Results: We successfully fabricated COLII hydrogel (2 mg/ml) and HA 10 mg/ml at a weight ratio of HA and COLII at 1:9 and 4.5:9, and both hydrogels physically maintained their 3D sphere-shaped structure after complete gelation. The higher composition of HA in the hydrogel system indicated a higher water intake capacity in the hydrogel with a higher amount of HA. All hydrogels showed over 60% hydrolytic stability over a month. The hydrogel showed an increase in degradation on day 14. The hWJ-MSCs encapsulated in hydrogel showed a round morphology shape that was homogenously distributed within the hydrogel of both groups. The viability study indicated a higher cell growth of hWJ-MSCs encapsulated in all hydrogel groups until day 14. Discussion: Overall, our findings demonstrate that HA/COLII hydrogel provides an optimal swelling capacity, stability, degradability, and non-cytotoxic, thus mimics the NP microenvironment in guiding hWJ-MSCs towards NP phenotype, which is potentially used as an advanced cell delivery system for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - Izzat Zulkiflee
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raed H. Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Huda Mohd Yusoff
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Natasya Nadia Sahruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaiful Ridzwan Sapri
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Liao Z, Tong B, Zhang X, Zhang W, Ke W, Liang H, Lei M, Hua W, Li S, Song Y, Wu X, Yang C. Selective cargo sorting in stem cell-derived small extracellular vesicles: impact on therapeutic efficacy for intervertebral disc degeneration. Clin Transl Med 2023; 13:e1494. [PMID: 38037469 PMCID: PMC10689973 DOI: 10.1002/ctm2.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Growing evidence has suggested the role of stem cell-derived small extracellular vesicles (sEVs) in intervertebral disc degeneration (IVDD). The cargo sorting of sEVs, particularly miRNAs, may be influenced when the donor cell is subjected to oxidative stress. Here, we discovered that miRNAs containing specific motifs are selectively sorted into intraluminal vesicles within mesenchymal stem cells (MSCs) in response to oxidative stress. METHODS Analysis of miRNA cargoes in sEVs derived from normal MSCs (C-sEVs) or stressed MSCs (T-sEVs) was conducted using miRNA sequencing. Differential expressed miRNAs in sEVs and the identification of motifs were evaluated through bioinformatics analysis. Protein binding was assessed using immunofluorescent staining and immunoprecipitation analysis. Additionally, RNA pull down and RNA immunoprecipitation (RIP) immunoprecipitation were employed to determine the binding between miRNAs and proteins. The effects of C-sEVs and T-sEVs on IVDD were compared by detecting the expression levels of phenotypic genes in vitro or histological evaluation in vivo. RESULTS The sorting process of miRNAs is mediated by the nucleocytoplasmic transport of heterogeneous nuclear ribonucleoproteins, which in turn facilitates the phosphorylation of SNAP25 and promotes the transport and secretion of sEVs. Additionally, CHMP1B plays a role in membrane repair and protects against cell ferroptosis upon oxidative stress, concurrently affecting the release of sEVs. Notably, stem cell-derived sEVs associated with ferroptosis impair the therapeutic efficacy for IVDD. However, the application of engineered sEVs containing a specific miRNA inhibitor exhibits the potential to reinstate the therapeutic efficacy for IVDD both in vitro and in vivo. CONCLUSIONS Taken together, our findings shed light on the mechanism of miRNAs sorting into sEVs and offer new insights for the optimization of sEV-based treatments during intervertebral disc regeneration. regeneration.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bide Tong
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoguang Zhang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weifeng Zhang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wencan Ke
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huaizhen Liang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ming Lei
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenbin Hua
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuai Li
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinghuo Wu
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
8
|
Li X, Liu Y, Li L, Huo R, Ghezelbash F, Ma Z, Bao G, Liu S, Yang Z, Weber MH, Li-Jessen NYK, Haglund L, Li J. Tissue-mimetic hybrid bioadhesives for intervertebral disc repair. MATERIALS HORIZONS 2023; 10:1705-1718. [PMID: 36857679 DOI: 10.1039/d2mh01242a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Intervertebral disc (IVD) degeneration and herniation often necessitate surgical interventions including a discectomy with or without a nucleotomy, which results in a loss of the normal nucleus pulposus (NP) and a defect in the annulus fibrosus (AF). Due to the limited regenerative capacity of the IVD tissue, the annular tear may remain a persistent defect and result in recurrent herniation post-surgery. Bioadhesives are promising alternatives but show limited adhesion performance, low regenerative capacity, and inability to prevent re-herniation. Here, we report hybrid bioadhesives that combine an injectable glue and a tough sealant to simultaneously repair and regenerate IVD post-nucleotomy. The glue fills the NP cavity while the sealant seals the AF defect. Strong adhesion occurs with the IVD tissues and survives extreme disc loading. Furthermore, the glue can match native NP mechanically, and support the viability and matrix deposition of encapsulated cells, serving as a suitable cell delivery vehicle to promote NP regeneration. Besides, biomechanical tests with bovine IVD motion segments demonstrate the capacity of the hybrid bioadhesives to restore the biomechanics of bovine discs under cyclic loading and to prevent permanent herniation under extreme loading. This work highlights the synergy of bioadhesive and tissue-engineering approaches. Future works are expected to further improve the tissue specificity of bioadhesives and prove their efficacy for tissue repair and regeneration.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| | - Ran Huo
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Zhenwei Ma
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Shiyu Liu
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Zhen Yang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Otolaryngology-Head & Neck Surgery, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
- Department of Surgery, McGill University, 1650 Cedar Avenue, Room C10.148.2, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
9
|
Wang C, Wei M, Wu Y, Fan HT, Liang ZK, Liu AR, Xin WJ, Feng X. Epigenetic Up-Regulation of ADAMTS4 in Sympathetic Ganglia is Involved in the Maintenance of Neuropathic Pain Following Nerve Injury. Neurochem Res 2023:10.1007/s11064-023-03896-x. [PMID: 36947308 DOI: 10.1007/s11064-023-03896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/08/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Kai Liang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - An-Ran Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China.
- Zhongshan Medical School, Sun Yat-sen University, Zhongshan Rd. 2, Guangzhou, China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Anesthesiology, The First Affiliated Hospital, 58 Zhong Shan Rd 2, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
11
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
12
|
Pratt S, Jeong S, Ahern B, Goodwin W. Adverse Reaction Following the Subarachnoid Injection of Xylazine in a Sheep. Vet Sci 2022; 9:vetsci9090479. [PMID: 36136695 PMCID: PMC9505748 DOI: 10.3390/vetsci9090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary To maintain high standards of veterinary care, it is crucial adverse events are reported. This case report describes the adverse cardiovascular and respiratory responses to xylazine—a veterinary sedative and pain relief drug. While adverse effects are known to occur following vascular injection of xylazine during anaesthesia in sheep, this is the first report to detail the adverse responses following the injection of xylazine into the subarachnoid space. Injecting xylazine into the subarachnoid space (the space around the spinal cord containing spinal fluid) is commonly performed for the management of pain in sheep; as most clinicians believe this method carries significantly less risks for the patient than vascular routes of administration. The profound cardiovascular and respiratory depression detailed here is therefore of interest to veterinary professionals and scientists involved in the anaesthesia and/or pain management of sheep. Abstract Alpha2 receptor agonists are frequently used to provide sedation and analgesia in sheep. There are numerous reports of adverse pulmonary effects following intravenous (IV) injection; however, adverse effects following subarachnoid injection (SAI) are underreported. An adult Merino wether was one of eighteen animals anaesthetised during an experimental trial modelling intervertebral disc injury. The animal was premedicated with methadone 0.1 mg/kg and midazolam 0.3 mg/kg IV. Anaesthesia was induced using alfaxalone IV and it was maintained using isoflurane, delivered in 100% oxygen by controlled mechanical ventilation. An SAI of xylazine 0.05 mg/kg diluted to 1 mL with 0.9% saline was performed at the lumbosacral site prior to recovery. This resulted in rapid narcosis, oxygen dependency and ventilatory compromise. Treatment with frusemide 1 mg/kg IV and salbutamol 0.2 mg inhaled did not attenuate the adverse cardiopulmonary effects. A rapid improvement in all physiological variables was seen following high dose atipamezole 0.05 mg/kg IV. This case report adds to the current knowledge regarding the risk for potential side effects when using alpha2 receptor agonists, such as xylazine, for the sedation or regional analgesia in sheep.
Collapse
|
13
|
Constant C, Hom WW, Nehrbass D, Carmel E, Albers CE, Deml MC, Gehweiler D, Lee Y, Hecht A, Grad S, Iatridis JC, Zeiter S. Comparison and optimization of sheep in vivo intervertebral disc injury model. JOR Spine 2022; 5:e1198. [PMID: 35783908 PMCID: PMC9238284 DOI: 10.1002/jsp2.1198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Background The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding.
Collapse
Affiliation(s)
| | - Warren W. Hom
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - Eric‐Norman Carmel
- Département de sciences cliniques, Faculté de médecine vétérinaireUniversité de MontréalSaint‐HyacintheCanada
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | - Moritz C. Deml
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | | | - Yunsoo Lee
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | - Andrew Hecht
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - James C. Iatridis
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | |
Collapse
|
14
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
15
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
16
|
Smith MM, Hayes AJ, Melrose J. Pentosan Polysulphate (PPS), a Semi-Synthetic Heparinoid DMOAD With Roles in Intervertebral Disc Repair Biology emulating The Stem Cell Instructive and Tissue Reparative Properties of Heparan Sulphate. Stem Cells Dev 2022; 31:406-430. [PMID: 35102748 DOI: 10.1089/scd.2022.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review highlights the attributes of pentosan polysulphate (PPS) in the promotion of intervertebral disc (IVD) repair processes. PPS has been classified as a disease modifying osteoarthritic drug (DMOAD) and many studies have demonstrated its positive attributes in the countering of degenerative changes occurring in cartilaginous tissues during the development of osteoarthritis (OA). Degenerative changes in the IVD also involve inflammatory cytokines, degradative proteases and cell signalling pathways similar to those operative in the development of OA in articular cartilage. PPS acts as a heparan sulphate (HS) mimetic to effect its beneficial effects in cartilage. The IVD contains small cell membrane HS-proteoglycans (HSPGs) such as syndecan, and glypican and a large multifunctional HS/chondroitin sulphate (CS) hybrid proteoglycan (HSPG2/perlecan) that have important matrix stabilising properties and sequester, control and present growth factors from the FGF, VEGF, PDGF and BMP families to cellular receptors to promote cell proliferation, differentiation and matrix synthesis. HSPG2 also has chondrogenic properties and stimulates the synthesis of extracellular matrix (ECM) components, expansion of cartilaginous rudiments and has roles in matrix stabilisation and repair. Perlecan is a perinuclear and nuclear proteoglycan in IVD cells with roles in chromatin organisation and control of transcription factor activity, immunolocalises to stem cell niches in cartilage, promotes escape of stem cells from quiescent recycling, differentiation and attainment of pluripotency and migratory properties. These participate in tissue development and morphogenesis, ECM remodelling and repair. PPS also localises in the nucleus of stromal stem cells, promotes development of chondroprogenitor cell lineages, ECM synthesis and repair and discal repair by resident disc cells. The availability of recombinant perlecan and PPS offer new opportunities in repair biology. These multifunctional agents offer welcome new developments in repair strategies for the IVD.
Collapse
Affiliation(s)
- Margaret M Smith
- The University of Sydney Raymond Purves Bone and Joint Research Laboratories, 247198, St Leonards, New South Wales, Australia;
| | - Anthony J Hayes
- Cardiff School of Biosciences, University of Cardiff, UK, Bioimaging Unit, Cardiff, Wales, United Kingdom of Great Britain and Northern Ireland;
| | - James Melrose
- Kolling Institute, University of Sydney, Royal North Shore Hospital, Raymond Purves Lab, Sydney Medical School Northern, Level 10, Kolling Institute B6, Royal North Shore Hospital, St. Leonards, New South Wales, Australia, 2065.,University of New South Wales, 7800, Graduate School of Biomedical Engineering, University of NSW, Sydney, New South Wales, Australia, 2052;
| |
Collapse
|
17
|
Harness EM, Mohamad-Fauzi N, Murray JD. MSC therapy in livestock models. Transl Anim Sci 2022; 6:txac012. [PMID: 35356233 PMCID: PMC8962450 DOI: 10.1093/tas/txac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.
Collapse
Affiliation(s)
- E M Harness
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
| | - N Mohamad-Fauzi
- Institute of Biological Sciences, Faculty of Science
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, MALAYSIA
| | - J D Murray
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
- Department of Population Health and Reproduction, University of California, Davis, One Shields Ave, Davis, CA, USA
| |
Collapse
|
18
|
Linde PE, Puttlitz CM, Kisiday JD. Adult ovine connective tissue cells resemble mesenchymal stromal cells in their propensity for extensive ex vivo expansion. Connect Tissue Res 2021; 62:671-680. [PMID: 33153311 DOI: 10.1080/03008207.2020.1847099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Expanded, human connective tissue cells can adopt mesenchymal stromal cell (MSC) properties that are favorable for applications in regenerative medicine. Sheep are used as a large animal model for cell therapies, although for preclinical testing it is important to establish whether ovine cells resemble humans in their tendency to adopt MSC properties. The objective of this study was to investigate whether cells from five ovine connective tissues are MSC-like in their propensity for extensive expansion and immunophenotype.Materials and Methods: Monolayer cultures were established with cells from annulus fibrosus, cartilage, meniscus, tendon, and nucleus pulposus. Bone marrow MSCs were evaluated as a control. Cultures were seeded at 500 cells/cm2, and subcultured every 5 days up to day 20. Flow cytometry was used to evaluate expression of cluster of differentiation (CD) molecules associated with MSCs (29, 44, 166). Colony formation was evaluated using time-lapse imaging of individual cells.Results: By day 20, cumulative population doublings ranged between 22 (chondrocytes) and 27 (MSCs). All cells uniformly expressed CD44 and 73. Expression of CD166 for MSCs was 98-99%, and ranged between 64 and 97% for the other cell types. Time-lapse imaging demonstrated that 58-94% of the cells colonized as indicated by 3 population doublings within 52 hours.Conclusions: Cells from ovine connective tissues resembled MSCs in their propensity for sustained, colony-forming growth and expression of CD molecules. These data supports the potential for preclinical testing of MSC-like connective tissue cells in sheep.
Collapse
Affiliation(s)
- Peter E Linde
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - John D Kisiday
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
19
|
Lee NN, Salzer E, Bach FC, Bonilla AF, Cook JL, Gazit Z, Grad S, Ito K, Smith LJ, Vernengo A, Wilke H, Engiles JB, Tryfonidou MA. A comprehensive tool box for large animal studies of intervertebral disc degeneration. JOR Spine 2021; 4:e1162. [PMID: 34337336 PMCID: PMC8313180 DOI: 10.1002/jsp2.1162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical studies involving large animal models aim to recapitulate the clinical situation as much as possible and bridge the gap from benchtop to bedside. To date, studies investigating intervertebral disc (IVD) degeneration and regeneration in large animal models have utilized a wide spectrum of methodologies for outcome evaluation. This paper aims to consolidate available knowledge, expertise, and experience in large animal preclinical models of IVD degeneration to create a comprehensive tool box of anatomical and functional outcomes. Herein, we present a Large Animal IVD Scoring Algorithm based on three scales: macroscopic (gross morphology, imaging, and biomechanics), microscopic (histological, biochemical, and biomolecular analyses), and clinical (neurologic state, mobility, and pain). The proposed algorithm encompasses a stepwise evaluation on all three scales, including spinal pain assessment, and relevant structural and functional components of IVD health and disease. This comprehensive tool box was designed for four commonly used preclinical large animal models (dog, pig, goat, and sheep) in order to facilitate standardization and applicability. Furthermore, it is intended to facilitate comparison across studies while discerning relevant differences between species within the context of outcomes with the goal to enhance veterinary clinical relevance as well. Current major challenges in pre-clinical large animal models for IVD regeneration are highlighted and insights into future directions that may improve the understanding of the underlying pathologies are discussed. As such, the IVD research community can deepen its exploration of the molecular, cellular, structural, and biomechanical changes that occur with IVD degeneration and regeneration, paving the path for clinically relevant therapeutic strategies.
Collapse
Affiliation(s)
- Naomi N. Lee
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Andres F. Bonilla
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityColoradoUSA
| | - James L. Cook
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Zulma Gazit
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Lachlan J. Smith
- Departments of Neurosurgery and Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrea Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNew JerseyUSA
| | - Hans‐Joachim Wilke
- Institute of Orthopaedic Research and BiomechanicsUniversity Hospital UlmUlmGermany
| | - Julie B. Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
20
|
Zhang C, Gullbrand SE, Schaer TP, Boorman S, Elliott DM, Chen W, Dodge GR, Mauck RL, Malhotra NR, Smith LJ. Combined Hydrogel and Mesenchymal Stem Cell Therapy for Moderate-Severity Disc Degeneration in Goats. Tissue Eng Part A 2021; 27:117-128. [PMID: 32546053 PMCID: PMC7826444 DOI: 10.1089/ten.tea.2020.0103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration is a cascade of cellular, structural, and biomechanical changes that is strongly implicated as a cause of low-back pain. Current treatment strategies have poor long-term efficacy as they seek only to alleviate symptoms without preserving or restoring native tissue structure and function. The objective of this study was to evaluate the efficacy of a combined triple interpenetrating network hydrogel (comprising dextran, chitosan, and teleostean) and mesenchymal stem cell (MSC) therapy targeting moderate-severity disc degeneration in a clinically relevant goat model. Degeneration was induced in lumbar discs of 10 large frame goats by injection of chondroitinase ABC. After 12 weeks, degenerate discs were treated by injection of either hydrogel alone or hydrogel seeded with allogeneic, bone marrow-derived MSCs. Untreated healthy and degenerate discs served as controls, and animals were euthanized 2 weeks after treatment. Discs exhibited a significant loss of disc height 12 weeks after degeneration was induced. Two weeks after treatment, discs that received the combined hydrogel and MSC injection exhibited a significant, 10% improvement in disc height index, as well as improvements in histological condition. Discs that were treated with hydrogel alone exhibited reduced tumor necrosis factor-α expression in the nucleus pulposus (NP). Microcomputed tomography imaging revealed that the hydrogel remained localized to the central NP region of all treated discs after 2 weeks of unrestricted activity. These encouraging findings motivate further, longer term studies of therapeutic efficacy of hydrogel and MSC injections in this large animal model. Impact statement Low-back pain is the leading cause of disability worldwide, and degeneration of the intervertebral discs is considered to be one of the most common reasons for low-back pain. Current treatment strategies focus solely on alleviation of symptoms, and there is a critical need for new treatments that also restore disc structure and function. In this study, using a clinically relevant goat model of moderate-severity disc degeneration, we demonstrate that a combined interpenetrating network hydrogel and mesenchymal stem cell therapy provides acute improvements in disc height, histological condition, and local inflammation.
Collapse
Affiliation(s)
- Chenghao Zhang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas P. Schaer
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Sophie Boorman
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Weiliam Chen
- Department of Surgery, New York University School of Medicine, New York, New York, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil R. Malhotra
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lachlan J. Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Mujawar S, Iyengar K, Nadkarni S, Mulherkar R. Expansion and characterization of cells from surgically removed intervertebral disc fragments in xenogen-free medium. J Biosci 2020. [DOI: 10.1007/s12038-020-00091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
23
|
Ashinsky BG, Bonnevie ED, Mandalapu SA, Pickup S, Wang C, Han L, Mauck RL, Smith HE, Gullbrand SE. Intervertebral Disc Degeneration Is Associated With Aberrant Endplate Remodeling and Reduced Small Molecule Transport. J Bone Miner Res 2020; 35:1572-1581. [PMID: 32176817 PMCID: PMC8207249 DOI: 10.1002/jbmr.4009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
The intervertebral disc is the largest avascular structure in the body, and cells within the disc rely on diffusive transport via vasculature located within the vertebral endplate to receive nutrients, eliminate waste products, and maintain disc health. However, the mechanisms by which small molecule transport into the disc occurs in vivo and how these parameters change with disc degeneration remain understudied. Here, we utilize an in vivo rabbit puncture disc degeneration model to study these interactions and provide evidence that remodeling of the endplate adjacent to the disc occurs concomitant with degeneration. Our results identify significant increases in endplate bone volume fraction, increases in microscale stiffness of the soft tissue interfaces between the disc and vertebral bone, and reductions in endplate vascularity and small molecule transport into the disc as a function of degenerative state. A neural network model identified changes in diffusion into the disc as the most significant predictor of disc degeneration. These findings support the critical role of trans-endplate transport in disease progression and will improve patient selection to direct appropriate surgical intervention and inform new therapeutic approaches to improve disc health. © 2020 American Society for Bone and Mineral Research. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Beth G Ashinsky
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Edward D Bonnevie
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sai A Mandalapu
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao Wang
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Robert L Mauck
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey E Smith
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Abstract
The complex structure of the intervertebral disc within the spine is well suited to its mechanical function. However, it is also prone to degeneration, which is associated with various clinical symptoms and conditions, ranging from disc herniation to back pain to spinal stenosis. Most patients' conditions are managed conservatively but a small proportion progress to having surgery. This may be decompression (to remove tissue such as the disc, bone, or hypertrophic ligaments impinging on nerves) or fusion of the normally mobile intervertebral joint to immobilize it and so reduce pain. These used to involve fairly major surgical procedures, but in the past decade there has been much progress to make the surgery more refined and less invasive, for example using endoscopic approaches. Simultaneously, the research world has been studying and developing tissue engineering and cellular techniques for attempting to regenerate the intervertebral disc, whether simply the central nucleus pulposus or a complete intricate assembly to replicate the native structure of this and the surrounding annulus fibrosus, cartilage endplate, and bone. To date, none of the complex entities have been trialed, while cellular approaches are easier to utilize, have progressed to clinical trials, and may offer a better solution.
Collapse
Affiliation(s)
- Stephen M Eisenstein
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, UK
| | - Birender Balain
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
| | - Sally Roberts
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
25
|
Farrugia B, Smith SM, Shu CC, Melrose J. Spatiotemporal Expression of 3-B-3(-) and 7-D-4 Chondroitin Sulfation, Tissue Remodeling, and Attempted Repair in an Ovine Model of Intervertebral Disc Degeneration. Cartilage 2020; 11:234-250. [PMID: 31578084 PMCID: PMC7097983 DOI: 10.1177/1947603519876354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Examination of intervertebral disc (IVD) regeneration in an ovine annular lesion model. HYPOTHESIS Sulfation motifs are important functional determinants in glycosaminoglycans (GAGs). Previous studies have correlated 3-B-3(-) and 7-D-4 chondroitin sulfate (CS) motifs in tissues undergoing morphogenetic transition in development. We hypothesize that these motifs may also be expressed in degenerate IVDs and may represent a reparative response. DESIGN Induction of disc degeneration by 5 mm or 6 × 20 mm lesions in the annulus fibrosus (AF) over 6 or 3 to 6 months postoperation (PO). Tissue sections were stained with toluidine blue-fast green, 3-B-3(-) and 7-D-4 CS-sulfation motifs were immunolocalized in 3-month PO 6 × 20 mm lesion IVDs. Sulfated glycosaminoglycan (GAG), 3-B-3(-), and 7-D-4 epitopes were quantitated by ELISIA (enzyme-linked immunosorbent inhibition assay) in extracts of AF (lesion site and contralateral half) and nucleus pulposus (NP) 0, 3, and 6 months PO. RESULTS Collagenous overgrowth of lesions occurred in the outer AF. Chondroid metaplasia in ~20% of the 6 × 20 mm affected discs resulted in integration of an outgrowth of NP tissue with the inner AF lamellae preventing propagation of the lesion. 3-B-3(-) and 7-D-4 CS sulfation motifs were immunolocalized in this chondroid tissue. ELISIA quantified CS sulfation motifs demonstrating an increase 3 to 6 months PO in the AF lesion and a reduction in sulfated GAG not evident in the contralateral AF. CONCLUSIONS (1) Outer annular lesions underwent spontaneous repair. (2) Chondroid metaplasia of the inner 6 × 20 mm defect prevented its propagation suggesting an apparent reparative response.
Collapse
Affiliation(s)
- Brooke Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne
| | - Susan M. Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Cindy C. Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|