1
|
Levis H, Lewis C, Fainor M, Lawal A, Stockham E, Weston J, Farhang N, Gullbrand SE, Bowles RD. Targeted CRISPR regulation of ZNF865 enhances stem cell cartilage deposition, tissue maturation rates, and mechanical properties in engineered intervertebral discs. Acta Biomater 2024:S1742-7061(24)00661-5. [PMID: 39521313 DOI: 10.1016/j.actbio.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cell and tissue engineering based approaches have garnered significant interest for treating intervertebral disc degeneration and associated low back pain due to the substantial limitations of currently available clinical treatments. Herein we present a clustered regularly interspaced short palindromic repeats (CRISPR)-guided gene modulation strategy to improve the therapeutic potential of cell and tissue engineering therapies for treating intervertebral disc disease. Recently, we discovered a zinc finger (ZNF) protein, ZNF865 (BLST), which is associated with no in-depth publications and has not been functionally characterized. Utilizing CRISPR-guided gene modulation, we show that ZNF865 regulates cell cycle progression and protein processing. As a result, regulating this gene acts as a primary titratable regulator of cell activity. We also demonstrate that targeted ZNF865 regulation can enhance protein production and fibrocartilage-like matrix deposition in human adipose-derived stem cells (hASCs). Furthermore, we demonstrate CRISPR-engineered hASCs ability to increase GAG and collagen II matrix deposition in human-size tissue-engineered discs by 8.5-fold and 88.6-fold, respectively, while not increasing collagen X expression compared to naive hASCs dosed with growth factors. With this increased tissue deposition, we observe significant improvements in compressive mechanical properties, generating a stiffer and more robust tissue. Overall, we present novel biology on ZNF865 and display the power of CRISPR-cell engineering to enhance strategies treating musculoskeletal disease. STATEMENT OF SIGNIFICANCE: This work reports on a novel gene, ZNF865 (also known as BLST), that when regulated with CRISPRa, improves cartilagenous tissue deposition in human sized tissue engineering constructs. Producing tissue engineering constructs at human scale has proven difficult, and this strategy presents a broadly applicable tool to enhance a cells ability to produce tissue at these scales, as we saw an ∼8-88 fold increase in tissue deposition and significantly improved biomechanics in large tissue engineered intervertebral disc compared to traditional growth factor differentiation methods. Additionally, this work begins to elucidate the biology of this novel zinc finger protein, which appears to be critical in regulating cell function and activity.
Collapse
Affiliation(s)
- Hunter Levis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Christian Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Matthew Fainor
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Ameerah Lawal
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Elise Stockham
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Jacob Weston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Sarah E Gullbrand
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States; Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
2
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
3
|
Schol J, Ambrosio L, Tamagawa S, Joyce K, Ruiz-Fernández C, Nomura A, Sakai D. Enzymatic chemonucleolysis for lumbar disc herniation-an assessment of historical and contemporary efficacy and safety: a systematic review and meta-analysis. Sci Rep 2024; 14:12846. [PMID: 38834631 DOI: 10.1038/s41598-024-62792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Lumbar disc herniation (LDH) is often managed surgically. Enzymatic chemonucleolysis emerged as a non-surgical alternative. This systematic review and meta-analysis aims to assess the efficacy and safety of chemonucleolytic enzymes for LDH. The primary objective is to evaluate efficacy through "treatment success" (i.e., pain reduction) and severe adverse events (SAEs) rates. Additionally, differences in efficacy and safety trends among chemonucleolytic enzymes are explored. Following our PROSPERO registered protocol (CRD42023451546) and PRISMA guidelines, a systematic search of PubMed and Web of Science databases was conducted up to July 18, 2023. Inclusion criteria involved human LDH treatment with enzymatic chemonucleolysis reagents, assessing pain alleviation, imaging changes, and reporting on SAEs, with focus on allergic reactions. Quality assessment employed the Cochrane Source of Bias and MINORS tools. Meta-analysis utilized odds ratios (OR) with 95% confidence intervals (CI). Among 62 included studies (12,368 patients), chemonucleolysis demonstrated an 79% treatment success rate and significantly outperformed placebo controls (OR 3.35, 95% CI 2.41-4.65) and scored similar to surgical interventions (OR 0.65, 95% CI 0.20-2.10). SAEs occurred in 1.4% of cases, with slightly higher rates in chymopapain cohorts. No significant differences in "proceeding to surgery" rates were observed between chemonucleolysis and control cohorts. Limitations include dated and heterogeneous studies, emphasizing the need for higher-quality trials. Further optimization through careful patient selection and advances in therapy implementation may further enhance outcomes. The observed benefits call for wider clinical exploration and adoption. No funding was received for this review.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University School of Medicine, Isehara, Japan
| | - Luca Ambrosio
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Shota Tamagawa
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University School of Medicine, Isehara, Japan
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan.
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
4
|
Tolson JK, Menuet RL, Ly GH, Chanes BA, Bryan EA, Kataria S, Kim J, Ahmadzadeh S, Shekoohi S, Kaye AD. Evolving role of VIADISC for chronic low back and discogenic pain: a narrative review. Expert Opin Emerg Drugs 2024; 29:155-164. [PMID: 38602142 DOI: 10.1080/14728214.2024.2339912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION Chronic lower back pain is a leading cause of disability and healthcare spending worldwide. Discogenic pain, pain originating from the intervertebral disk, is a common etiology of chronic lower back pain. Currently, accepted treatments for chronic discogenic pain focus only on the management of symptoms, such as pain. There are no approved treatments that stop or reverse degenerating intervertebral discs. Biologic therapies promoting disc regeneration have been developed to expand treatment options. VIADISC™ NP, is a viable disc allograft supplementation that, in a recent trial, demonstrated a significant reduction in pain and increased function in patients suffering from symptomatic degenerative disc disease. AREAS COVERED This manuscript summarizes the epidemiology and etiology of low back pain, the pathophysiology of degenerative disc disease, current treatments, and a need for newer therapies. The rationale behind intradiscal biologics for the treatment of symptomatic degenerative disc disease is also discussed. EXPERT OPINION Characterization of the biology leading to disc degeneration has allowed for the development of intradiscal biologics. They may soon be capable of preventing and reversing disc degeneration. Clinical trials have shown promise, but further research into efficacy and safety is needed before these therapies are widely employed.
Collapse
Affiliation(s)
- Jack K Tolson
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Robert L Menuet
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Gianni H Ly
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Benjamin A Chanes
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Elizabeth A Bryan
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Julian Kim
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| |
Collapse
|
5
|
Schol J, Tamagawa S, Volleman TNE, Ishijima M, Sakai D. A comprehensive review of cell transplantation and platelet-rich plasma therapy for the treatment of disc degeneration-related back and neck pain: A systematic evidence-based analysis. JOR Spine 2024; 7:e1348. [PMID: 38919468 PMCID: PMC11196836 DOI: 10.1002/jsp2.1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Low back pain (LBP) and neck pain predominate as the primary causes of disability. Cell- and platelet-rich plasma (PRP) products are potential therapies with clinical trials and reviews promoting their efficacy. Nonetheless, they frequently disregard the clinical significance of reported improvements. In this systematic review, the effectuated improvements in pain, disability, quality of life (QoL), and radiographic images are comprehensively described and scored on their clinical significance. An electronic database literature search was conducted on July 2023 for in-human assessment of cell or PRP products to alleviate discogenic pain. Papers were screened on quantitative pain, disability, QoL, radiographic improvements, and safety outcomes. Risk of bias was assessed through MINORS and Cochrane Source of Bias tools. Reported outcomes were obtained, calculated, and assessed to meet minimal clinically important difference (MCID) standards. From 7623 screened papers, a total of 80 articles met the eligibility criteria, presenting 68 specific studies. These presented at least 1974 treated patients. Overall, cell/PRP injections could alleviate pain and disability, resulting in MCID for pain and disability in up to a 2-year follow-up, similar to those observed in patients undergoing spinal fusion. Included trials predominantly presented high levels of bias, involved heterogeneous study designs, and only a minimal number of randomized controlled trials. Nonetheless, a clear clinically significant impact was observed for cell- and PRP-treated cohorts with overall good safety profiles. These results highlight a strong therapeutic potential but also underline the need for future cost-effectiveness assessments to determine the benefits of cell/PRP treatments.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| | - Shota Tamagawa
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Daisuke Sakai
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| |
Collapse
|
6
|
Taninokuchi Tomassoni M, Braccischi L, Russo M, Adduci F, Calautti D, Girolami M, Vita F, Ruffilli A, Manzetti M, Ponti F, Matcuk GR, Mosconi C, Cirillo L, Miceli M, Spinnato P. Image-Guided Minimally Invasive Treatment Options for Degenerative Lumbar Spine Disease: A Practical Overview of Current Possibilities. Diagnostics (Basel) 2024; 14:1147. [PMID: 38893672 PMCID: PMC11171713 DOI: 10.3390/diagnostics14111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Lumbar back pain is one of the main causes of disability around the world. Most patients will complain of back pain at least once in their lifetime. The degenerative spine is considered the main cause and is extremely common in the elderly population. Consequently, treatment-related costs are a major burden to the healthcare system in developed and undeveloped countries. After the failure of conservative treatments or to avoid daily chronic drug intake, invasive treatments should be suggested. In a world where many patients reject surgery and prefer minimally invasive procedures, interventional radiology is pivotal in pain management and could represent a bridge between medical therapy and surgical treatment. We herein report the different image-guided procedures that can be used to manage degenerative spine-related low back pain. Particularly, we will focus on indications, different techniques, and treatment outcomes reported in the literature. This literature review focuses on the different minimally invasive percutaneous treatments currently available, underlining the central role of radiologists having the capability to use high-end imaging technology for diagnosis and subsequent treatment, allowing a global approach, reducing unnecessary surgeries and prolonged pain-reliever drug intake with their consequent related complications, improving patients' quality of life, and reducing the economic burden.
Collapse
Affiliation(s)
- Makoto Taninokuchi Tomassoni
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Radiology Department, IRCCS Azienda Ospedaliero-Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy
| | - Lorenzo Braccischi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Radiology Department, IRCCS Azienda Ospedaliero-Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy
| | - Mattia Russo
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Adduci
- Neuroradiology, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Davide Calautti
- Neuroradiology, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Marco Girolami
- Spine Surgery Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Fabio Vita
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Manzetti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Federico Ponti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - George R. Matcuk
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cristina Mosconi
- Radiology Department, IRCCS Azienda Ospedaliero-Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy
| | - Luigi Cirillo
- Neuroradiology, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
7
|
Jung B, Han J, Song J, Ngan A, Essig D, Verma R. Interventional Therapy and Surgical Management of Lumbar Disc Herniation in Spine Surgery: A Narrative Review. Orthop Rev (Pavia) 2023; 15:88931. [PMID: 38025825 PMCID: PMC10667270 DOI: 10.52965/001c.88931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Significant advancements in lumbar disc herniation (LDH) management have been made in interventional pain therapy, operative therapy, peri-operative management, and cost analysis of various procedures. The present review aims to provide a concise narrative of all these topics, current trends, and possible future directions in the management of LDH. Interventional pain management using intradiscal injections often serves as a minimally invasive non-surgical approach. Surgical modalities vary, including traditional open laminectomy, microdiscectomy, endoscopic discectomy, tubular discectomy, percutaneous laser disc decompression, and transforaminal foraminotomy. Prevention of infections during surgery is paramount and is often done via a single-dose preoperative antibiotic prophylaxis. Recurrence of LDH post-surgery is commonly observed and thus mitigative strategies for prevention have been proposed including the use of annular closure devices. Finally, all treatments are well-associated with clear as well as hidden costs to the health system and society as described by billing codes and loss of patients' quality-adjusted life-years. Our summary of recent literature regarding LDH may allow physicians to employ up-to-date evidence-based practice in clinical settings and can help drive future advancements in LDH management. Future longitudinal and comprehensive studies elucidating how each type of treatments fare against different types of herniations are warranted.
Collapse
Affiliation(s)
- Bongseok Jung
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell Department of Orthopaedic Surgery North Shore University Hospital-Long Island Jewish Medical Center
- Department of Orthopaedic Spine Surgery, North Shore University Hospital-Long Island Jewish Medical Center
| | - Justin Han
- Department of Orthopaedic Spine Surgery, North Shore University Hospital-Long Island Jewish Medical Center
| | - Junho Song
- Department of Orthopaedic Spine Surgery, North Shore University Hospital-Long Island Jewish Medical Center
| | - Alex Ngan
- Department of Orthopaedic Spine Surgery, North Shore University Hospital-Long Island Jewish Medical Center
| | - David Essig
- Department of Orthopaedic Spine Surgery, North Shore University Hospital-Long Island Jewish Medical Center
| | - Rohit Verma
- Department of Orthopaedic Spine Surgery, North Shore University Hospital-Long Island Jewish Medical Center
| |
Collapse
|
8
|
Schol J, Sakai D, Warita T, Nukaga T, Sako K, Wangler S, Tamagawa S, Zeiter S, Alini M, Grad S. Homing of vertebral-delivered mesenchymal stromal cells for degenerative intervertebral discs repair - an in vivo proof-of-concept study. JOR Spine 2023; 6:e1228. [PMID: 36994461 PMCID: PMC10041374 DOI: 10.1002/jsp2.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Cell transplantation shows promising results for intervertebral disc (IVD) repair, however, contemporary strategies present concerns regarding needle puncture damage, cell retention, and straining the limited nutrient availability. Mesenchymal stromal cell (MSC) homing is a natural mechanism of long-distance cellular migration to sites of damage and regeneration. Previous ex vivo studies have confirmed the potential of MSC to migrate over the endplate and enhance IVD-matrix production. In this study, we aimed to exploit this mechanism to engender IVD repair in a rat disc degeneration model. Methods Female Sprague Dawley rats were subjected to coccygeal disc degeneration through nucleus pulposus (NP) aspiration. In part 1; MSC or saline was transplanted into the vertebrae neighboring healthy or degenerative IVD subjected to irradiation or left untouched, and the ability to maintain the IVD integrity for 2 and 4 weeks was assessed by disc height index (DHI) and histology. For part 2, ubiquitously GFP expressing MSC were transplanted either intradiscally or vertebrally, and regenerative outcomes were compared at days 1, 5, and 14 post-transplantation. Moreover, the homing potential from vertebrae to IVD of the GFP+ MSC was assessed through cryosection mediated immunohistochemistry. Results Part 1 of the study revealed significantly improved maintenance of DHI for IVD vertebrally receiving MSC. Moreover, histological observations revealed a trend of IVD integrity maintenance. Part 2 of the study highlighted the enhanced DHI and matrix integrity for discs receiving MSC vertebrally compared with intradiscal injection. Moreover, GFP rates highlighted MSC migration and integration in the IVD at similar rates as the intradiscally treated cohort. Conclusion Vertebrally transplanted MSC had a beneficial effect on the degenerative cascade in their neighboring IVD, and thus potentially present an alternative administration strategy. Further investigation will be needed to determine the long-term effects, elucidate the role of cellular homing versus paracrine signaling, and validate our observations on a large animal model.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Daisuke Sakai
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Takayuki Warita
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co. Ltd.OsakaJapan
| | - Tadashi Nukaga
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Kosuke Sako
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Sebastian Wangler
- AO Research Institute DavosDavosSwitzerland
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Shota Tamagawa
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | | | - Sibylle Grad
- AO Research Institute DavosDavosSwitzerland
- ETH Zürich, Institute for BiomechanicsZürichSwitzerland
| |
Collapse
|
9
|
Basatvat S, Bach FC, Barcellona MN, Binch AL, Buckley CT, Bueno B, Chahine NO, Chee A, Creemers LB, Dudli S, Fearing B, Ferguson SJ, Gansau J, Gantenbein B, Gawri R, Glaeser JD, Grad S, Guerrero J, Haglund L, Hernandez PA, Hoyland JA, Huang C, Iatridis JC, Illien‐Junger S, Jing L, Kraus P, Laagland LT, Lang G, Leung V, Li Z, Lufkin T, van Maanen JC, McDonnell EE, Panebianco CJ, Presciutti SM, Rao S, Richardson SM, Romereim S, Schmitz TC, Schol J, Setton L, Sheyn D, Snuggs JW, Sun Y, Tan X, Tryfonidou MA, Vo N, Wang D, Williams B, Williams R, Yoon ST, Le Maitre CL. Harmonization and standardization of nucleus pulposus cell extraction and culture methods. JOR Spine 2023; 6:e1238. [PMID: 36994456 PMCID: PMC10041384 DOI: 10.1002/jsp2.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.
Collapse
Affiliation(s)
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Abbie L. Binch
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Brian Bueno
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Ana Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Laura B. Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefan Dudli
- Center for Experimental RheumatologyUniversity of ZurichZurichSwitzerland
| | - Bailey Fearing
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | | | - Jennifer Gansau
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin Gantenbein
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department for Orthopedics and Traumatology, Insel University HospitalUniversity of BernBernSwitzerland
| | - Rahul Gawri
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
- Regenerative Orthopaedics and Innovation LaboratoryMcGill UniversityMontrealCanada
| | | | | | - Julien Guerrero
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Center of Dental Medicine, Oral Biotechnology & BioengineeringUniversity of ZurichZurichSwitzerland
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
| | - Paula A. Hernandez
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Judith A. Hoyland
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Charles Huang
- Department of Biomedical EngineeringUniversity of MiamiCoral GablesFloridaUSA
| | - James C. Iatridis
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liufang Jing
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Petra Kraus
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Lisanne T. Laagland
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of MedicineAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
| | - Victor Leung
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | - Thomas Lufkin
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Josette C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Chris J. Panebianco
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Sanjna Rao
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Stephen M. Richardson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Sarah Romereim
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Tara C. Schmitz
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
| | - Lori Setton
- Departments of Biomedical Engineering and Orthopedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Y. Sun
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Xiaohong Tan
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dong Wang
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brandon Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rebecca Williams
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - S. Tim Yoon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
| | - Christine L. Le Maitre
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldSouth YorkshireUK
| |
Collapse
|
10
|
Duan L, Zhang JY, Zhang JH, Kang JY, Zhou HC. Effect of intradiscal local anesthetic injection on intraoperative pain during percutaneous transforaminal endoscopic discectomy: A retrospective study. Asian J Surg 2022:S1015-9584(22)01434-8. [DOI: 10.1016/j.asjsur.2022.09.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
|
11
|
Oshita Y, Matsuyama D, Sakai D, Schol J, Shirasawa E, Emori H, Segami K, Takahashi S, Yagura K, Miyagi M, Saito W, Imura T, Nakazawa T, Inoue G, Hiyama A, Katoh H, Akazawa T, Kanzaki K, Sato M, Takaso M, Watanabe M. Multicenter Retrospective Analysis of Intradiscal Condoliase Injection Therapy for Lumbar Disc Herniation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1284. [PMID: 36143959 PMCID: PMC9501482 DOI: 10.3390/medicina58091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022]
Abstract
Background and Objectives: Intradiscal injection of Condoliase (chondroitin sulfate ABC endolyase), a glycosaminoglycan-degrading enzyme, is employed as a minimally invasive treatment for lumbar disc herniation (LDH) and represents a promising option between conservative treatment and surgical intervention. Since its 2018 approval in Japan, multiple single-site trails have highlighted its effectiveness, however, the effect of LDH types, and influences of patient age, sex, etc., on treatment success remains unclear. Moreover, data on teenagers and elderly patients has not been reported. In this retrospective multi-center study, we sought to classify prognostic factors for successful condoliase treatment for LDH and assess its effect on patients < 20 and ≥70 years old. Materials and Methods: We reviewed the records of 137 LDH patients treated through condoliase at four Japanese institutions and assessed its effectiveness among different age categories on alleviation of visual analog scale (VAS) of leg pain, low back pain and numbness, as well as ODI and JOA scores. Moreover, we divided them into either a “group-A” category if a ≥50% improvement in baseline leg pain VAS was observed or “group-N” if VAS leg pain improved <50%. Next, we assessed the differences in clinical and demographic distribution between group-A and group-N. Results: Fifty-five patients were classified as group-A (77.5%) and 16 patients were allocated to group-N (22.5%). A significant difference in Pfirrmann classification was found between both cohorts, with grade IV suggested to be most receptive. A posterior disc angle > 5° was also found to approach statical significance. In all age groups, average VAS scores showed improvement. However, 75% of adolescent patients showed deterioration in Pfirrmann classification following treatment. Conclusions: Intradiscal condoliase injection is an effective treatment for LDH, even in patients with large vertebral translation and posterior disc angles, regardless of age. However, since condoliase imposes a risk of progressing disc degeneration, its indication for younger patients remains controversial.
Collapse
Affiliation(s)
- Yusuke Oshita
- Department of Orthopaedic Surgery, Showa University Northern Yokohama Hospital, Yokohama 224-8503, Kanagawa, Japan
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
| | - Daisuke Matsuyama
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Hatano Red Cross Hospital, Hatano 257-0017, Kanagawa, Japan
| | - Daisuke Sakai
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Eiki Shirasawa
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Haruka Emori
- Department of Orthopaedic Surgery, Showa University Northern Yokohama Hospital, Yokohama 224-8503, Kanagawa, Japan
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
| | - Kazuyuki Segami
- Department of Orthopaedic Surgery, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Kanagawa, Japan
| | - Shu Takahashi
- Department of Orthopaedic Surgery, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Kanagawa, Japan
| | - Kazumichi Yagura
- Department of Orthopaedic Surgery, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Kanagawa, Japan
| | - Masayuki Miyagi
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Wataru Saito
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Takayuki Imura
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Toshiyuki Nakazawa
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Gen Inoue
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Akihiko Hiyama
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Hiroyuki Katoh
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Tsutomu Akazawa
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Koji Kanzaki
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Kanagawa, Japan
| | - Masato Sato
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| | - Masashi Takaso
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Masahiko Watanabe
- Nonprofit Organization, Kanagawa Spine Research Society, Isehara 259-1193, Kanagawa, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
12
|
Sakai D, Schol J, Watanabe M. Clinical Development of Regenerative Medicine Targeted for Intervertebral Disc Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:267. [PMID: 35208590 PMCID: PMC8878570 DOI: 10.3390/medicina58020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Low back pain is critical health, social, and economic issue in modern societies. This disease is often associated with intervertebral disc degeneration; however, contemporary treatments are unable to target this underlying pathology to alleviate the pain symptoms. Cell therapy offers a promising novel therapeutic that, in theory, should be able to reduce low back pain through mitigating the degenerative disc environment. With the clinical development of cell therapeutics ongoing, this review aims to summarize reporting on the different clinical trials and assess the different regenerative strategies being undertaken to collectively obtain an impression on the potential safety and effectiveness of cell therapeutics against intervertebral disc-related diseases.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara 259-1193, Japan; (J.S.); (M.W.)
| | | | | |
Collapse
|