1
|
Cruz JC, Souza IDD, Lanças FM, Queiroz MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A 2022; 1668:462925. [DOI: 10.1016/j.chroma.2022.462925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
2
|
Mizumura K, Taguchi T. Delayed onset muscle soreness: Involvement of neurotrophic factors. J Physiol Sci 2016; 66:43-52. [PMID: 26467448 PMCID: PMC10716961 DOI: 10.1007/s12576-015-0397-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022]
Abstract
Delayed-onset muscle soreness (DOMS) is quite a common consequence of unaccustomed strenuous exercise, especially exercise containing eccentric contraction (lengthening contraction, LC). Its typical sign is mechanical hyperalgesia (tenderness and movement related pain). Its cause has been commonly believed to be micro-damage of the muscle and subsequent inflammation. Here we present a brief historical overview of the damage-inflammation theory followed by a discussion of our new findings. Different from previous observations, we have observed mechanical hyperalgesia in rats 1-3 days after LC without any apparent microscopic damage of the muscle or signs of inflammation. With our model we have found that two pathways are involved in inducing mechanical hyperalgesia after LC: activation of the B2 bradykinin receptor-nerve growth factor (NGF) pathway and activation of the COX-2-glial cell line-derived neurotrophic factor (GDNF) pathway. These neurotrophic factors were produced by muscle fibers and/or satellite cells. This means that muscle fiber damage is not essential, although it is sufficient, for induction of DOMS, instead, NGF and GDNF produced by muscle fibers/satellite cells play crucial roles in DOMS.
Collapse
Affiliation(s)
- Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Toru Taguchi
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
3
|
Maes K, Smolders I, Michotte Y, Van Eeckhaut A. Strategies to reduce aspecific adsorption of peptides and proteins in liquid chromatography-mass spectrometry based bioanalyses: an overview. J Chromatogr A 2014; 1358:1-13. [PMID: 25022477 DOI: 10.1016/j.chroma.2014.06.072] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 12/20/2022]
Abstract
In the drug-discovery setting, the development of new peptide and protein-based biopharmaceuticals attracts increased attention from the pharmaceutical industry and consequently demands the development of high-throughput LC-MS methods. Regulatory guidelines require bioanalytical methods to be validated not only in terms of linearity, sensitivity, accuracy, precision, selectivity and stability, but also in terms of carryover. Carryover results from the aspecific adsorption of analyte(s) to parts of the analytical system and thus introduces bias in both identification and quantification assays. Moreover, nonspecific binding occurs at the surface of materials used during sample preparation, such as pipette tips, sample tubes and LC-vials. Hence, linearity, sensitivity and repeatability of the analyses are negatively affected. Due to the great diversity in physicochemical properties of biomolecules, there is no general approach available to minimize adsorption phenomena. Therefore, we aim to present different strategies which can be generically applied to reduce nonspecific binding of peptides and proteins. In the first part of this review, a systematic approach is proposed to guide the reader through the different solvents which can be used to dissolve the analyte of interest. Indeed, proper solubilization is one of the most important factors for a successful analysis. In addition, alternative approaches are described to improve analyte recovery from the sample vial. The second part focuses on strategies to efficiently reduce adsorption at components of the autosampler, column and mass spectrometer. Thereby carryover is reduced while maintaining a sufficiently wide dynamic range of the assay.
Collapse
Affiliation(s)
- Katrien Maes
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
4
|
Pan J, Zhang C, Zhang Z, Li G. Review of online coupling of sample preparation techniques with liquid chromatography. Anal Chim Acta 2014; 815:1-15. [DOI: 10.1016/j.aca.2014.01.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
5
|
Schmerberg CM, Li L. Mass spectrometric detection of neuropeptides using affinity-enhanced microdialysis with antibody-coated magnetic nanoparticles. Anal Chem 2013; 85:915-22. [PMID: 23249250 DOI: 10.1021/ac302403e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microdialysis (MD) is a useful sampling tool for many applications due to its ability to permit sampling from an animal concurrent with normal activity. MD is of particular importance in the field of neuroscience, in which it is used to sample neurotransmitters (NTs) while the animal is behaving in order to correlate dynamic changes in NTs with behavior. One important class of signaling molecules, the neuropeptides (NPs), however, presented significant challenges when studied with MD, due to the low relative recovery (RR) of NPs by this technique. Affinity-enhanced microdialysis (AE-MD) has previously been used to improve recovery of NPs and similar molecules. For AE-MD, an affinity agent (AA), such as an antibody-coated particle or free antibody, is added to the liquid perfusing the MD probe. This AA provides an additional mass transport driving force for analyte to pass through the dialysis membrane and thus increases the RR. In this work, a variety of AAs have been investigated for AE-MD of NPs in vitro and in vivo, including particles with C18 surface functionality and antibody-coated particles. Antibody-coated magnetic nanoparticles (AbMnP) provided the best RR enhancement in vitro, with statistically significant (p < 0.05) enhancements for 4 out of 6 NP standards tested, and RR increases up to 41-fold. These particles were then used for in vivo MD in the Jonah crab, Cancer borealis, during a feeding study, with mass spectrometric (MS) detection. 31 NPs were detected in a 30 min collection sample, compared to 17 when no AA was used. The use of AbMnP also increased the temporal resolution from 4 to 18 h in previous studies to just 30 min in this study. The levels of NPs detected were also sufficient for reliable quantitation with the MS system in use, permitting quantitative analysis of the concentration changes for 7 identified NPs on a 30 min time course during feeding.
Collapse
Affiliation(s)
- Claire M Schmerberg
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
6
|
Sobhi HR, Vatansever B, Wortmann A, Grouzmann E, Rochat B. Generic approach for the sensitive absolute quantification of large undigested peptides in plasma using a particular liquid chromatography–mass spectrometry setup. J Chromatogr A 2011; 1218:8536-43. [DOI: 10.1016/j.chroma.2011.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 01/02/2023]
|
7
|
The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC-MS/MS. Bioanalysis 2011; 3:1271-85. [PMID: 21649502 DOI: 10.4155/bio.11.91] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropeptides seem to play an important role when the CNS is challenged. In order to obtain better insights into the central peptidergic effects, it is essential to monitor their concentration in the brain. Quantification of neuropeptides in dialysates is challenging due to their low extracellular concentrations (low pM range), their low microdialysis efficiencies, the need for acceptable temporal resolution, the small sample volumes, the complexity of the matrix and the tendency of peptides to stick to glass and polymeric materials. The quantification of neuropeptides in dialysates therefore necessitates the use of very sensitive nano-LC-MS/MS methods. A number of LC-MS/MS and microdialysis parameters need to be optimized to achieve maximal sensitivity. The optimized and validated methods can be used to investigate the in vivo neuropeptide release during pathological conditions, in this way initiating new and immense challenges for the development of new drugs.
Collapse
|
8
|
Strand MF, Wilson SR, Dembinski JL, Holsworth DD, Khvat A, Okun I, Petersen D, Krauss S. A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model. PLoS One 2011; 6:e19904. [PMID: 21698280 PMCID: PMC3115942 DOI: 10.1371/journal.pone.0019904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. PRINCIPAL FINDINGS Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. SIGNIFICANCE We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists.
Collapse
Affiliation(s)
- Martin F. Strand
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Jennifer L. Dembinski
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Alexander Khvat
- ChemDiv Inc., San Diego, California, United States of America
| | - Ilya Okun
- ChemDiv Inc., San Diego, California, United States of America
| | - Dirk Petersen
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
9
|
Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, Gradl D, Paulsen JE, Machonova O, Dembinski JL, Dinh H, Krauss S. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Cancer Res 2011; 71:197-205. [PMID: 21199802 DOI: 10.1158/0008-5472.can-10-1282] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canonical Wnt signaling is deregulated in several types of human cancer where it plays a central role in tumor cell growth and progression. Here we report the identification of 2 new small molecules that specifically inhibit canonical Wnt pathway at the level of the destruction complex. Specificity was verified in various cellular reporter systems, a Xenopus double-axis formation assay and a gene expression profile analysis. In human colorectal cancer (CRC) cells, the new compounds JW67 and JW74 rapidly reduced active β-catenin with a subsequent downregulation of Wnt target genes, including AXIN2, SP5, and NKD1. Notably, AXIN2 protein levels were strongly increased after compound exposure. Long-term treatment with JW74 inhibited the growth of tumor cells in both a mouse xenograft model of CRC and in Apc(Min) mice (multiple intestinal neoplasia, Min). Our findings rationalize further preclinical and clinical evaluation of these new compounds as novel modalities for cancer treatment.
Collapse
Affiliation(s)
- Jo Waaler
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, and Norwegian Center for Stem Cell Research, Forskningsparken, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Quantitative assay for bradykinin in rat plasma by liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal 2011; 54:557-61. [DOI: 10.1016/j.jpba.2010.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
|
11
|
van den Broek I, Sparidans RW, Schellens JHM, Beijnen JH. Quantitative assay for six potential breast cancer biomarker peptides in human serum by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:590-602. [PMID: 20116351 DOI: 10.1016/j.jchromb.2010.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
An assay to quantify several possible breast cancer peptide biomarkers in human serum has been developed and validated, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The peptides include bradykinin, Hyp(3)-bradykinin, des-Arg(9)-bradykinin and fragments of fibrinogen alpha-chain (Fib-alpha([605-629])), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH(4[666-687])) and complement component 4a (C4a([1337-1350])). Ile(13)-ITIH(4[666-687]), d20-C4a([1337-1350]) and Sar-D-Phe(8)-des-Arg(9)-bradykinin were used as internal standards. Bovine plasma, with 2 mM captopril and 2 mM D-L-mercaptoethanol-3-guanidino-ethylthiopropanoic acid (MEGETPA) to prevent rapid degradation of the bradykinins, was used as analyte-free matrix. Recoveries for solid-phase extraction (SPE) on mixed-mode weak cation exchange sorbents were between 62 and 90%. Multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer equipped with a heated electrospray source (H-ESI), operating in the positive ion-mode, was used for detection. The assay was fully validated and stabilities of the peptides were extensively explored. Bradykinin (10-500 ng/ml), Hyp(3)-bradykinin (4-200 ng/ml), des-Arg(9)-bradykinin (2-100 ng/ml), Fib-alpha([605-629]) (120-3000 ng/ml), ITIH(4[666-687]) (0.4-10 ng/ml) and C4a([1337-1350]) (1-25 ng/ml) were simultaneously quantified with deviations from the nominal concentrations below 22% and intra- and inter-assay precisions below 15 and 20%, respectively, for all peptides at all concentrations. The method has been successfully applied to several serum samples from breast cancer patients and matched controls.
Collapse
Affiliation(s)
- Irene van den Broek
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Section of Biomedical Analysis, Division of Drug Toxicology, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Abstract
Neuropeptides are important signaling molecules that regulate many essential physiological processes. Microdialysis offers a way to sample neuropeptides in vivo. When combined with liquid chromatography-mass spectrometry detection, many known and unknown neuropeptides can be identified from a live organism. This chapter describes sample preparation techniques and general strategies for the mass spectral analysis of neuropeptides collected via microdialysis sampling. Methods for the in vitro microdialysis of a neuropeptide standard as well as the in vivo microdialysis sampling of neuropeptides from a live crab are described.
Collapse
|
13
|
Bélanger S, Bovenzi V, Côté J, Neugebauer W, Amblard M, Martinez J, Lammek B, Savard M, Gobeil F. Structure-activity relationships of novel peptide agonists of the human bradykinin B2 receptor. Peptides 2009; 30:777-87. [PMID: 19111586 DOI: 10.1016/j.peptides.2008.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022]
Abstract
The nonapeptide bradykinin (BK) is involved in the genesis of inflammation, edema and in pain mediation. As such, much effort has gone into the development of peptide/non-peptide antagonists to counteract these processes. However, there is an increasing awareness of the potential value of chemically stable BK agonists in the treatment of diabetes and cardiovascular diseases. In this study, a structure-activity relationship study of BK was performed to develop potent and stable peptide mimetics active at the human B2 receptors (hB2R). Twenty-three analogues were produced with substitutions at positions 1, 3, 5, 7, 8 and/or 9 of BK. In vitro binding (on transiently transfected HEK-293T cells) and biological activities (vasomotricity tests on human umbilical veins, MAPK assays on HEK-293T cells) of novel BK peptide derivatives at hB2R were determined alongside with previously reported synthetic agonists (e.g. RMP-7, JMV1609, FR190997). Some peptides were also tested in vivo in rats and rabbits using blood pressure assays. Two compounds, [Hyp(3), Thi(5), Cha(8)]-BK and [Hyp(3), Thi(5), (N)Chg(7), Thi(8)]-BK, exhibited equivalent (or even greater) in vitro affinities and potencies to BK at the naturally expressed and recombinant hB2R. Their potency and duration of action in vivo were highly superior to BK, thus inferring that they can withstand intravascular proteolysis. These novel compounds show promise as candidates for investigating the pharmacology of BK receptors and developing potential therapeutical applications.
Collapse
Affiliation(s)
- Simon Bélanger
- Department of Pharmacology, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
van den Broek I, Sparidans RW, Schellens JH, Beijnen JH. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 872:1-22. [DOI: 10.1016/j.jchromb.2008.07.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2008] [Accepted: 07/12/2008] [Indexed: 12/25/2022]
|
15
|
Sample pretreatment techniques for oligopeptide analysis from natural sources. Anal Bioanal Chem 2008; 393:885-97. [DOI: 10.1007/s00216-008-2345-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/01/2008] [Accepted: 08/08/2008] [Indexed: 11/26/2022]
|
16
|
Saz JM, Marina ML. Application of micro- and nano-HPLC to the determination and characterization of bioactive and biomarker peptides. J Sep Sci 2008; 31:446-58. [PMID: 18266259 DOI: 10.1002/jssc.200700589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article reviews the works published since 2001 (included) on the micro/nano-HPLC analysis of bioactive and biomarker peptides. The main achievements related to the improvement of the detection sensitivity, quantitation repeatability and reproducibility, and separation selectivity are highlighted. A wide attention is paid to the application of micro/nano-HPLC to the analysis of bioactive peptides in biological matrices. The uses of micro/nano-HPLC in peptidomics to discover new endogenous bioactive peptides and to develop quantitation procedures to compare the levels of peptides of interest in two different biological samples are also considered. Finally, the application of micro/nano-HPLC to the analysis of biomarker peptides for various diseases is also included in this review.
Collapse
Affiliation(s)
- José María Saz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
17
|
Rinne S, Ramstad Kleiveland C, Kassem M, Lea T, Lundanes E, Greibrokk T. Fast and simple online sample preparation coupled with capillary LC-MS/MS for determination of prostaglandins in cell culture supernatants. J Sep Sci 2007; 30:1860-9. [PMID: 17638370 DOI: 10.1002/jssc.200700064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An online 2-D strong cation exchange (SCX)-RP capillary liquid chromatographic (cLC) method with IT mass spectrometric (IT-MS/MS) detection for the simultaneous determination of prostaglandin (PG) A(1), PGD(2), PGE(1), PGE(2), PGF(2a), 6-keto-(6k)PGF(1a), and 15-Delta(12,14)-deoxy-PGJ(2) (15dPGJ(2)) in cell culture supernatants was developed and validated. Pretreatment of the cell culture supernatants included dilution and filtration, and the analysis time including all sample preparation steps was less than 50 min per sample. Peptides/proteins contained in the matrix were removed by the SCX column. LODs in the range of 0.4-2.2 ng/mL cell culture supernatant, recoveries higher than 80% and within- and between-day precisions of less than 30% RSDs were obtained. Human mesenchymal stem cells (hMSCs) were stimulated with cytokine-containing supernatants derived from activated T lymphocytes, and PG production was analyzed using the developed method. PGE(2 )was found in cultures from both untreated and stimulated hMSCs, while PGE(1) was present above the detection limit only in stimulated cells.
Collapse
Affiliation(s)
- Sandra Rinne
- Institute of Immunology, Rikshospitalet-Radiumhospitalet Medical Centre, University of Oslo, N-0315 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Wilson SR, Jankowski M, Pepaj M, Mihailova A, Boix F, Vivo Truyols G, Lundanes E, Greibrokk T. 2D LC Separation and Determination of Bradykinin in Rat Muscle Tissue Dialysate with On-Line SPE-HILIC-SPE-RP-MS. Chromatographia 2007. [DOI: 10.1365/s10337-007-0341-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Saber AL, Elmosallamy MAF, Wilson SR, Lundanes E, Greibrokk T. Determination of Oxomemazine in Human Plasma by Capillary LC‐ESI‐MS. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070601084860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. L. Saber
- a Department of Chemistry, Faculty of Science , Zagazig University , Zagazig, Egypt
| | - M. A. F. Elmosallamy
- a Department of Chemistry, Faculty of Science , Zagazig University , Zagazig, Egypt
| | - S. R. Wilson
- b Department of Chemistry , University of Oslo , Blindern, Norway
| | - E. Lundanes
- b Department of Chemistry , University of Oslo , Blindern, Norway
| | - T. Greibrokk
- b Department of Chemistry , University of Oslo , Blindern, Norway
| |
Collapse
|
20
|
Chapter 3.1 Liquid chromatographic methods used for microdialysis: an overview. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-7339(06)16013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|