1
|
Ozcelikay G, Cetinkaya A, Atici EB, Ozkan SA. The electrochemical quantitation method for sugammadex via a molecularly imprinted polymer-based sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2309-2317. [PMID: 37129572 DOI: 10.1039/d3ay00452j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sugammadex (SUG) is a synthetically modified γ-cyclodextrin derivative used in hospitals after surgeries to reverse the neuromuscular blockade induced by rocuronium or vecuronium. In this study, we aimed to develop the first electroanalytical quantification method for sugammadex by using molecular imprinting (MIP) via the electropolymerization (EP) technique. An EP-MIP film was formed by EP on a screen-printed gold electrode (SPAuE) and a new electrochemical sensor, EP-MIP(SUG)/SPAuE, was fabricated using the 4-aminophenol monomer with copper ions to enhance the MIP-binding site. Surface and electrochemical characterization of the EP-MIP(SUG)/SPAuE sensor have been done via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). After screening and optimization studies were carried out to fabricate a MIP-based electrochemical sensor, the analytical performance of EP-MIP(SUG)/SPAuE and the validation parameters were tested according to the ICH guidelines. The specificity/selectivity of the developed sensor has been shown by using common interferents found in the biological fluids and also molecules having similar structures, such as α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. As a result, a quantitative analysis method has been developed and validated by using the EP-MIP(SUG)/SPAuE sensor in the concentration range of 0.1-1.0 pM with very high sensitivity (limit of detection: 27.3 fM). The applicability of the method has been shown for bulk drug substances, pharmaceutical dosage forms, and commercial serum samples with good recovery and RSD% results. The EP-MIP(SUG)/SPAuE is the first electrochemical sensor developed for the determination of sugammadex serving the aims of simplicity, short analysis time, and low cost, and has the potential to be adapted in the future as a portable and/or wearable sensor via miniaturization.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Analytical Chemistry Department, Ankara, Turkiye.
| | - Ahmet Cetinkaya
- Ankara University, Faculty of Pharmacy, Analytical Chemistry Department, Ankara, Turkiye.
- Ankara University, Graduate School of Health Sciences, Ankara, Turkiye
| | | | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Analytical Chemistry Department, Ankara, Turkiye.
| |
Collapse
|
2
|
Said R, Arafat B, Arafat T, Mallah E. An LC-MS/MS Method for Determination of Triple Drugs Combination of Valsartan, Amlodipine and Hydrochlorothiazide in Human Plasma for Bioequivalence Study. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191111125807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Current guidelines for the treatment of hypertension recommend combination
therapy, which intends to control blood pressure and enhance cardiovascular protection.
Materials and Methods:
A sensitive, reliable and selective tandem mass spectrometry (LC-MS/MS)
method has been developed for simultaneous quantification of amlodipine (AML), valsartan (VAL)
and hydrochlorothiazide (HCTZ) in human plasma. The chromatographic system was equipped with
ACE 5 C8 (50 X 2.1 mm) column and utilized a mobile phase composition of 0.5 mM Ammonium
Chloride & 0.04% FA-Methanol (45:55% v/v). The method used three internal standards; AML-D4,
HCTZ-D2 C13 and VAL-D3 with 10% intra- and inter-day precision, and 6% bias for all the analytes.
Results:
The assay was found to be linear with R-2 > 0.998, and the limits of quantification for AML,
VAL and HCTZ were 0.2, 50.0 and 2.0 ng/mL, respectively. The analytes were found to be stable in
plasma samples over short and long term storage.
:
The developed method is rapid with a run time of 3.5 min and cost-effective since the simple sample
preparation method is adopted. This method was successfully applied for the bioequivalence study of
AML, VAL, and HCTZ in human plasma after administration of the fixed-dose combination tablet of
(10/160/25 mg). Pharmacokinetic parameters (Cmax and AUC0-72) for AML and (Cmax, AUC0-t, AUC0-∞)
for VAL and HCTZ were used for bioequivalence assessment. These were determined by noncompartmental
analysis of concentration data.
Conclusion:
The result showed 90% confidence intervals (obtained by ANOVA) which were within
the predefined ranges. As a consequence, this method can be successfully applied for measuring and
quantifying a large number of samples.
Collapse
Affiliation(s)
- Rana Said
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Basel Arafat
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Cambridge, United Kingdom
| | - Tawfiq Arafat
- Jordan Center for Pharmaceutical Research (JCPR), Amman, Jordan
| | - Eyad Mallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
3
|
Development and analytical comparison of microflow and nanoflow liquid chromatography/mass spectrometry procedures for quantification of cardiac troponin T in mouse hearts. Talanta 2014; 131:510-20. [PMID: 25281134 DOI: 10.1016/j.talanta.2014.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 11/20/2022]
Abstract
Three procedures for the quantification of cardiac troponin T (cTnT) based on liquid chromatography/mass spectrometry (LC/MS) were developed, validated and compared. The procedures were applied to estimate the cTnT content in the hearts of wild type mice C57BL/6J (WT) and double knock-outs for apolipoprotein E and receptor for LDL (AL KO). Three variants of the procedure proposed include microflow, direct injection nanoflow and preconcentration nanoflow LC/MS. Troponin T tryptic peptide YEINVLR and its analog (internal standard) were monitored in a multiple reaction monitoring mode using triple quadrupole mass detector with electrospray (ESI) ion sources. The preconcentration nanoflow LC/MS method offered the best sensitivity with a lower limit of quantification (LLOQ) of 0.25 fg µL(-1) and a minimal matrix effect. The LLOQ value was 8 times better, compared with that in direct injection nanoflow LC/MS and 200 times better than in microflow LC/MS. The accuracy or precision for all three methods were not different. Separation time in the direct injection nanoflow (8 min) was equivalent to the microflow method (6 min). The cTnT contents in the mice hearts measured by the methods developed by the present authors were not different between the WT and AL KO. We conclude that nanoflow LC/MS based quantitative proteomics offers fundamentally better sensitivities while maintaining analytical quality and separation times equivalent to microflow procedures.
Collapse
|
4
|
Analytical potential of mid-infrared detection in capillary electrophoresis and liquid chromatography: A review. Anal Chim Acta 2010; 679:31-42. [DOI: 10.1016/j.aca.2010.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 11/22/2022]
|
5
|
Quintás G, Kuligowski J, Lendl B. On-Line Fourier Transform Infrared Spectrometric Detection in Gradient Capillary Liquid Chromatography Using Nanoliter-Flow Cells. Anal Chem 2009; 81:3746-53. [DOI: 10.1021/ac8025459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillermo Quintás
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner, 46100 Burjassot, Spain, and Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9-164, A-1060 Vienna, Austria
| | - Julia Kuligowski
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner, 46100 Burjassot, Spain, and Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9-164, A-1060 Vienna, Austria
| | - Bernhard Lendl
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner, 46100 Burjassot, Spain, and Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9-164, A-1060 Vienna, Austria
| |
Collapse
|
6
|
Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 2008; 627:71-81. [PMID: 18790129 DOI: 10.1016/j.aca.2008.04.043] [Citation(s) in RCA: 419] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/14/2008] [Accepted: 04/16/2008] [Indexed: 12/26/2022]
|
7
|
Hernández-Borges J, Aturki Z, Rocco A, Fanali S. Recent applications in nanoliquid chromatography. J Sep Sci 2007; 30:1589-610. [PMID: 17623443 DOI: 10.1002/jssc.200700061] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since its first introduction by Karlsson and Novotny in 1988 nano-LC has emerged as a complementary and/or competitive separation method to conventional HPLC, offering several advantages such as higher efficiency, ability to work with minute sample sizes and lower consumption of mobile phases, and better compatibility with MS, etc. Although its use was not so extended initially, in the last years new and interesting applications have appeared which deserve to be carefully considered. The aim of this review is therefore to provide an updated and critical survey of different nano-LC applications in analytical chemistry.
Collapse
Affiliation(s)
- Javier Hernández-Borges
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma I, Rome, Italy
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- R K Gilpin
- Brehm Research Laboratory, University Park, Wright State University, Fairborn, Ohio 45324-2031, USA
| | | |
Collapse
|
9
|
Matejícek D, Kubán V. High performance liquid chromatography/ion-trap mass spectrometry for separation and simultaneous determination of ethynylestradiol, gestodene, levonorgestrel, cyproterone acetate and desogestrel. Anal Chim Acta 2007; 588:304-15. [PMID: 17386825 DOI: 10.1016/j.aca.2007.02.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/08/2007] [Accepted: 02/13/2007] [Indexed: 11/16/2022]
Abstract
A fast and highly sensitive high performance liquid chromatographic/ion-trap mass spectrometric method (LC/MS) has been developed for simultaneous determination of ethynylestradiol (EE2), gestodene (GES), levonorgestrel (LNG), cyproterone acetate (CPA) and desogestrel (DES). Among three types of sorbents tested (C8, C18 and phenyl) from two suppliers, the best separation was achieved on reverse phase Zorbax SB-Phenyl column using aqueous methanol as a mobile phase. A linear gradient profile from 70 up to 100% (v/v) in 7th min, kept constant at 100% up to 10th min and followed by a negative gradient to 70% of methanol up to 12th min was used for elution. Applicability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) and influence of the mobile phase composition, its flow rate, capillary/vaporizer temperature of API source and in-source fragmentor voltage ionization are discussed. The on-column limits of quantification (10S/N) were 300 pg of EE2, 14 pg of GES and LNG, 4 pg of CPA and 960 pg of DES per injection (1 microL) using APCI with data collection in selected ion monitoring (SIM) mode. The analytical performance of the method was evaluated using the determination of EE2, GES, LNG, CPA and DES in contraceptives and river water samples.
Collapse
Affiliation(s)
- David Matejícek
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelská 1, Brno, CZ 613 00, Czech Republic
| | | |
Collapse
|
10
|
Lanckmans K, Van Eeckhaut A, Sarre S, Smolders I, Michotte Y. Capillary and nano-liquid chromatography-tandem mass spectrometry for the quantification of small molecules in microdialysis samples: comparison with microbore dimensions. J Chromatogr A 2006; 1131:166-75. [PMID: 16938304 DOI: 10.1016/j.chroma.2006.07.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/14/2006] [Accepted: 07/21/2006] [Indexed: 11/29/2022]
Abstract
Enhanced sensitivity is a well known benefit of miniaturised LC-electrospray (ESI)-MS/MS methods. The suitability of miniaturised LC-MS/MS for quantification of small molecules in dialysates was investigated using the anti-epileptic drug oxcarbazepine, its active metabolite, 10,11-dihydro-10-hydroxycarbamazepine, and the internal standard for microdialysis probe calibration, 2-methyl-5H-dibenz(b,f)azepine-5-carboxamide, as test compounds. ESI-MS detection is sensitive to matrix effects. Therefore, dialysate matrix effects were investigated by comparing the responses of standards made in water, Ringer's solution (salt solution used as perfusion fluid) and blank dialysate matrix. Due to the occurrence of ion suppression or enhancement, direct injection of dialysis samples onto the analytical column could not be applied for quantification of small molecules in dialysis samples. Column switching was necessary for desalting and preconcentration of the dialysates. However, this approach was not able to completely eliminate salt effects when the injection volume exceeded 1 microL. No differences in response between Ringer's solution and dialysate matrix were detected at capillary and nano-dimensions. Calibration standards should be prepared with Ringer's solution instead of water for quantitative analysis of microdialysates. A microbore, capillary and nano-LC-ESI-MS/MS method were compared in terms of method feasibility, linearity, sensitivity, accuracy and precision. Downscaling to capillary and nano-dimensions resulted in a gain in detection sensitivity of 5 and 50, respectively. Miniaturised LC-MS/MS was found to be fit for quantification of small molecules in dialysates with acceptable accuracy and method precision.
Collapse
Affiliation(s)
- Katrien Lanckmans
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|