1
|
Sun HM, Zhang AL, Bao HL, Chu C, Tong SQ. In Silico Screening of Off-line Comprehensive Two-Dimensional Counter-current Chromatography with Liquid Chromatography for Four Saponins Isolation. J Sep Sci 2022; 45:3909-3918. [PMID: 35962755 DOI: 10.1002/jssc.202200395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Be restrained by the limited peak capacity, one dimension chromatography usually leads to an unsatisfactory separation with low purity of compounds in a complex mixture. To obtain more highly pure targets for standard reference and to discover new substances for structural elucidation, two-dimensional chromatography is more and more prevalent in many fields. As few metrics on assessment of preparative capability of two-dimensional chromatographic separations is reported, a methodology of in silico screening of various two-dimensional chromatographic separations with a minimal number of experiments was demonstrated in this work, which was based on three descriptors including the occupation rate of peaks and system homogeneity of a two-dimensional separation space, and the minimal distance of all nearest-neighbor distances of peaks. Combining the advantages of counter-current chromatography and liquid chromatography, we elaborated the methodology by employing off-line comprehensive two-dimensional counter-current chromatography with liquid chromatography to be in silico screened for separation of four saponins from Panax notoginseng at analytical scale to simulate the case of preparative scale transfer. The predictive results were presented by two-dimensional contour plots and verified by experiments. The result showed that the experimental results were in general accord with the predictive results. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng-Mian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology
| | - Ai-Lian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University
| | - Hong-Lei Bao
- College of Pharmaceutical Science, Zhejiang University of Technology
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology
| |
Collapse
|
2
|
Česla P, Hájek T, Urban J, Holčapek M. Liquid chromatography at the university of pardubice: a tribute to Professor Pavel Jandera. J Sep Sci 2022; 45:3214-3231. [PMID: 35932491 DOI: 10.1002/jssc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Pavel Jandera was a world-leading analytical chemist who devoted his entire professional life to research in the field of high-performance liquid chromatography. During all his scientific career, he worked at the Department of Analytical Chemistry at the University of Pardubice, Czech Republic. His greatest contribution to the field of liquid chromatography was the introduction of a comprehensive theory of liquid chromatography with programmed elution conditions. He was also involved in the research of gradient elution techniques in preparative chromatography, modeling of retention and selectivity in various phase systems, preparation of organic monolithic microcolumns and, last but not least, in the development of theory and practical applications of two-dimensional liquid chromatography, mainly in the comprehensive form. In this review article, we have tried to capture the highlights of his scientific career and provide the readers with a detailed overview of Pavel Jandera's contribution to the evolution of separation sciences. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Petr Česla
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, Pardubice, CZ-53210, Czech Republic
| | - Tomáš Hájek
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, Pardubice, CZ-53210, Czech Republic
| | - Jiří Urban
- Faculty of Science, Department of Chemistry, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Michal Holčapek
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, Pardubice, CZ-53210, Czech Republic
| |
Collapse
|
3
|
Qu K, Wang F, Du Z, Wang S, Zhang Z, Shen Y. A novel and sensitive method for determination of amisulpride in human plasma by two-dimensional liquid chromatography. Biomed Chromatogr 2021; 35:e5149. [PMID: 33928659 DOI: 10.1002/bmc.5149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022]
Abstract
A novel and sensitive heart-cutting two-dimensional liquid chromatography with ultraviolet detection method (2D-LC-UV) was developed and validated for determination of amisulpride in human plasma. The 2D-LC system consists of a first dimensional (1 D) LC column and a middle transfer column as well as a second-dimensional (2 D) LC column. After simple protein precipitation, the sample was directly injected into the introduction valve of the 2D-LC system. The 1 D column, playing a role of primary separation and preconcentration for complex plasma matrices, transferred the targets to the intermediate column. Following capture of targets on the middle column online, the analytes were transferred to the 2 D separation column by a six-port valve. The 2 D column, avoiding interference from the plasma matrix, completed further separation and quantification. An assistant pump was optimized for primary enrichment as well as final elution in the heart-cutting mode. The analytical time of amisulpride was 7.401 min. The accuracy was between 0.48 and 8.49%, while the intra- and inter-day precisions ranged from 0.9 to 3.1% and from 1.7% to 3.3%, respectively. The linear range of amisulpride was 48.15-2,407.59 ng/ml, while the extraction recovery was 98.7-101.3%. The strategy established in the study, which was successfully applied to therapeutic drug monitoring of amisulpride for routine clinical detection, displays high sensitivity, good repeatability, convenience and low cost.
Collapse
Affiliation(s)
- Kankan Qu
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu Province, China
| | - Feng Wang
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiqiang Du
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu Province, China
| | - Shushan Wang
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu Province, China
| | - Zhongdong Zhang
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu Province, China
| | - Yuan Shen
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
4
|
Obradović D, Komsta Ł, Agbaba D. Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography. J Chromatogr A 2020; 1619:460951. [PMID: 32085914 DOI: 10.1016/j.chroma.2020.460951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
The mixed-mode chromatographic behavior was estimated for imidazoline and serotonin receptor ligands, and their related compounds on dual hydrophilic/reversed phase stationary phase. The Box-Cox transformation was used to obtain the most suitable mathematical equations which describe the mixed-mode retention. Optimal equations were found for the optimization parameter (λ): λ = -1, λ = -0.5, λ = 0, λ = 0.5, and λ = 1. The proposed equations show satisfactory characteristics compared to standard multimodal and quadratic approaches. For a wide range of volume fractions of the mobile phase modifier, crossing between hydrophilic and reversed phase interactions (the turning point) was defined in terms of the minimal retention and the minimum value of the volume fraction of the aqueous eluent in the mobile phase. The cubic spline interpolation was used as a reference method for estimation of the turning point. It was found out that the newly proposed equations can be used as alternative mathematical forms for the description of the dual retention mechanism and for the evaluation of the turning point. Three new experimental descriptors of the mixed-mode retention were proposed. Two descriptors quantitatively characterize hydrophilic (log kH) and reversed phase (log kR) interactions, while the third one (log kA) refers to the average retention for the whole HILIC/RP range. It was established that the main factors which control dual nature of the mixed-mode retention are lipophilicity, dipol-dipol, van der Waals and hydrogen bonding interactions. It was concluded that the newly proposed estimations of the retention data reliably characterize the mixed-mode chromatographic behavior.
Collapse
Affiliation(s)
- Darija Obradović
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450 11 000 Belgrade, Serbia.
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4 20-090 Lublin, Poland
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450 11 000 Belgrade, Serbia
| |
Collapse
|
5
|
Zhou W, Liu Y, Wang J, Guo Z, Shen A, Liu Y, Liang X. Application of two‐dimensional liquid chromatography in the separation of traditional Chinese medicine. J Sep Sci 2019; 43:87-104. [DOI: 10.1002/jssc.201900765] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Weijia Zhou
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- College of Fisheries and Life ScienceDalian Ocean University Dalian P. R. China
| | - Yanming Liu
- Shandong Institute of Food and Drug Control Jinan P. R. China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Aijin Shen
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
6
|
Liu W, Shang X, Yao S, Wang F. A novel and nonderivatization method for the determination of valproic acid in human serum by two‐dimensional liquid chromatography. Biomed Chromatogr 2019; 34:e4695. [PMID: 31469425 DOI: 10.1002/bmc.4695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Liu
- Department of PharmacyAffiliated Guangji Hospital of Soochow University Suzhou Jiangsu China
| | - Xiang Shang
- Department of PharmacyAffiliated Guangji Hospital of Soochow University Suzhou Jiangsu China
| | - Shuyong Yao
- Department of PharmacyAffiliated Guangji Hospital of Soochow University Suzhou Jiangsu China
| | - Feng Wang
- Department of Pharmacythe Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
7
|
Quantification of the Plasma Concentration of Apatinib by 2-Dimensional Liquid Chromatography. Ther Drug Monit 2019; 41:489-496. [DOI: 10.1097/ftd.0000000000000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic Interaction Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
On-line comprehensive two-dimensional liquid chromatography tandem mass spectrometry for the analysis of Curcuma kwangsiensis. Talanta 2018; 186:73-79. [DOI: 10.1016/j.talanta.2018.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 11/19/2022]
|
10
|
Beutner A, Piendl SK, Wert S, Matysik FM. Methodical studies of the simultaneous determination of anions and cations by IC×CE–MS using arsenic species as model analytes. Anal Bioanal Chem 2018; 410:6321-6330. [DOI: 10.1007/s00216-018-1241-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
|
11
|
Baglai A, Blokland MH, Mol HG, Gargano AF, van der Wal S, Schoenmakers PJ. Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated online comprehensive two-dimensional liquid chromatography – high-resolution mass spectrometry. Anal Chim Acta 2018; 1013:87-97. [DOI: 10.1016/j.aca.2017.12.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
|
12
|
Donato P, Micalizzi G, Oteri M, Rigano F, Sciarrone D, Dugo P, Mondello L. Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection. Anal Bioanal Chem 2018; 410:3297-3313. [DOI: 10.1007/s00216-018-1045-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/09/2023]
|
13
|
Sun M, Sandahl M, Turner C. Comprehensive on-line two-dimensional liquid chromatography × supercritical fluid chromatography with trapping column-assisted modulation for depolymerised lignin analysis. J Chromatogr A 2018; 1541:21-30. [PMID: 29452928 DOI: 10.1016/j.chroma.2018.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Lignin depolymerisation produces a large variety of low molecular weight phenolic compounds that can be upgraded to value-added chemicals. Detailed analysis of these complex depolymerisation mixtures is, however, hampered by the lack of resolving power of traditional analysis techniques. In this study, a novel online comprehensive two-dimensional reversed-phase liquid chromatography (RPLC) × supercritical fluid chromatography (SFC) method with trapping column interface was developed for the separation of phenolic compounds in depolymerised lignin samples. The trapping capacities of different trapping columns were evaluated. The influence of large volume water-containing injection on SFC performance was studied. The relation between peak capacity and first dimension flow rate and gradient was investigated. The optimized method was applied for the analysis of a depolymerised lignin sample. The RPLC × SFC system exhibited high degree of orthogonality. Compared with traditional loop based interface, trapping column interface can significantly shorten the analysis time and offer higher detectability, with the disadvantage of more severe undersampling in the first dimension.
Collapse
Affiliation(s)
- Mingzhe Sun
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden
| | - Margareta Sandahl
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden
| | - Charlotta Turner
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
14
|
Fornells E, Barnett B, Bailey M, Hilder EF, Shellie RA, Breadmore MC. Evaporative membrane modulation for comprehensive two-dimensional liquid chromatography. Anal Chim Acta 2018; 1000:303-309. [DOI: 10.1016/j.aca.2017.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023]
|
15
|
Spranger T, van Pinxteren D, Herrmann H. Two-Dimensional Offline Chromatographic Fractionation for the Characterization of Humic-Like Substances in Atmospheric Aerosol Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5061-5070. [PMID: 28333457 DOI: 10.1021/acs.est.7b00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic carbon in atmospheric particles comprises a large fraction of chromatographically unresolved compounds, often referred to as humic-like substances (HULIS), which influence particle properties and impact climate, human health, and ecosystems. To better understand its composition, a two-dimensional (2D) offline method combining size-exclusion (SEC) and reversed-phase liquid chromatography (RP-HPLC) using a new spiked gradient profile is presented. It separates HULIS into 55 fractions of different size and polarity, with estimated ranges of molecular weight and octanol/water partitioning coefficient (log P) from 160-900 g/mol and 0.2-3.3, respectively. The distribution of HULIS within the 2D size versus polarity space is illustrated with heat maps of ultraviolet absorption at 254 nm. It is found to strongly differ in a small example set of samples from a background site near Leipzig, Germany. In winter, the most intense signals were obtained for the largest molecules (>520 g/mol) with low polarity (log P ∼ 1.9), whereas in summer, smaller (225-330 g/mol) and more polar (log P ∼ 0.55) molecules dominate. The method reveals such differences in HULIS composition in a more detailed manner than previously possible and can therefore help to better elucidate the sources of HULIS in different seasons or at different sites. Analyzing Suwannee river fulvic acid as a common HULIS surrogate shows a similar polarity range, but the sizes are clearly larger than those of atmospheric HULIS.
Collapse
Affiliation(s)
- Tobias Spranger
- Leibniz-Institut für Troposphärenforschung (TROPOS) , Permoserstr. 15, 04318 Leipzig, Germany
| | - Dominik van Pinxteren
- Leibniz-Institut für Troposphärenforschung (TROPOS) , Permoserstr. 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz-Institut für Troposphärenforschung (TROPOS) , Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
16
|
Riet KB, Ndlovu N, Piater LA, Dubery IA. Simultaneous analysis of defense-related phytohormones in Arabidopsis thaliana responding to fungal infection. APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1600013. [PMID: 27610272 PMCID: PMC5001854 DOI: 10.3732/apps.1600013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/05/2016] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Simultaneous analysis of defense-related phytohormones can provide insights into underlying biochemical interactions. Ultra-high-performance liquid chromatographic (UHPLC) techniques hyphenated to electrospray ionization mass spectrometry (ESI-MS) are powerful analytical platforms, suitable for quantitative profiling of multiple classes of metabolites. METHODS An efficient and simplified extraction method was designed followed by reverse-phase UHPLC for separation of seven phytohormones: salicylic acid, methyl salicylate, jasmonic acid, methyl jasmonate, absiscic acid, indole acetic acid, and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. A triple quadrupole multiple reaction monitoring (MRM) method was developed for MS quantification. The methods were applied to analyze phytohormones in Arabidopsis leaf tissue responding to biotic stresses. RESULTS Under the optimized conditions, the phytohormones were separated within 15 min, with good linearities and high sensitivity. Repeatable results were obtained, with the limits of detection and quantification around 0.01 ng/μL (∼9 ng/g tissue). The method was validated and applied to monitor, quantify, and compare the temporal changes of the phytohormones under biotic stress. DISCUSSION Quantitative changes indicate increased production of defense phytohormones from the various classes. The analytical method was useful and suitable to distinguish distinctive variations in the phytohormonal profiles and balance in A. thaliana leaves resulting from pathogen attack.
Collapse
Affiliation(s)
- Katlego B. Riet
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Nombuso Ndlovu
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Author for correspondence:
| |
Collapse
|
17
|
de Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A 2016; 1430:16-78. [DOI: 10.1016/j.chroma.2015.11.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
|
18
|
Zhang Y, Jin H, Li X, Zhao J, Guo X, Wang J, Guo Z, Zhang X, Tao Y, Liu Y, Chen D, Liang X. Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography coupled with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:67-74. [PMID: 26621782 DOI: 10.1016/j.jchromb.2015.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
Abstract
Bufadienolides possess various bioactivities especially antitumor. Due to the high structural diversity, the separation of bufadienolides often suffers from coelution problem on conventional RP columns. In this work, an off-line two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D-NPLC×RPLC) method was developed to separate and characterize bufadienolides in toad skin. Several RP and NP columns were evaluated with five reference bufadienlides. The XUnion C18 and XAmide columns exhibited superior chromatographic performances for bufadienlide separation, and were selected in RPLC and NPLC, respectively. RPLC was used in the second-dimension for the good compatibility with MS, while NPLC was adopted in the first-dimension. The orthogonality of the 2D-NPLC×RPLC system was investigated by the geometric approach using fifteen bufadienolide mixtures. The result was 49.6%, demonstrating reasonable orthogonality of this 2D-LC system. By combining the 2D-LC system with MS, 64 bufadienlides including 33 minor ones and 11 pairs of isomers in toad skin were identified. This off-line 2D-NPLC×RPLC allowed to solve the coelution problem of bufadienlides in one-dimension RPLC, and thus facilitated the identification significantly.
Collapse
Affiliation(s)
- Yun Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongli Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolong Li
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianqiang Zhao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Xiujie Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Deliang Chen
- Wuhan Univ., Zhongnan Hosp., Dept. Internal Med., Div. Cardiol., Wuhan 430071, Hubei Province, PR China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
19
|
Sarrut M, Corgier A, Crétier G, Le Masle A, Dubant S, Heinisch S. Potential and limitations of on-line comprehensive reversed phase liquid chromatography×supercritical fluid chromatography for the separation of neutral compounds: An approach to separate an aqueous extract of bio-oil. J Chromatogr A 2015; 1402:124-33. [DOI: 10.1016/j.chroma.2015.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
20
|
Sidhu R, Jiang H, Farhat NY, Carrillo-Carrasco N, Woolery M, Ottinger E, Porter FD, Schaffer JE, Ory DS, Jiang X. A validated LC-MS/MS assay for quantification of 24(S)-hydroxycholesterol in plasma and cerebrospinal fluid. J Lipid Res 2015; 56:1222-33. [PMID: 25866316 PMCID: PMC4442878 DOI: 10.1194/jlr.d058487] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
24(S)-hydroxycholesterol [24(S)-HC] is a cholesterol metabolite that is formed almost exclusively in the brain. The concentrations of 24(S)-HC in cerebrospinal fluid (CSF) and/or plasma might be a sensitive marker of altered cholesterol metabolism in the CNS. A highly sensitive 2D-LC-MS/MS assay was developed for the quantification of 24(S)-HC in human plasma and CSF. In the development of an assay for 24(S)-HC in CSF, significant nonspecific binding of 24(S)-HC was observed and resolved with the addition of 2.5% 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) into CSF samples. The sample preparation consists of liquid-liquid extraction with methyl-tert-butyl ether and derivatization with nicotinic acid. Good linearity was observed in a range from 1 to 200 ng/ml and from 0.025 to 5 ng/ml, for plasma and CSF, respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. Stability of 24(S)-HC was reported under a variety of storage conditions. This method has been successfully applied to support a National Institutes of Health-sponsored clinical trial of HP-β-CD in Niemann-Pick type C1 patients, in which 24(S)-HC is used as a pharmacodynamic biomarker.
Collapse
Affiliation(s)
- Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Hui Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole Y Farhat
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Nuria Carrillo-Carrasco
- Therapeutics for Rare and Neglected Diseases National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Myra Woolery
- Nursing Department, National Institutes of Health, Bethesda, MD 20892
| | - Elizabeth Ottinger
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
21
|
Monolithic and core–shell columns in comprehensive two-dimensional HPLC: a review. Anal Bioanal Chem 2014; 407:139-51. [DOI: 10.1007/s00216-014-8147-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
22
|
Practical considerations in comprehensive two-dimensional liquid chromatography systems (LCxLC) with reversed-phases in both dimensions. Anal Bioanal Chem 2014; 407:153-67. [DOI: 10.1007/s00216-014-8179-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
|
23
|
Willemse CM, Stander MA, Tredoux AG, de Villiers A. Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins. J Chromatogr A 2014; 1359:189-201. [DOI: 10.1016/j.chroma.2014.07.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/25/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
24
|
Reproducibility of retention time and peak area in comprehensive two-dimensional liquid chromatography. Anal Bioanal Chem 2014; 407:279-84. [DOI: 10.1007/s00216-014-8090-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
|
25
|
Li X, Wang F, Xu B, Yu X, Yang Y, Zhang L, Li H. Determination of the free and total concentrations of vancomycin by two-dimensional liquid chromatography and its application in elderly patients. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 969:181-9. [PMID: 25178192 DOI: 10.1016/j.jchromb.2014.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 12/25/2022]
Abstract
A robust two-dimensional liquid chromatography (2D-LC) method for determining the free and total concentrations of vancomycin in plasma was developed and validated. The 2D-LC system, which exhibited a strong capacity for inhibiting interference, comprised a unique RP1-IEX-RP2 column system and an "Assistant Flow" configuration. Ultrafiltration technology was employed to separate free vancomycin from the protein-bound fraction in human plasma. The influence of ultrafiltration conditions on the free vancomycin concentration was evaluated. The calibration curve was linear over the 0.195-49.92μg/ml range for the free and total vancomycin concentrations. The within- and between-run precision ranges were 1.5-3.9% and 2.0-4.7% for the total concentration, 1.4-3.3% and 2.4-4.0% for the free concentration, respectively. Ultrafiltration was susceptible to variations in the experimental conditions, including the centrifugation time, the centrifugal force, and the nominal molecular weight limit of the ultrafiltration membrane. A total of 101 serum samples from 84 elderly patients were analyzed by this method. The free vancomycin concentration was 5.88±3.75μg/ml (range: 0.240-16.79μg/ml), the total concentration was 12.36±5.36μg/ml (range: 2.16-27.14μg/ml), and the unbound fraction was 45.6±18.8% (range: 11.1-96.9%). There was a poor correlation between the free and total vancomycin concentrations (R(2)=0.596, p<0.05). This method appears to be sensitive, precise, selective, and suitable for use in protein-binding studies of vancomycin.
Collapse
Affiliation(s)
- Xin Li
- Clinical Pharmaceutical Research Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Feng Wang
- Clinical Pharmaceutical Research Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bin Xu
- The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Xiaowei Yu
- The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Li Zhang
- The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Huande Li
- Clinical Pharmaceutical Research Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
26
|
Van Hoeylandt T, Chen K, Du Prez F, Lynen F. Deconvolution of overlapping spectral polymer signals in size exclusion separation-diode array detection separations by implementing a multivariate curve resolution method optimized by alternating least square. J Chromatogr A 2014; 1342:63-9. [PMID: 24726681 DOI: 10.1016/j.chroma.2014.03.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Peaks eluting from a size exclusion separation (SEC) are often not completely baseline-separated due to the inherent dispersity of the polymer. Lowering the flow rate is sometimes a solution to obtain a better physical separation, but results in a longer retention time, which is often not desirable. The chemometrical deconvolution method discussed in this work provides the possibility of calculating the contribution of each peak separately in the total chromatogram of overlapping peaks. An in-house-developed MATLAB script differentiates between compounds based on their difference in UV-spectrum and retention time, using the entire 3D retention time UV-spectrum. Consequently, the output of the script offers the calculated chromatograms of the separate compounds as well as their respective UV-spectrum, of which the latter can be used for peak identification. This approach is of interest to quantitate contributions of different polymer types with overlapping UV-spectra and retention times, as is often the case in, for example, copolymer or polymer blend analysis. The applicability has been proven on mixtures of different polymer types: polystyrene, poly(methyl methacrylate) and poly(ethoxyethyl acrylate). This paper demonstrates that both qualitative and quantitative analyses are possible after deconvolution and that alternating concentrations of adjacent peaks do not significantly influence the obtained accuracy.
Collapse
Affiliation(s)
- Tim Van Hoeylandt
- Separation Science Group, Department of Organic Chemistry, Krijgslaan 281 S4-bis, Ghent University, Ghent, Belgium
| | - Kai Chen
- Pfizer Analytical Research Centre, Krijgslaan 281 S4-bis, Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research Group, Department of Organic Chemistry, Krijgslaan 281 S4-bis, Ghent University, Ghent, Belgium
| | - Frédéric Lynen
- Separation Science Group, Department of Organic Chemistry, Krijgslaan 281 S4-bis, Ghent University, Ghent, Belgium; Pfizer Analytical Research Centre, Krijgslaan 281 S4-bis, Ghent, Belgium.
| |
Collapse
|
27
|
Ma J, Zhang B, Wang Y, Hou X, He L. Determination of flavor enhancers in milk powder by one-step sample preparation and two-dimensional liquid chromatography. J Sep Sci 2014; 37:920-6. [PMID: 24677676 DOI: 10.1002/jssc.201301367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/06/2022]
Abstract
Maltol, ethyl maltol, vanillin, and ethyl vanillin are important food additives as flavor enhancers. To quantify the four additives in milk powder, a novel 2D liquid chromatographic (2DLC) method was developed in this article. In such a 2DLC system, the target fractions eluted from the first dimensional column (C4) are stored onto the trapping column (C8) for subsequent analysis; after that, they were switched into the second dimensional column (C18) by a two-position six-port switching valve. A one-step sample preparation method was used prior to 2DLC chromatographic analysis, which was easy and convenient. After optimization of all experimental parameters, the new method was validated in terms of linearity, LODs, and LOQs, intra- and interday precision, and accuracy. A conventional single-dimensional liquid chromatographic method was also proposed in this work for comparison. In order to evaluate the applicability of the new 2DLC method, five brands of commercial milk powder samples (n = 8) were analyzed. Vanillin and ethyl vanillin were detected in two samples, respectively. It is showed that the 2DLC method is effective in quality control programs of milk powder products.
Collapse
Affiliation(s)
- Jing Ma
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
28
|
Nowik W, Héron S, Bonose M, Nowik M, Tchapla A. Assessment of Two-Dimensional Separative Systems Using Nearest-Neighbor Distances Approach. Part 1: Orthogonality Aspects. Anal Chem 2013; 85:9449-58. [DOI: 10.1021/ac4012705] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Witold Nowik
- Groupe de Chimie
Analytique de Paris-Sud EA 4041, LETIAM, IUT d’Orsay, Univ. Paris-Sud, Plateau de Moulon, 91400 Orsay, France
- Laboratoire
de
Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne, France
| | - Sylvie Héron
- Groupe de Chimie
Analytique de Paris-Sud EA 4041, LETIAM, IUT d’Orsay, Univ. Paris-Sud, Plateau de Moulon, 91400 Orsay, France
| | - Myriam Bonose
- Groupe de Chimie
Analytique de Paris-Sud EA 4041, LETIAM, IUT d’Orsay, Univ. Paris-Sud, Plateau de Moulon, 91400 Orsay, France
| | - Mateusz Nowik
- Department
of Measurement and Electronics, Faculty of Electrical
Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
| | - Alain Tchapla
- Groupe de Chimie
Analytique de Paris-Sud EA 4041, LETIAM, IUT d’Orsay, Univ. Paris-Sud, Plateau de Moulon, 91400 Orsay, France
| |
Collapse
|
29
|
Use of shift gradient in the second dimension to improve the separation space in comprehensive two-dimensional liquid chromatography. Anal Bioanal Chem 2013; 405:6511-7. [DOI: 10.1007/s00216-013-7089-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
30
|
Dugo P, Fawzy N, Cichello F, Cacciola F, Donato P, Mondello L. Stop-flow comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J Chromatogr A 2013; 1278:46-53. [DOI: 10.1016/j.chroma.2012.12.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/23/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
|
31
|
|
32
|
Elsner V, Laun S, Melchior D, Köhler M, Schmitz OJ. Analysis of fatty alcohol derivatives with comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J Chromatogr A 2012; 1268:22-8. [DOI: 10.1016/j.chroma.2012.09.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/11/2012] [Accepted: 09/16/2012] [Indexed: 12/01/2022]
|
33
|
D’Attoma A, Grivel C, Heinisch S. On-line comprehensive two-dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part I: Orthogonality and practical peak capacity considerations. J Chromatogr A 2012; 1262:148-59. [DOI: 10.1016/j.chroma.2012.09.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/27/2012] [Accepted: 09/04/2012] [Indexed: 12/01/2022]
|
34
|
Programmed elution in comprehensive two-dimensional liquid chromatography. J Chromatogr A 2012; 1255:112-29. [DOI: 10.1016/j.chroma.2012.02.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 11/23/2022]
|
35
|
Donato P, Cacciola F, Tranchida PQ, Dugo P, Mondello L. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends. MASS SPECTROMETRY REVIEWS 2012; 31:523-559. [PMID: 22383300 DOI: 10.1002/mas.20353] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 05/31/2023]
Abstract
The review, as can be deduced from the title, focuses on both theoretical and practical aspects of the use of mass spectrometry as a third, added dimension to a comprehensive LC (LC × LC) system, generating the most powerful analytical tool today for non-volatile analytes. The first part deals with the technical requirements for linkage of an LC × LC system to an MS one, including the choice of the mobile phase (buffer and salts), flow rate (splitting), type of ionization (interface); advantages and disadvantages of off-line and on-line methods are discussed, as well. A discussion of the various aspects of instrumentation is provided, both from a chromatographic and mass spectrometry standpoint, with particular emphasis directed to the choice of column sets, spatial resolution, mass resolving power, mass accuracy, and tandem-MS capabilities. The extent to which mass spectrometry may be of aid in unraveling column-outlet multicompound bands is highlighted, along with its effectiveness as a chromatographic detector of excellent sensitivity, universality yet with potential in terms of selectivity and amenability to quantitative analysis over a wide dynamic range. The following section of the review contains significant applications of comprehensive two-dimensional LC coupled to MS in different areas of research, with details on interfaces, column stationary phases, modulation and MS parameters. It is not the intention of the authors to provide a comprehensive description of the techniques, but merely to discuss only those aspects which are essential for successful applications of the LC-MS combination. The reader will be acquainted with the enormous potential of this hyphenated technique, and the factors and instrumental developments that have concurred to make it emerge to a central role in specialized fields, such as proteomics.
Collapse
Affiliation(s)
- Paola Donato
- University Campus Bio-Medico, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Dück R, Sonderfeld H, Schmitz OJ. A simple method for the determination of peak distribution in comprehensive two-dimensional liquid chromatography. J Chromatogr A 2012; 1246:69-75. [DOI: 10.1016/j.chroma.2012.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/26/2022]
|
37
|
Comprehensive two-dimensional liquid chromatography — practical impacts of theoretical considerations. A review. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0036-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractA theory of comprehensive two-dimensional separations by liquid chromatographic techniques is overviewed. It includes heart-cutting and comprehensive two-dimensional separation modes, with attention to basic concepts of two-dimensional separations: resolution, peak capacity, efficiency, orthogonality and selectivity. Particular attention is paid to the effects of sample structure on the retention and advantages of a multi-dimensional HPLC for separation of complex samples according to structural correlations. Optimization of 2D separation systems, including correct selection of columns, flow-rate, fraction volumes and mobile phase, is discussed. Benefits of simultaneous programmed elution in both dimensions of LCxLC comprehensive separations are shown.Experimental setup, modulation of the fraction collection and transfer from the first to the second dimension, compatibility of mobile phases in comprehensive LCxLC, 2D asymmetry and shifts in retention under changing second-dimension elution conditions, are addressed. Illustrative practical examples of comprehensive LCxLC separations are shown.
Collapse
|
38
|
Recent developments in the detailed characterization of polymers by multidimensional chromatography. J Chromatogr A 2012; 1240:1-20. [DOI: 10.1016/j.chroma.2012.03.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 02/03/2023]
|
39
|
Carr P, Davis J, Rutan S, Stoll D. Principles of Online Comprehensive Multidimensional Liquid Chromatography. ADVANCES IN CHROMATOGRAPHY 2012; 50:139-235. [DOI: 10.1201/b11636-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Uliyanchenko E, van der Wal S, Schoenmakers PJ. Challenges in polymer analysis by liquid chromatography. Polym Chem 2012. [DOI: 10.1039/c2py20274c] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem 2012; 402:231-47. [PMID: 21879300 PMCID: PMC3249561 DOI: 10.1007/s00216-011-5308-5] [Citation(s) in RCA: 800] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/03/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.
| | | |
Collapse
|
42
|
Zeng J, Zhang X, Guo Z, Feng J, Zeng J, Xue X, Liang X. Separation and identification of flavonoids from complex samples using off-line two-dimensional liquid chromatography tandem mass spectrometry. J Chromatogr A 2011; 1220:50-6. [PMID: 22176737 DOI: 10.1016/j.chroma.2011.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
In this study, a LC-based identification strategy was proposed and off-line two-dimensional liquid chromatography was developed for the separation and identification of flavonoids from complex samples. The highly orthogonal separation system was composed of a CD column, an OEG column and an XTerra C(18) column. The CD column was employed for the first dimensional separation and the OEG column and XTerra C(18) column were used for the second dimensional separation in parallel. A mixture of six traditional Chinese medicines was used as a complex sample in testing this method. Unknown peaks were identified by matching their retention times and accurate mass molecular weights with those of references. The identification efficacy of parallel unidimensional liquid chromatography and off-line two-dimensional liquid chromatography was compared, and the latter was demonstrated to be more efficient for the identification of target compounds-especially co-eluted compounds or minor compounds from complex samples.
Collapse
Affiliation(s)
- Jing Zeng
- Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Zeng J, Zhang X, Guo Z, Feng J, Xue X, Liang X. A new method for chemical identification based on orthogonal parallel liquid chromatography separation and accurate molecular weight confirmation. J Chromatogr A 2011; 1218:1749-55. [DOI: 10.1016/j.chroma.2011.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
44
|
Cacciola F, Delmonte P, Jaworska K, Dugo P, Mondello L, Rader JI. Employing ultra high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. J Chromatogr A 2011; 1218:2012-8. [DOI: 10.1016/j.chroma.2010.08.081] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
|
45
|
Dumarey M, Vander Heyden Y, Rutan SC. Evaluation of the identification power of RPLC analyses in the screening for drug compounds. Anal Chem 2010; 82:6056-65. [PMID: 20578680 DOI: 10.1021/ac1006415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of drugs of abuse is an important issue in forensic science. The main goal is to trace and identify as many drugs as possible in the shortest possible time preferably with a simple analysis method. One possibility is to screen samples using a Liquid Chromatography-Diode Array Detection (LC-DAD) system. However, when simultaneously performing another analysis on a chromatographic column exhibiting selectivity differences from the first one, that is, orthogonal or dissimilar columns, a greater number of drugs can be possibly identified without investing a lot of extra time or money. The primary difficulty is then selecting the most appropriate columns. In this paper, it is demonstrated that selecting the most dissimilar columns based on measures such as correlation or Snyder's F(s) value is not optimal, because these measures do not take into account the identification power of the individual systems. This implies that a large number of drugs may not necessarily be identified on the systems selected using these criteria. Therefore, three other measures are tested to evaluate the identification power obtained by parallel screening on two columns or by comprehensive two-dimensional LC (LC x LC). The simplest approach is counting the number of compounds separable with a difference in retention time greater than a predefined critical value. However, this measure does not reflect the coelution pattern of the unidentified drugs nor the separation degree of all compounds. The second tested measure, information, enables differentiation between systems identifying the same number of compounds but resulting in a different coelution pattern. Multivariate selectivity, the third tested parameter, takes into account the degree of separation of all compounds and has the advantage that it reflects the gain in identification power achieved by introducing DAD data. All three proposed measures also enable evaluation of whether the corresponding LC x LC method will result in a greater identification power.
Collapse
Affiliation(s)
- Melanie Dumarey
- Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | |
Collapse
|
46
|
Brudin SS, Shellie RA, Haddad PR, Schoenmakers PJ. Comprehensive two-dimensional liquid chromatography: Ion chromatography×reversed-phase liquid chromatography for separation of low-molar-mass organic acids. J Chromatogr A 2010; 1217:6742-6. [DOI: 10.1016/j.chroma.2010.05.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 02/03/2023]
|
47
|
Development and optimization of a method for the separation of platycosides in Platycodi Radix by comprehensive two-dimensional liquid chromatography with mass spectrometric detection. J Chromatogr A 2010; 1217:4375-82. [DOI: 10.1016/j.chroma.2010.04.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022]
|
48
|
Recent progress in online, comprehensive two-dimensional high-performance liquid chromatography for non-proteomic applications. Anal Bioanal Chem 2010; 397:979-86. [DOI: 10.1007/s00216-010-3659-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
49
|
Wang C, Wang S, Fan G, Zou H. Screening of antinociceptive components in Corydalis yanhusuo W.T. Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 2010; 396:1731-40. [PMID: 20101504 DOI: 10.1007/s00216-009-3409-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/13/2009] [Accepted: 12/15/2009] [Indexed: 11/27/2022]
Abstract
Formalin-induced pain models were used in rats to evaluate the antinociceptive effect of the total alkaloids of Corydalis yanhusuo (TAC). The results indicated that formalin-evoked spontaneous nociceptive responses (licking behavior) could be inhibited significantly by giving (intragingival) TAC at a single dose of 150 mg/kg. Subsequently, an online comprehensive two-dimensional biochromatography method with a silica-bonded human serum albumin (HSA) column in the first dimension and a monolithic ODS column in the second was developed. The absorbed bioactive components were screened by comparing and contrasting the components detected in the plasma and striatum with those in TAC. More than 100 compounds were separated and detected in the TAC, among which 13 compounds were identified. About 40 compounds (seven compounds identified) were absorbed into the plasma with appropriate concentrations and about 20 compounds (four compounds identified) passed through the blood-brain barrier into the striatum. Of interest, four compounds (protopine, glaucine, tetrahydropalmatine, and corydaline) which were reported to possess profound antinociceptive effects exhibited high concentrations in the striatum. This may result from their synergistic effects in regulating the formalin-induced nociception. The results indicated that the comprehensive two-dimensional biochromatography method developed is capable of screening the bioactive components in Corydalis yanhusuo and providing valuable information for understanding the mechanisms by which Corydalis yanhusuo alleviates nociception.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | | | | | | |
Collapse
|
50
|
Guidelines for bioanalytical 2D chromatography method development and implementation. Bioanalysis 2010; 2:105-22. [DOI: 10.4155/bio.09.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
2D chromatography is a rapidly evolving, very powerful tool for bioanalysis. Advances in the theory of 2D separations, instrument technology and data analysis strategies continue to complement each other and advance the state of the art. Separations of complex mixtures of biomolecules yielding several hundred peaks in practical analysis times (tens of minutes to several hours) are relatively common. However, this level of performance largely remains the domain of expert researchers and several practical limitations stand in the way of more widespread use of 2D separations among practitioners. While off-the-shelf instruments are increasing in number, the most effective 2D instruments are often home-built, and analysis of the extremely rich datasets resulting from these separations continues to be a serious bottleneck in the overall workflow. This review summarizes some of the most serious challenges in method development and describes best practices to help guide users in designing effective 2D separations for bioanalysis.
Collapse
|