1
|
Tůma P. Determination of inorganic cations in dry milk samples deposited on a microdialysis probe by capillary electrophoresis. Food Chem 2024; 464:141789. [PMID: 39486283 DOI: 10.1016/j.foodchem.2024.141789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
A tubular microdialysis probe is made from polysulfone hollow fibre for human haemodialysis, which has an inner diameter of 200 μm and a thickness of 20 μm. Milk is deposited to the outer surface of the hollow fibre and allowed to dry to form a dry sample. The tubular probe is then connected to the syringe pump and microdialysis of the dry sample into 0.5 mol/L HCl as acceptor is performed. 2.5 μL of microdialysate is obtained and analyzed for inorganic cations by capillary electrophoresis with contactless conductivity detection. Baseline separation of NH4+, K+, Ca2+, Na+, Mg2+, Li+ is achieved in 5.5 mol/L acetic acid as background electrolyte using a fused silica capillary with inner diameter of 25 μm and length of 31.5 cm. The reproducibility of dry sample microdialysis including CE analysis for peak area ranges from 2.4 to 3.9 % after normalization to Li+ as internal standard.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czechia.
| |
Collapse
|
2
|
Opallage PM, De Silva M, Kariuki SM, Raheel AA, Dunn RC. Photothermal Backscatter Interferometry for Enhanced Detection in Capillary Electrophoresis. Anal Chem 2024. [PMID: 39072412 DOI: 10.1021/acs.analchem.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Refractive index (RI) detection using backscatter interferometry (BSI) enables universal detection in capillary electrophoresis (CE). BSI detection is a versatile on-capillary approach that is easily integrated with capillary or microfluidic channels, straightforward to miniaturize, and inexpensive. The focused BSI light source can also double as the excitation source for fluorescence, enabling simultaneous universal (BSI) and specific (fluorescence) signals from the same detection volume. To improve BSI detection and expand orthogonal content, we integrate photothermal absorption with BSI detection. Nonradiative relaxation of an excited analyte releases heat into the surroundings, which modifies both the local RI and conductivity (viscosity) of the analyte zone. We recently showed that the BSI signal is sensitive to both RI and conductivity, which makes photothermal absorption a promising route to signal enhancement. Here, we use coaxially delivered BSI and photothermal absorption beams to characterize BSI, photothermal BSI, and fluorescence detection using the separation of test samples. We show that photothermal absorption leads to 3 orders of magnitude improvement in BSI detection limits at the powers studied and provides new opportunities for studying binding interactions with CE.
Collapse
Affiliation(s)
- Prabhavie M Opallage
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Miyuru De Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Stanslaus M Kariuki
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Armina A Raheel
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
De Silva M, Dunn RC. Sample plug induced peak splitting in capillary electrophoresis studied using dual backscattered interferometry and fluorescence detection. Electrophoresis 2023; 44:549-557. [PMID: 36641782 DOI: 10.1002/elps.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023]
Abstract
The appearance of unexpected peaks in capillary electrophoresis (CE) is common and can lengthen the time of method development as assay conditions and experimental parameters are varied to understand and mitigate the effects of the additional peaks. Additional peaks can arise when a single-analyte zone is split into multiple zones. Understanding the underlying mechanism of these phenomena, recognizing conditions that favor its presence, and knowing how to confirm and eliminate the effect are important for efficient method optimization. In this study, we examine how the overlap of analyte zones with the sample plug can lead to peak splitting. This is explored experimentally using dual detection CE, which enables both the sample plug and analyte zones to be independently and simultaneously measured from the same detection volume. Simulations performed via COMSOL Multiphysics confirm the origin of the splitting and help guide experiments to reduce and eliminate the effect. Our findings show that this peak splitting mechanism can arise in separations of both small and large molecules but is, especially, prevalent in separations of slowly migrating macromolecules. This effect is also more prevalent when using a short length-to-detector, as is commonly found in microfluidic applications. A simple diffusion-less model is introduced to develop strategies for reducing peak splitting that avoids modifying the apparatus, such as by lengthening the separation length, which can be difficult. Decreasing the sample plug length and slowing the electroosmotic flow can both reduce this effect, which is confirmed experimentally.
Collapse
Affiliation(s)
- Miyuru De Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
4
|
Gebauer P. System eigenmobilities in zone electrophoresis: A general moving-boundary approach. Electrophoresis 2021; 43:661-668. [PMID: 34661917 DOI: 10.1002/elps.202100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
System zones in capillary zone electrophoresis represent an important topic, very interesting from the theoretical point but also important for practice. This paper is aimed at contributing to the understanding of system zones as one of the very fundamental properties of electrophoretic systems, by developing an alternative approach to the so far used vector-matrix model of calculation of system mobilities (system eigenmobilities). The presented model is based on the solution of the differential form of the moving-boundary equation. The result for acid-base systems is a single algebraic equation valid universally for a zone comprising any number of constituents (mono- or polyhydric strong or weak acids or bases and/or amphoteric compounds). The value of the described solution against previous models consists in its explicit form, expressing the system eigenmobility of a homogeneous zone of given composition as a function of only known quantities. The obtained equation is shown to be the common source of various simplified equations obtained in the past for particular simple systems. The applicability of the simplified equations is discussed in terms of completeness of the results (number of output system eigenmobilities). For non-buffered systems, the occurrence of a previously unreported non-zero value of system eigenmobility is discussed that is equal to the arithmetic average of mobilities of the solvent ions.
Collapse
Affiliation(s)
- Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
5
|
Pham U, Alvarado L, Suess GJ, Shamsi SA, Frantz K. Separation of short and medium-chain fatty acids using capillary electrophoresis with indirect photometric detection: Part I: Identification of fatty acids in rat feces. Electrophoresis 2021; 42:1914-1923. [PMID: 34288007 DOI: 10.1002/elps.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022]
Abstract
Short and medium-chain fatty acids (SMCFAs) are known as essential metabolites found in gut microbiota that function as modulators in the development and progression of many inflammatory conditions as well as in the regulation of cell metabolism. Currently, there are few simple and low-cost analytical methods available for the determination of SMCFA. This report focuses on SMCFA analysis utilizing CE with indirect photometric detection (CE-IPD). A ribonucleotide electrolyte, 5'-adenosine mono-phosphate (5'-AMP), is investigated as an IPD reagent due to its high molar absorptivity and dynamic reserve compatible with separation and detection of SMCFA. The operating parameters like the composition of organic solvent, millimolar concentrations of the complexing agent (alpha-cyclodextrin), 5'-AMP and non-absorbing electrolyte (boric acid), as well as the applied voltage, are optimized for resolution, efficiency, and signal-to-noise ratio. A baseline resolution of all nine SMCFAs is achieved in less than 15 min. Additionally, the developed CE-IPD method shows promising potential to identifying SMCFA in rat fecal supernatant. The presented analytical assay is simple, economical, and has considerably good repeatability. The intraday and interday RSD of less than 1 and 2% for relative migration time, as well as less than 14 and 15% for peak area, respectively, were obtained for SMCFA in fecal solution.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Luis Alvarado
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Gregory J Suess
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Shahab A Shamsi
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Kyle Frantz
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
6
|
De Silva M, Opallage PM, Dunn RC. Direct detection of inorganic ions and underivatized amino acids in seconds using high-speed capillary electrophoresis coupled with back-scatter interferometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1340-1348. [PMID: 33491683 DOI: 10.1039/d0ay02218g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High speed capillary electrophoresis (HSCE) combined with refractive index (RI) detection is developed for the rapid separation and detection of inorganic ions and amino acids. A mixture of three inorganic ions (K+, Na+, Li+) and eight amino acids (Lys, Arg, Ala, Gly, Val, Thr, Trp, Asp) are detected using back scatter interferometry (BSI), without the need for chemical modifications or contrast. A thin-walled separation capillary (50 μm i.d. by 80 μm o.d.) helps mitigate Joule heating at the high field strengths required for rapid separations. This, combined with a short 8 cm length-to-detector (10 cm total length), enables separations on the seconds time scale. Using a background electrolyte (BGE) of 4 M acetic acid (pH 1.6) and a field strength of 900 V cm-1, all 11 analytes are separated in less than 40 s. Moreover, peaks in the BSI signal arising from the sample injection and EOF, enable electrophoretic mobilities to readily be obtained from apparent mobilities. This leads to excellent repeatability, with analyte electrophoretic mobilities varying from 0.39 to 1.56 % RSD over eight consecutive separations. The universal detection of inorganic ions and amino acids without prior chemical modification or additives in the BGE is an advantage of refractive index detection. A disadvantage arises from modest detection limits. Here, however, we show that submicromolar detection is possible with careful thermostatting of the thin separation capillary. A series of electropherograms are used to quantify arginine concentrations from 700 nM to 500 μM, using 50 μM Li+ as an internal standard. The resulting calibration curve leads to a calculated LOD of 376 nM and a LOQ of 1.76 μM. Diagnostically relevant amino acid panels are also separated, illustrating the potential for future applications in neurodegenerative and metabolic disease diagnostics. HSCE combined with BSI detection, therefore, is shown to be a rapid, sensitive, and universal approach for analyzing sample mixtures.
Collapse
Affiliation(s)
- Miyuru De Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| | | | | |
Collapse
|
7
|
Tůma P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection - Theory, instrumentation and applications. Talanta 2020; 224:121922. [PMID: 33379123 DOI: 10.1016/j.talanta.2020.121922] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
This review article summarises aspects of the determination of amino acids using capillary and chip electrophoresis in combination with contactless conductivity detection from their historical beginnings to the present time. Discussion is included of the theory of conductivity detection in electromigration techniques, the design of contactless conductivity cells for detection in capillaries and on microchips, including the use of computer programs for simulation of the conductivity response and the process of the electrophoretic separation of amino acids. Emphasis is placed on optimisation of the background electrolyte composition, chiral separation, multidimensional separation, stacking techniques and the use of multidetection systems. There is also a description of clinical applications, the determination of amino acids in foodstuffs, waters, soils and composts with emphasis on modern techniques of sample treatment, such as microdialysis, liquid membrane extraction and many other techniques.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
8
|
Dunn RC. High-Speed Capillary Electrophoresis Using a Thin-Wall Fused-Silica Capillary Combined with Backscatter Interferometry. Anal Chem 2020; 92:7540-7546. [PMID: 32352792 DOI: 10.1021/acs.analchem.9b05881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-speed capillary electrophoresis (HSCE) is implemented using a 10 cm total length fused-silica capillary (50 μm i.d., 80 μm o.d.) combined with refractive index (RI) detection using backscatter interferometry (BSI). The short capillary length reduces analysis time while the ultrathin wall (15 μm) efficiently dissipates heat from the separation channel, mitigating the deleterious effects of Joule heating. The separation capillary is mounted on a temperature-controlled heat sink that stabilizes the temperature to ±0.004 °C. This temperature stabilization improves separation efficiency and enhances RI detection. Ohm's Law plots confirm the superior heat dissipation of the HSCE capillary compared to a similarly prepared conventional CE capillary (50 μm i.d., 363 μm o.d.). The speed and efficiency of HSCE combined with universal RI detection is illustrated through the separation of K+, Ba2+, Mg2+, Na+, Li+, and Tris+ in approximately 30 s, with efficiencies greater than 500 000 plates/m. Run-to-run repeatability is explored using nine consecutive electrokinetic injections of a K+, Na+, and Li+ mixture. The average migration times and %RSD for K+, Na+, and Li+ were measured to be 22.04 s (1.59%), 26.81 s (1.38%), and 29.80 s (2.21%), respectively. Finally, we show that the BSI signal is sensitive to the separation voltage through the Kerr mechanism. This leads to peaks in the electropherogram from the injection process that are useful for precisely defining the start of each separation and quantifying the amount of sample injected onto the capillary.
Collapse
Affiliation(s)
- Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
9
|
Caslavska J, Thormann W. Contemporary chiral simulators for capillary zone electrophoresis. Electrophoresis 2019; 41:502-513. [PMID: 31702052 DOI: 10.1002/elps.201900363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022]
Abstract
For separation of enantiomers in presence of a chiral selector, data obtained with the 1D dynamic simulators SIMUL5complex and GENTRANS are compared to data predicted by PeakMaster 6, a recently released generalized model of the linear theory of electromigration. Four electrophoretic systems with stereoisomers of weak bases were investigated. They deal with the estimation of input data for complexation together with the elucidation of the origin of observed system peaks, the interference of analyte and system peak migration, the change of enantiomer migration order as function of the selector concentration and the inversion of analyte migration direction in presence of a multiply negatively charged selector. For all systems, data predicted with PeakMaster 6 are in agreement with those of the dynamic simulators and simulation data compare well with experimental data that were monitored with setups featuring conductivity and/or UV absorbance detection along the capillary. SIMUL5complex and GENTRANS provide the full dynamics of any buffer and sample arrangement and require very long execution time intervals. PeakMaster 6 is restricted to conventional CZE, is based on an approximate solution of the transport equations, provides data for realistic experimental conditions within seconds and represents a practical tool for an experimentalist.
Collapse
Affiliation(s)
- Jitka Caslavska
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Boublík M, Riesová M, Hruška V, Šteflová J. Online preconcentration of weak electrolytes at the pH boundary induced by a system zone in capillary zone electrophoresis. Anal Chim Acta 2019; 1085:126-135. [DOI: 10.1016/j.aca.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
11
|
Nguyen TH, Waldrop GL, Gilman SD. Capillary electrophoretic assay of human acetyl-coenzyme A carboxylase 2. Electrophoresis 2019; 40:1558-1564. [PMID: 30828828 DOI: 10.1002/elps.201800514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/09/2022]
Abstract
Human acetyl-coenzyme A carboxylase 2 catalyzes the carboxylation of acetyl coenzyme A to form malonyl coenzyme A, along with the conversion of magnesium-adenosine triphosphate complex to magnesium-adenosine diphosphate complex. A simple off-column capillary electrophoresis assay for human acetyl-coenzyme A carboxylase 2 was developed based on the separation of magnesium-adenosine triphosphate complex, magnesium-adenosine diphosphate complex, acetyl coenzyme A and malonyl coenzyme A with detection by ultraviolet absorption at 256 nm. When Mg2+ was absent from the separation buffer, the zones due to magnesium-adenosine triphosphate complex and magnesium-adenosine diphosphate complex both split and migrated as two separate peaks. With Mg2+ added to the separation buffer, magnesium-adenosine triphosphate complex and magnesium-adenosine diphosphate complex produced single peaks, and the reproducibility of peak shape and area improved for human acetyl-coenzyme A carboxylase 2 assay components. The final separation buffer used was 30.0 mM HEPES, 3.0 mM MgCl2 , 2.5 mM KHCO3 , and 2.5 mM potassium citrate at pH 7.50. The same buffer was used for the enzyme-catalyzed reaction (off-column). Inhibition of human acetyl-coenzyme A carboxylase 2 by CP-640186, a known inhibitor, was detected using the capillary electrophoresis assay.
Collapse
Affiliation(s)
- Thu H Nguyen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Grover L Waldrop
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA, USA
| | - S Douglass Gilman
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
12
|
Mikkonen S, Caslavska J, Hruška V, Thormann W. Computer simulation and enantioselective capillary electrophoresis to characterize isomer mixtures of sulfated β-cyclodextrins. Electrophoresis 2017; 39:770-778. [PMID: 29090834 DOI: 10.1002/elps.201700376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/08/2022]
Abstract
The enantiomeric separation of methadone in the presence of multiple isomer mixtures of sulfated β-cyclodextrin (S-β-CD) was studied experimentally with CZE and theoretically using computer simulation. Experiments were performed over many years with several lots of S-β-CD from the same manufacturer with a specified degree of substitution of 7-11. Large differences in the migration patterns were observed between certain lots and it was concluded that the extent of labelling in lots released after a transition time was higher than originally specified. The migration pattern was observed to be associated with (i) the ionic strength increase resulting from using S-β-CDs with a higher charge state and (ii) differences in buffer composition. Apparent binding constants between methadone and the S-β-CD and complex mobilities were determined for different lots of S-β-CD at varying ionic strength using phosphate and 3-morpholino-2-hydroxypropanesulfonic acid buffers. The obtained values were used as input for simulations. For a given ionic strength, agreement between predicted and experimentally observed behavior was obtained for different buffers. R-methadone has a stronger interaction with S-β-CD than S-methadone. For any given configuration there is a distinct S-β-CD concentration range which results in the cationic migration of S-methadone while the migration direction of R-methadone is reversed. This configuration was demonstrated to be applicable for micropreparative CZE separations.
Collapse
Affiliation(s)
- Saara Mikkonen
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Jitka Caslavska
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Šesták J, Thormann W. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug. J Chromatogr A 2017; 1512:124-132. [PMID: 28712552 DOI: 10.1016/j.chroma.2017.06.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022]
Abstract
Part I on head-column field-amplified sample stacking comprised a detailed study of the electrokinetic injection of a weak base across a short water plug into a phosphate buffer at low pH. The water plug is converted into a low conductive acidic zone and cationic analytes become stacked at the interface between this and a newly formed phosphoric acid zone. The fundamentals of electrokinetic processes occurring thereafter were studied experimentally and with computer simulation and are presented as part II. The configuration analyzed represents a discontinuous buffer system. Computer simulation revealed that the phosphoric acid zone at the plug-buffer interface becomes converted into a migrating phosphate buffer plug which corresponds to the cationically migrating system zone of the phosphate buffer system. Its mobility is higher than that of the analytes such that they migrate behind the system zone in a phosphate buffer comparable to the applied background electrolyte. The temporal behaviour of the current and the conductivity across the water plug were monitored and found to reflect the changes in the low conductivity plug. Determination of the buffer flow in the capillary revealed increased pumping caused by the mismatch of electroosmosis within the low conductivity plug and the buffer. This effect becomes elevated with increasing water plug length. For plug lengths up to 1% of the total column length the flow quickly drops to the electroosmotic flow of the buffer and simulations with experimentally determined current and flow values predict negligible band dispersion and no loss of resolution for both low and large molecular mass components.
Collapse
Affiliation(s)
- Jozef Šesták
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Brno, Czechia
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Kulsing C, Yang Y, Chowdhury JM, Boysen RI, Hearn MTW. Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open‐tubular capillaries. Electrophoresis 2017; 38:1179-1187. [DOI: 10.1002/elps.201600532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Chadin Kulsing
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Yuanzhong Yang
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Jamil M. Chowdhury
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Reinhard I. Boysen
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Milton T. W. Hearn
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| |
Collapse
|
15
|
Bidulock ACE, Dubský P, van den Berg A, Eijkel JCT. Integrating Internal Standards into Disposable Capillary Electrophoresis Devices To Improve Quantification. Anal Chem 2017; 89:2886-2892. [PMID: 28192985 PMCID: PMC5343550 DOI: 10.1021/acs.analchem.6b04172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
To
improve point-of-care quantification using microchip capillary
electrophoresis (MCE), the chip-to-chip variabilities inherent in
disposable, single-use devices must be addressed. This work proposes
to integrate an internal standard (ISTD) into the microchip by adding
it to the background electrolyte (BGE) instead of the sample—thus
eliminating the need for additional sample manipulation, microchip
redesigns, and/or system expansions required for traditional ISTD
usage. Cs and Li ions were added as integrated ISTDs to the BGE, and
their effects on the reproducibility of Na quantification were explored.
Results were then compared to the conclusions of our previous publication
which used Cs and Li as traditional ISTDs. The in-house fabricated
microchips, electrophoretic protocols, and solution matrixes were
kept constant, allowing the proposed method to be reliably compared
to the traditional method. Using the integrated ISTDs, both Cs and
Li improved the Na peak area reproducibility approximately 2-fold,
to final RSD values of 2.2–4.7% (n = 900).
In contrast (to previous work), Cs as a traditional ISTD resulted
in final RSDs of 2.5–8.8%, while the traditional Li ISTD performed
poorly with RSDs of 6.3–14.2%. These findings suggest integrated
ISTDs are a viable method to improve the precision of disposable MCE
devices—giving matched or superior results to the traditional
method in this study while neither increasing system cost nor complexity.
Collapse
Affiliation(s)
| | - Pavel Dubský
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University , Hlavova 8, 128 43 Prague 2, Czech Republic
| | | | | |
Collapse
|
16
|
Analysis and characterization of aluminum chlorohydrate oligocations by capillary electrophoresis. J Chromatogr A 2017; 1492:144-150. [PMID: 28284762 DOI: 10.1016/j.chroma.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 11/23/2022]
Abstract
Aluminum chlorohydrates (ACH) are the active ingredients used in most antiperspirant products. ACH is a water soluble aluminum complex which contains several oligomeric polycations of aluminum with degrees of polymerization up to Al13 or Al30. The characterization and quantification of ACH oligo-cations remain a challenging issue of primary interest for developing structure/antiperspirant activity correlations, and for controlling the ACH ingredients. In this work, highly repeatable capillary electrophoresis (CE) separation of Al3+, Al13 and Al30 oligomers contained in ACH samples was obtained at pH 4.8, owing to a careful choice of the background electrolyte counter-ion and chromophore, capillary I.D. and capillary coating. This is the first reported separation of Al13 and Al30 oligomers in conditions that are compatible with the aluminum speciation in ACH solution or in conditions of antiperspirant application/formulation. Al13 and Al30 effective charge numbers were also determined from the sensitivity of detection in indirect UV detection mode. The relative mass proportion of Al13 compared to Al13+Al30 could be determined in different aluminum chlorohydrate samples. Due to its simplicity, repeatability/reproducibility, minimal sample preparation and mild analytical conditions, CE appears to be a promising analytical separation technique for the characterization of ACH materials and for the study of structure/antiperspirant activity correlations.
Collapse
|
17
|
Kulsing C, Boysen RI, Hearn MTW. Contribution of Eigenmobility Shifts to the Separation of Peptides in Capillary Electrophoresis with Aqueous–Acetonitrile Background Electrolytes. Anal Chem 2016; 88:12255-12263. [DOI: 10.1021/acs.analchem.6b03438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chadin Kulsing
- Australian Centre for Research
on Separation Science (ACROSS), Centre for Green Chemistry, School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| | - Reinhard I. Boysen
- Australian Centre for Research
on Separation Science (ACROSS), Centre for Green Chemistry, School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| | - Milton T. W. Hearn
- Australian Centre for Research
on Separation Science (ACROSS), Centre for Green Chemistry, School
of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
18
|
Abstract
Electroosmotic flow (EOF) with two or more fluids is often encountered in various microfluidic applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during displacement flow of solutions with dissimilar anion species. In this investigation, EOF of dissimilar anionic solutions was studied experimentally through the current monitoring method and numerically through finite element simulations. As opposed to other conventional displacement flows, EOF involving dissimilar anionic solutions exhibits counterintuitive behavior, whereby the current-time curve does not reach the steady-state value of the displacing electrolyte. Two distinct mechanics have been identified as the causes for this observation: (a) ion concentration adjustment when the displacing anions migrate upstream against EOF due to competition between the gradients of electromigrative and convective fluxes and (b) ion concentration readjustment induced by the static diffusive interfacial region between the dissimilar fluids which can only be propagated throughout the entire microchannel with the presence of EOF. The resultant ion distributions lead to the flow rate to be directional-dependent, indicating that the flow conditions are asymmetric between these two different flow directions. The outcomes of this investigation contribute to the in-depth understanding of flow behavior in microfluidic systems involving inhomogeneous fluids, particularly dissimilar anionic solutions. The understanding of EOF hysteresis is fundamentally important for the accurate prediction of analytes transport in microfluidic devices under EOF.
Collapse
Affiliation(s)
- An Eng Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Chun Yee Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Yee Cheong Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
19
|
Caslavska J, Koenka IJ, Hauser PC, Thormann W. Validation of CE modeling with a contactless conductivity array detector. Electrophoresis 2016; 37:699-710. [PMID: 26799858 DOI: 10.1002/elps.201500424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/11/2022]
Abstract
Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C(4) Ds). The experimental setup featured a 50 μm id linear polyacrylamide (LPA) coated fused-silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the manifold allows the placement of the first detector at about 2.7 cm from the sample inlet. Agreement of simulated electropherograms with experimental data was obtained for the migration and separation of cationic and anionic analyte and system zones in CZE configurations in which EOF and other column properties are constant. For configurations with discontinuous buffer systems, including ITP, experimental data obtained with the array detector revealed that the EOF is not constant. Comparison of simulation and experimental data of ITP systems provided the insight that the EOF can be estimated with an ionic strength dependent model similar to that previously used to describe EOF in fused-silica capillaries dynamically double coated with Polybrene and poly(vinylsulfonate). For the LPA coated capillaries, the electroosmotic mobility was determined to be 17-fold smaller compared to the case with the charged double coating. Simulation and array detection provide means for quickly investigating electrophoretic transport and separation properties. Without realistic input parameters, modeling alone is not providing data that match CE results.
Collapse
Affiliation(s)
- Jitka Caslavska
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Sursyakova VV, Rubaylo AI. New peak broadening parameter for the characterization of separation capability in capillary electrophoresis. J Sep Sci 2015; 38:690-6. [DOI: 10.1002/jssc.201401109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/30/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Viktoria V. Sursyakova
- Institute of Chemistry and Chemical Technology; Siberian Branch of the Russian Academy of Sciences; Krasnoyarsk Russia
| | - Anatoly I. Rubaylo
- Institute of Chemistry and Chemical Technology; Siberian Branch of the Russian Academy of Sciences; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
21
|
Sursyakova VV, Kalyakin SN, Burmakina GV, Rubaylo AI. System peaks and optimization of anion separation in capillary electrophoresis with non-reversed electroosmotic flow. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812090080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Buszewski B, Bocian S, Felinger A. Artifacts in liquid-phase separations-system, solvent, and impurity peaks. Chem Rev 2012; 112:2629-41. [PMID: 22309131 DOI: 10.1021/cr200182j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boguslaw Buszewski
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland.
| | | | | |
Collapse
|
23
|
Determination of N-methyl-2-pyrrolidone and its metabolites in urine by micellar electrokinetic chromatography. OPEN CHEM 2011. [DOI: 10.2478/s11532-011-0062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA fast and accurate micellar electrokinetic capillary chromatography (MEKC) method was developed for monitoring N-methyl-2-pyrrolidone (NMP) exposure. Baseline separation of NMP and its main metabolites: 5-hydroxy-N-methyl-2-pyrrolidone (5HNMP), N-methylsuccinimide (MSI), 2-hydroxy-N-methylsuccinimide (2HMSI), and 2-pyrrolidone (2P) was obtained within 6 min in an uncoated fused silica capillary using 5 mM phosphate buffer and 140 mM sodium dodecyl sulfate (pH 7.1) as background electrolyte (BGE). On-line UV-detection was performed at 200 nm and the applied electric field was 400 V cm−1. Possible interference of BGE-induced system peaks on separation was investigated by computer simulation and no such interference was observed. The developed MEKC method combined with solid phase extraction for sample preparation was successfully applied to the analysis of urine of rats exposed to NMP. The urinary excretion was determined in 0–6 h and 6–24 h specimens collected after an intragastic administration of 308 mg NMP / kg rat body weight. The results of NMP disposition kinetics in rat urine are reported for NMP and metabolites.
Collapse
|
24
|
Sursyakova VV, Kalyakin SN, Burmakina GV, Rubaylo AI. System peaks in capillary zone electrophoresis of anions with negative voltage polarity and counter-electroosmotic flow. Electrophoresis 2010; 32:210-7. [DOI: 10.1002/elps.201000313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/23/2010] [Accepted: 10/15/2010] [Indexed: 11/08/2022]
|
25
|
Tran NT, Ayed I, Pallandre A, Taverna M. Recent innovations in protein separation on microchips by electrophoretic methods: An update. Electrophoresis 2010; 31:147-73. [DOI: 10.1002/elps.200900465] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Oita I, Halewyck H, Pieters S, Dejaegher B, Thys B, Rombaut B, Heyden YV. Improving the capillary electrophoretic analysis of poliovirus using a Plackett–Burman design. J Pharm Biomed Anal 2009; 50:655-63. [DOI: 10.1016/j.jpba.2008.09.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/19/2008] [Accepted: 09/30/2008] [Indexed: 11/28/2022]
|
27
|
Erny GL, Rodrigues JEA, Gil AM, Barros AS, Esteves VI. Analysis of Non-Aromatic Organic Acids in Beer by CE and Direct Detection Mode with Diode Array Detection. Chromatographia 2009. [DOI: 10.1365/s10337-009-1377-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Kalíková K, Hruška V, Svobodová J, Chudoba R, Gaš B, Tesařová E. Occurrence and behavior of system peaks in RP HPLC with solely aqueous mobile phases. J Sep Sci 2009; 32:2864-70. [DOI: 10.1002/jssc.200900257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Erny GL, Esteves VI. Robustness of the co-ion transfer ratio in capillary electrophoresis. J Sep Sci 2009; 32:3007-12. [PMID: 19639548 DOI: 10.1002/jssc.200900069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In CE, indirect detection mode often exhibits a lower precision than its direct counterpart. Although various explanations have already been advanced, in this work, we aimed to investigate if this is due, in part, to problems of robustness of the co-ion transfer ratio (TR), thus being inherent to this particular detection scheme. This was investigated using simulation software that allows an accurate control of various parameters and validated using acetic acid as a test compound. It was conclusively demonstrated that the TR could vary by more than 6% when the concentration of one of the ions in the BGE was changed by as few as 1%. The presence of a system peak seems to be particularly damaging as it has been shown that the TR of peaks whose mobilities differ by more than 0.5x10(-8) m(2) V(-1) s(-1) from one of the system peaks, still have a relatively low robustness.
Collapse
Affiliation(s)
- Guillaume L Erny
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| | | |
Collapse
|
30
|
Determination of ammonium, calcium, magnesium, potassium and sodium in drinking waters by capillary zone electrophoresis on a column-coupling chip. J Chromatogr A 2009; 1216:6252-5. [PMID: 19616216 DOI: 10.1016/j.chroma.2009.06.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/16/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
This work deals with simultaneous determination of ammonium, calcium, magnesium, sodium and potassium in drinking waters by capillary zone electrophoresis (CZE) on a column-coupling (CC) chip with suppressed hydrodynamic and electroosmotic transports. CZE separations were carried out in a propionate background electrolyte at a low pH (3.2) containing 18-crown-6-ether (18-crown-6) to reach a complete resolution of the cations. In addition, triethylenetetramine (TETA) coated the inner wall surface of the chip channels. The concentration limits of detection (cLOD) for the studied cations ranged from 4.9 to 11.5 microg/l concentrations using a 900 nl volume of the sample injection channel. 93-106% recoveries of the cations in drinking waters indicate a good predisposition of the present method to provide accurate analytical results.
Collapse
|
31
|
Chen Z, Weber SG. Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Analyt Chem 2008; 27:738-748. [PMID: 19802330 PMCID: PMC2600677 DOI: 10.1016/j.trac.2008.06.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many methods for determining intermolecular interactions have been described in the literature in the past several decades. Chief among them are methods based on spectroscopic changes, particularly those based on absorption or nuclear magnetic resonance (NMR) [especially proton NMR ((1)H NMR)]. Recently, there have been put forward several new methods that are particularly adaptable, use very small quantities of material, and do not place severe requirements on the spectroscopic properties of the binding partners. This review covers new developments in affinity capillary electrophoresis, electrospray ionization mass spectrometry (ESI-MS) and phasetransfer methods.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Rodríguez-Gonzalo E, Domínguez-Álvarez J, Ruano-Miguel L, Carabias-Martínez R. In-capillary preconcentration of pirimicarb and carbendazim with a monolithic polymeric sorbent prior to separation by CZE. Electrophoresis 2008; 29:4066-77. [DOI: 10.1002/elps.200800277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|