1
|
Lovejoy LK, Foley JP. Separation of weak acids, neutral compounds, and permanent anions using sequential elution liquid chromatography with tandem columns. J Chromatogr A 2024; 1731:465178. [PMID: 39059305 DOI: 10.1016/j.chroma.2024.465178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
This paper discusses the development of an analytical method by an alternative separation approach, sequential elution liquid chromatography (SE-LC), to separate permanently charged ions (anions), weak acids, and neutral compounds using anion exchange and reversed-phase columns in tandem. SE-LC separates classes of compounds by group by employing two or more elution modes. Advantages to using SE-LC over conventional HPLC are a greater peak capacity and a reduced separation disorder. Importantly, the same HPLC as used for a conventional HPLC separation may be used to afford a successful SE-LC separation. Mobile phase selection and gradient optimization are integral for a successful SE-LC class separation of permanent anions, weak acids, and neutral compounds and will be discussed in detail in this paper. The most successful (best resolution and repeatability) SE-LC separation was achieved by applying isocratic elution at low pH to elute the weak acids, followed by an acetonitrile gradient to elute the neutral compounds, and last a sodium methanesulfonate gradient to elute the anionic compounds using a superficially porous C18 column coupled with a strong anion exchange (SAX) column. Repeatability (RSD) in the retention times and peak areas of the analytes was less than 0.25 % and 1.5 %, respectively.
Collapse
Affiliation(s)
- Lauren Kline Lovejoy
- R&D Medicine Development and Supply, Analytical Development, GSK, Collegeville, PA 19426, USA; Drexel University, Department of Chemistry, 32 South 32nd St., Disque Hall 305, Philadelphia, PA 19104, USA
| | - Joe P Foley
- Drexel University, Department of Chemistry, 32 South 32nd St., Disque Hall 305, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Lawlor K, Clausen J, Johnston A, Edge A, Wolff K, Castrignanò E, Couchman L. A review of analytical parameters in 'rapid' liquid chromatographic methods for bioanalysis: Can we do better? J Chromatogr A 2024; 1721:464803. [PMID: 38547680 DOI: 10.1016/j.chroma.2024.464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Rapid bioanalysis is beneficial to many applications. However, how 'rapid' a method is, or could be, is often an unanswered question. In this statistical review, the authors have assessed multiple pre-analytical (i.e. sample preparation), and analytical method parameters specifically for liquid chromatography to assist researchers in developing and validating 'rapid' bioanalytical methods. We restricted the search to urine and plasma matrices only. Data were extracted from over 2,000 recent studies and evaluated to assess how these parameters affected the 'on-instrument' analysis time. In addition to methods using ultra-violet (UV) detection, there were a large number of mass spectrometric (MS) methods, allowing additional review of the differences between high- and low-resolution MS on analysis time. We observed that most (N = 922, 70 %) methods used 5 or 10 cm columns, and that whilst uptake of ultra-high performance (U)HPLC columns was good, the use of sub-5 cm columns and/or flow rates in excess of 1 mL/min was incredibly rare (N = 25, 3 %). The detector of choice for quantitative (U)HPLC-MS remains the triple quadrupole, although a number of groups report the use of high-resolution MS for such methods.
Collapse
Affiliation(s)
- K Lawlor
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - J Clausen
- Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - A Johnston
- Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - A Edge
- Avantor Sciences, The Markham Centre, Station Road, Theale, Reading, RG7 4PE
| | - K Wolff
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Drug Control Centre, King's College London, London, SE1 9NH, UK
| | - E Castrignanò
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Drug Control Centre, King's College London, London, SE1 9NH, UK
| | - L Couchman
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
3
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Chen CL, Chen YT, Liao WY, Chang YS, Yu JS, Juo BR. Urinary Metabolomic Analysis of Prostate Cancer by UPLC-FTMS and UPLC-Ion Trap MS n. Diagnostics (Basel) 2023; 13:2270. [PMID: 37443661 DOI: 10.3390/diagnostics13132270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulative evidence suggests metabolic disorders correlate with prostate cancer. Metabolic profiling of urine allows the measurement of numerous metabolites simultaneously. This study set up a metabolomic platform consisting of UPLC-FTMS and UPLC-ion trap MSn for urine metabolome analysis. The platform improved retention time, mass accuracy, and signal stability. Additionally, the product ion spectrum obtained from ion trap MSn facilitated structure elucidation of candidate metabolites, especially when authentic standards were not available. Urine samples from six hernia patients and six BPH patients were used for the initial establishment of the analytic platform. This platform was further employed to analyze the urine samples of 27 PCa and 49 BPH patients. Choosing the upper and lower 16% of metabolites, 258 metabolite candidates were selected. Twenty-four of them with AUC values larger than 0.65 were further selected. Eighteen of the twenty-four features can be matched in METLIN and HMDB. Eleven of the eighteen features can be interpreted by MSn experiments. They were used for the combination achieving the best differential power. Finally, four metabolites were combined to reach the AUC value of 0.842 (CI 95, 0.7559 to 0.9279). This study demonstrates the urinary metabolomic analysis of prostate cancer and sheds light on future research.
Collapse
Affiliation(s)
- Chien-Lun Chen
- Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Yi-Ting Chen
- Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wen-Yu Liao
- Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Bao-Rong Juo
- Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Jaekel A, Wirtz M, Lamotte S, Legelli M. Performance in (Ultra-)high-performance liquid chromatography-How to qualify and optimize instruments in practice. J Sep Sci 2023; 46:e2200894. [PMID: 36757818 DOI: 10.1002/jssc.202200894] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
This paper investigates the suitability of an ultra-high-performance liquid chromatography/high-performance liquid chromatography hybrid system for ultra-high-performance liquid chromatography applications. Thus, the effect of extra column band broadening, the gradient system, and the injection system were tested and optimized according to their capabilities. An increase of the theoretical plate number up to a factor of two is achieved by the optimization of the extra column volume into the typical ultra-high-performance liquid chromatography range (<10 μl). Moreover, for qualitative purposes injections of volumes typical for ultra-high-performance liquid chromatography methods are precise. Despite this, a lack of precision and accuracy was determined for the gradient system, and the dwell volume meets the typical specification range for conventional HPLC systems. Therefore, hybrid systems are the intercept between both spectra and are limitedly suitable for ultra-high-performance liquid chromatography applications. Another way to approximate ultra-high-performance liquid chromatography performance using a high-performance liquid chromatography system is superficially porous particles. Thus, H/u curves of 5 μm superficially porous and 3 μm fully porous particles were recorded in order to determine the effect of the particle technology resulting in comparable performance of the used stationary phases.
Collapse
Affiliation(s)
- Alexander Jaekel
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Michaela Wirtz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Stefan Lamotte
- Department of Analytical and Material Science, BASF SE, Ludwigshafen, Germany
| | - Mo Legelli
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| |
Collapse
|
6
|
Ali A, Alharthi S, Al-Shaalan NH, Santali EY. Development of Narrow-Bore C18 Column for Fast Separation of Peptides and Proteins in High-Performance Liquid Chromatography. Polymers (Basel) 2022; 14:polym14132576. [PMID: 35808622 PMCID: PMC9268927 DOI: 10.3390/polym14132576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022] Open
Abstract
Separation with high efficiency and good resolution is constantly in demand in the pharmaceutical industry. The fast and efficient separation of complex samples such as peptides and proteins is a challenging task. To achieve high efficiency with good resolution, chromatographers are moving towards small particles packed into narrow-bore columns. Silica monolith particles (sub-2 µm) were derivatized with chlorodimethyl octadecyl silane (C18) and packed into stainless steel columns (100 mm × 1.8 mm i.d) by a slurry-packing method. The developed columns were used for the separation of peptides and proteins. A separation efficiency (N) of 40,000 plates/column (400,000 plates/m) was achieved for the mixture of five peptides. Similarly, the fast separation of the peptides was carried out using a high flow rate, and the separation of the five peptides was achieved in one minute with high efficiency (N ≅ 240,000 plates/m). The limit of detection (DL) and the limit of quantification (QL) for each analyte were determined by developing a linear regression curve with relatively very low concentrations of the target compound. The average values of the QL for the peptide and proteins were 0.55 ng and 0.48 ng, respectively, using short C18 column (1.8 mm × 100 mm) UV (at 214 nm). The fast analysis of peptides and proteins with such high efficiency and good resolution has not been reported in the literature yet. Owing to high efficiency, these home-made columns could be used as an alternative to the expensive commercial columns for peptide and protein separation.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Chemistry, Faculty of Natural Sciences, University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
- Correspondence: or ; Tel.: +92-3471214422
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
7
|
Tıraş ZŞE, Okur HH, Günay Z, Yıldırım HK. Different approaches to enhance resveratrol content in wine. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv20223701013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol with antioxidant properties and possible beneficial effects on human health. Grapes, peanuts, berries, cacao beans and red wine contain resveratrol. Resveratrol attracts attention due to its bioactive properties, however, the concentration of this compound is not high in grape and wine. Therefore, different studies have been carried out to increase resveratrol level in these products. Several factors such as the grapevine variety, the climatic conditions and the viticultural practices used to create stress on the vine affect the level of resveratrol. Winemaking technologies applied during pre-fermentation, fermentation and post–fermentation stages could also have an effect on the concentration of this stilbene. In addition, recent studies have evaluated biotechnological approaches through the use of different bacteria and yeast strains to produce wine with increased resveratrol content. In this review, the most important factors contributing to increase the resveratrol concentration in grapes and wines are examined. Besides, analytical methods to determine resveratrol content in wine are addressed.
Collapse
|
8
|
Preparation of mixed-mode stationary phase for separation of peptides and proteins in high performance liquid chromatography. Sci Rep 2022; 12:4061. [PMID: 35260726 PMCID: PMC8904576 DOI: 10.1038/s41598-022-08074-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Porous silica particles were prepared by sol–gel method with some modification to get wide-pore particles. These particles were derivatized with N-phenylmaleimide-methylvinylisocyanate (PMI) and styrene by reversible addition fragmentation chain transfer (RAFT) polymerization to prepare N-phenylmaleimide embedded polystyrene (PMP) stationary phases. Narrow bore stainless steel column (100 × 1.8 mm i.d) was packed by slurry packing method. The chromatographic performance of PMP column was evaluated for the separation of synthetic peptides mixture composed of five peptides (Gly-Tyr, Gly-Leu-Tyr, Gly-Gly-Tyr-Arg, Tyr-Ile-Gly-Ser-Arg, Leucine enkephalin) and tryptic digest of human serum albumin (HAS) respectively. Number of theoretical plates as high as 280,000 plates/m were obtained for peptides mixture at optimum elution condition. Separation performance of the developed column was compared with commercial Ascentis Express RP-Amide column and it was observed that separation performance of PMP column was better than commercial column in terms of separation efficiency and resolution.
Collapse
|
9
|
He X, Ahmed A, Guo S, Kang C, Shen Y, Cong H, Yu B. Preparation and application of urea-based derivatized β-cyclodextrin chiral stationary phase based on diazotized silica microspheres. J Chromatogr A 2022; 1669:462932. [DOI: 10.1016/j.chroma.2022.462932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
|
10
|
Ferguson P, Hicks M. The state-of-the-art and future perspectives for SFC. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Fang M, Wang Z, Cupp-Sutton KA, Welborn T, Smith K, Wu S. High-throughput hydrogen deuterium exchange mass spectrometry (HDX-MS) coupled with subzero-temperature ultrahigh pressure liquid chromatography (UPLC) separation for complex sample analysis. Anal Chim Acta 2021; 1143:65-72. [PMID: 33384131 PMCID: PMC8265693 DOI: 10.1016/j.aca.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022]
Abstract
Hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein dynamics and protein interactions. Recent technological developments in the HDX-MS field, such as sub-zero LC separations, large-scale data analysis tools, and efficient protein digestion methods, have allowed for the application of HDX-MS to the analysis of multi protein systems in addition to pure protein analysis. Still, high-throughput HDX-MS analysis of complex samples is not widespread because the co-elution of peptides combined with increased peak complexity after labeling makes peak de-convolution extremely difficult. Here, for the first time, we evaluated and optimized long gradient subzero-temperature ultra-high-pressure liquid chromatography (UPLC) separation conditions for the HDX-MS analysis of complex protein samples such as E. coli cell lysate digest. Under the optimized conditions, we identified 1419 deuterated peptides from 320 proteins at -10 °C, which is about 3-fold more when compared with a 15-min gradient separation under the same conditions. Interestingly, our results suggested that the peptides eluted late in the gradient are well-protected by peptide-column interactions at -10 °C so that peptides eluted even at the end of the gradient maintain high levels of deuteration. Overall, our study suggests that the optimized, sub-zero, long-gradient UPLC separation is capable of characterizing thousands of peptides in a single HDX-MS analysis with low back-exchange rates. As a result, this technique holds great potential for characterizing complex samples such as cell lysates using HDX-MS.
Collapse
Affiliation(s)
- Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Thomas Welborn
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
12
|
Abstract
The hyphenation of Ultra-Performance Liquid performance (UPLC) with mass spectrometry
(MS) has emerged as a powerful tool in analytical research due to its advanced sensitivity,
resolution and speed. Its advanced instrumentation, specialized columns, separation at ultra-high
pressure and sophisticated software are the distinguishing features as compared to the traditional
separating techniques. It has a wide range of applications in various fields such as analysis of food
stuffs, drug metabolites, beverages, toxicology, soil samples and micronutrient analysis. In the present
compilation, authors have highlighted the applicability of UPLC-MS in the analysis of food stuffs and
drug metabolites along with the various optimized analytical conditions and obtained results.
Collapse
Affiliation(s)
- Ankit Semwal
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga 142001, India
| | - Raghav Dogra
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga 142001, India
| | - Kritika Verma
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga 142001, India
| |
Collapse
|
13
|
Wang Y, Xie H, Liu D, Wang Y, Liu C, Khan MA, Jiang J, Zhang W. Effects of Different Sample Pulverisation Methods on the Extraction of Metabolites from the Fermented Cottonseed Meal Based on UPLC-Q-TOF-MS. Curr Microbiol 2020; 77:2751-2757. [PMID: 32524273 DOI: 10.1007/s00284-020-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
The precondition of studying biological sample is to extract sample metabolites by the best pretreatment methods. There is already limited information about pretreatments of fermented feed metabolites. The study compared the extraction effects of different pulverisation methods used in the sample pretreatment process for the extraction of metabolites from cottonseed meal fermented by Lactobacillus acidophilus based on UPLC-Q-TOF-MS. The extraction effects of three pretreatments (non-pulverisation (WF), pulverisation (F), and high-speed homogenisation methods (YJ)) were compared with the numbers of metabolites and the normalised peak areas of the metabolites. The results showed that the number of metabolites extracted with three pulverisation methods were 1745, 1896, 2132 (ESI+ mode) and 1447, 1675, 2073 (ESI- mode), respectively. The number of variable importance plot (VIP) metabolites and the relative peak areas of metabolites showed that the trend was YJ > F > WF. The extraction effect of high-speed homogenisation method was the best way to extract metabolites from the fermented cottonseed meal. This study built a foundation work for the further research of the fermented feed metabolomics.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832000, People's Republic of China
| | - Hongbing Xie
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Changzhong Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Muhammad Akram Khan
- Department of Pathology, Faculty of Veterinary and Animal Science, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Wenjv Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, People's Republic of China.
| |
Collapse
|
14
|
Kresge GA, Grosse S, Zimmer A, Grinias KM, De Pra M, Wong JMT, Steiner F, Grinias JP. Strategies in developing high-throughput liquid chromatography protocols for method qualification of pharmacopeial monographs. J Sep Sci 2020; 43:2964-2970. [PMID: 32388922 DOI: 10.1002/jssc.202000403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/11/2022]
Abstract
Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high-performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high-throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24-run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.
Collapse
Affiliation(s)
- Glenn A Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| | | | - Alexis Zimmer
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Kaitlin M Grinias
- Analytical Platforms & Platform Modernization , GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
15
|
Yang X, Wan G, Ma S, Xia H, Wang J, Liu J, Liu Y, Chen G, Bai Q. Synthesis and optimization of SiO2@SiO2 core-shell microspheres by an improved polymerization-induced colloid aggregation method for fast separation of small solutes and proteins. Talanta 2020; 207:120310. [DOI: 10.1016/j.talanta.2019.120310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
|
16
|
Validation of a Reversed-Phase Ultra-High-Performance Liquid Chromatographic Method With Photodiode Array Detection for the Determination of Voriconazole in Human Serum and Its Application to Therapeutic Drug Monitoring. Ther Drug Monit 2018; 40:276-283. [PMID: 29432386 DOI: 10.1097/ftd.0000000000000491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Voriconazole is a broad-spectrum triazole antifungal agent. It is widely used in the treatment of invasive fungal infections in immunocompromised patients. Because the pharmacokinetics of voriconazole demonstrates considerable variability, monitoring its serum levels plays an important role in optimizing therapies against many clinically relevant fungal pathogens. The aim of this study was to validate a simple and rapid U-HPLC-PDA method with minimal sample preparation for routine therapeutic drug monitoring (TDM) of voriconazole. METHODS After protein precipitation with the internal standard solution (posaconazole 5.0 mg/L in acetonitrile), chromatographic separation was performed in 4 minutes using water and acetonitrile as mobile phases and an Acquity UPLC BEH HSS C18 column (2.1 × 100 mm, 1.7 µm). The temperature was set at 45°C and the flow rate was 0.4 mL/min. Photodiode array detection at 256 nm was used as detection system. The method was validated according international guidelines for linearity, accuracy, precision, selectivity, lower limit of quantitation, carry over, and stability under different conditions. RESULTS All performance parameters were within acceptance criteria, demonstrating that the validated method is fit for purpose. After assay validation, 115 serum samples collected from 41 patients were analyzed to report the experience of the laboratory in TDM of voriconazole. Results showed a large variability in voriconazole trough levels, suggesting that this drug should be frequently measured in patients under treatment to enhance therapies efficacy and improve safety. CONCLUSIONS In this study, a reproducible U-HPLC-PDA assay with a short analysis time, requiring only a small amount of serum, good accuracy and reproducibility was validated, which is suitable for routine TDM of voriconazole in serum.
Collapse
|
17
|
Liang Y, Zhou T. Recent advances of online coupling of sample preparation techniques with ultra high performance liquid chromatography and supercritical fluid chromatography. J Sep Sci 2018; 42:226-242. [PMID: 30136406 DOI: 10.1002/jssc.201800721] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid-phase extraction and in-tube solid-phase microextraction, while solid-phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.
Collapse
Affiliation(s)
- Yanshan Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
18
|
Herrera BT, Pilicer SL, Anslyn EV, Joyce LA, Wolf C. Optical Analysis of Reaction Yield and Enantiomeric Excess: A New Paradigm Ready for Prime Time. J Am Chem Soc 2018; 140:10385-10401. [PMID: 30059621 DOI: 10.1021/jacs.8b06607] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Perspective highlights the advances of optical methods for asymmetric reaction discovery. Optical analysis allows for the determination of absolute configuration, enantiomeric excess and reaction yield that is amenable to high-throughput experimentation. Thus, the synthetic organic community is encouraged to incorporate the methods discussed to expedite the development of high-yielding, enantioselective transformations.
Collapse
Affiliation(s)
- Brenden T Herrera
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Samantha L Pilicer
- Department of Chemistry , Georgetown University , Washington, D.C. 20057 , United States
| | - Eric V Anslyn
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Leo A Joyce
- Department of Process Research & Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Christian Wolf
- Department of Chemistry , Georgetown University , Washington, D.C. 20057 , United States
| |
Collapse
|
19
|
Goel M, Larson E, Venkatramani C, Al-Sayah MA. Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFC-MS) system to assess “in-vivo” inter-conversion of chiral drug molecules. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:89-95. [DOI: 10.1016/j.jchromb.2018.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
20
|
Elazazy MS, Issa AA, Al-Mashreky M, Al-Sulaiti M, Al-Saad K. Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Tzima K, Brunton NP, Rai DK. Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants-A Review. PLANTS 2018; 7:plants7020025. [PMID: 29587434 PMCID: PMC6027318 DOI: 10.3390/plants7020025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized.
Collapse
Affiliation(s)
- Katerina Tzima
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Nigel P Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|
22
|
Ahmed A, Skinley K, Herodotou S, Zhang H. Core-shell microspheres with porous nanostructured shells for liquid chromatography. J Sep Sci 2017; 41:99-124. [DOI: 10.1002/jssc.201700850] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Haifei Zhang
- Department of Chemistry; University of Liverpool; Liverpool UK
| |
Collapse
|
23
|
Sedimentation assisted preparation of ground particles of silica monolith and their C18 modification resulting in a chromatographic phase of improved separation efficiency. J Chromatogr A 2017; 1525:79-86. [DOI: 10.1016/j.chroma.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023]
|
24
|
Pei Y, Fan F, Wang X, Feng W, Hou Y, Pei Z. Fabrication of Hypericin Imprinted Polymer Nanospheres via Thiol-Yne Click Reaction. Polymers (Basel) 2017; 9:E469. [PMID: 30965772 PMCID: PMC6418589 DOI: 10.3390/polym9100469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
To fabricate molecularly imprinted polymer nanospheres via click reaction, five different clickable compounds were synthesized and two types of click reactions (azide-alkyne and thiol-yne) were explored. It was found that molecularly imprinted polymer nanospheres could be successfully synthesized via thiol-yne click reaction using 3,5-diethynyl-pyridine (1) as the monomer, tris(3-mercaptopropionate) (tri-thiol, 5) as the crosslinker, and hypericin as the template (MIP⁻NSHs). The click polymerization completed in merely 4 h to produce the desired MIP⁻NSHs, which were characterized by FTIR, SEM, DLS, and BET, respectively. The reaction conditions for adsorption capacity and selectivity towards hypericin were optimized, and the MIP⁻NSHs synthesized under the optimized conditions showed a high adsorption capacity (Q = 6.03 μmol•g-1) towards hypericin. The imprinting factors of MIP⁻NSHs towards hypericin, protohypericin, and emodin were 2.44, 2.88, and 2.10, respectively.
Collapse
Affiliation(s)
- Yuxin Pei
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fengfeng Fan
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinxin Wang
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Weiwei Feng
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Hou
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhichao Pei
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
25
|
A review of high performance liquid chromatographic-mass spectrometric urinary methods for anticancer drug exposure of health care workers. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:316-324. [PMID: 28654869 DOI: 10.1016/j.jchromb.2017.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/14/2017] [Accepted: 06/17/2017] [Indexed: 12/15/2022]
Abstract
This review describes published high performance liquid chromatography/mass spectrometry (HPLC-MS) methods for the determination of anticancer drugs in human urine as non-invasive tool for monitoring of health care worker exposure to antineoplastic and cytotoxic drugs. HPLC-MS is a sensitive and specific method for analysis of anticancer drugs and their metabolites in biological fluids. In this review, a tabular summary and overview of published HPLC-MS methods are presented, as well as future trends and limitations in this area of research.
Collapse
|
26
|
Li MF, Hu XX, Ma AQ. Ultra-high pressure liquid chromatography-tandem mass spectrometry method for the determination of omarigliptin in rat plasma and its application to a pharmacokinetic study in rats. Biomed Chromatogr 2017; 31. [PMID: 28317144 DOI: 10.1002/bmc.3975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 01/04/2023]
Abstract
Omarigliptin is a novel long-acting dipeptidyl peptidase-4 inhibitor used for the treatment of type 2 diabetes. In this work, a sensitive and selective ultra-high pressure liquid chromatography tandem mass spectrometry method was developed and validated for the determination of omarigliptin in rat plasma. Sample preparation was performed by protein precipitation with acetonitrile. Chromatographic separation of analytes was achieved on an RRHD Eclipse Plus C18 column (2.1 × 50 mm, 1.8 μm), using gradient mobile phase (0.1% formic acid-acetonitrile) at a flow rate of 0.4 mL/min. Detection was performed in multiple reaction monitoring mode, with target fragment ions m/z 399.1 → 152.9 for omarigliptin and m/z 237.1 → 194 for the internal standard. The total run time was 4 min. Retention time of omarigliptin and internal standard was 1.25 and 2.12 min, respectively. Relative standard deviation (%) of the intra- and inter-day precision was below 10.0%, and accuracy was between 97.9% and 105.3%. Calibration curve was established over the range 2-5000 ng/mL with good linearity. The lower limit of quantification and limit of detection of omarigliptin were 2 and 0.25 ng/mL, respectively. Mean recoveries were in the range 87.3-95.1% for omarigliptin. No matrix effect was observed in this method. This novel method has been successfully applied to a pharmacokinetic study of omarigliptin in rats. The absolute bioavailability of omarigliptin was identified as high as 87.31%.
Collapse
Affiliation(s)
- Meng-Fang Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, China
| | - Xiao-Xia Hu
- School of Pharmacy of Wenzhou Medical University, China
| | - Ai-Qun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, China
| |
Collapse
|
27
|
Patel DP, Nair S, Suhagia BN, Patel BM. A novel, sensitive and selective method of UPLC/MS-MS for rapid simultaneous determination of midodrine and its active metabolite desglymidodrine in human plasma: Application to support bioequivalence study in healthy human volunteers. J Pharm Biomed Anal 2016; 131:355-363. [PMID: 27639073 DOI: 10.1016/j.jpba.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/19/2022]
Abstract
A specific, rapid, sensitive and selective ultra-performance liquid chromatography - tandem mass spectrometry has been developed for the simultaneous determination of midodrine and desglymidodrine in human plasma. The analytes and its deuterated analogs were quantitatively extracted from 100μL of human plasma by solid phase extraction technique. Separation of analytes was achieved on the Waters Acquity UPLC BEH C18 (50×2.1mm, 1.7μm) column using acetonitrile-4.0mM ammonium formate, pH 2.5(90:10, v/v) as mobile phase. The protonated analytes were quantified by selected reaction monitoring in the positive ionization mode by triple quadrupole mass spectrometer. The calibration plots were linear over the concentration range of 0.050-50.0ng/mL. The intra-batch and inter-batch precision (%CV) across quality control levels was <4.0 and the% mean relative recovery was ≥96%. Various other parameters like stability in different conditions; matrix effect and reproducibility of the method were performed in accordance with the guidelines specified by the USFDA for bioanalytical method development and validation. The developed method was successfully administered to the pharmacokinetics study of 5 mg midodrine tablet in 12 healthy subjects. Reproducibility of assay was proved by reanalysis of 48 incurred samples.
Collapse
Affiliation(s)
- Daxesh P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Sneha Nair
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | | | - Bhargav M Patel
- Department of Chemistry, St. Xavier's College, Navrangpura, Ahmedabad 380009, India.
| |
Collapse
|
28
|
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. MASS SPECTROMETRY REVIEWS 2016; 35:620-49. [PMID: 25589422 DOI: 10.1002/mas.21449] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Camila Caldana
- Max-Planck-partner group at the Brazilian Bioethanol Science and Technology Laboratory/CNPEM, 13083-970, Campinas-SP, Brazil
| | - Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jane Thomas-Oates
- Jane Thomas-Oates, Centre of Excellence in Mass Spectrometry, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| |
Collapse
|
29
|
Schenk DJ, Welch CJ, Antonucci V. Evaluation of C18 monolithic columns for radiochemical purity measurement. J Labelled Comp Radiopharm 2016; 59:391-7. [DOI: 10.1002/jlcr.3422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/06/2016] [Accepted: 06/05/2016] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Schenk
- Process and Analytical Chemistry; Merck Research Laboratories; 126 E. Lincoln Avenue Rahway NJ 07065 USA
| | - Christopher J. Welch
- Process and Analytical Chemistry; Merck Research Laboratories; 126 E. Lincoln Avenue Rahway NJ 07065 USA
| | - Vincent Antonucci
- Process and Analytical Chemistry; Merck Research Laboratories; 126 E. Lincoln Avenue Rahway NJ 07065 USA
| |
Collapse
|
30
|
Armenta S, de la Guardia M. Green chromatography for the analysis of foods of animal origin. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures. Anal Bioanal Chem 2016; 408:3953-68. [DOI: 10.1007/s00216-016-9386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022]
|
32
|
Mathias PI, B'hymer C. Mercapturic acids: recent advances in their determination by liquid chromatography/mass spectrometry and their use in toxicant metabolism studies and in occupational and environmental exposure studies. Biomarkers 2016; 21:293-315. [PMID: 26900903 PMCID: PMC4894522 DOI: 10.3109/1354750x.2016.1141988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review describes recent selected HPLC/MS methods for the determination of urinary mercapturates that are useful as noninvasive biomarkers in characterizing human exposure to electrophilic industrial chemicals in occupational and environmental studies. High-performance liquid chromatography/mass spectrometry is a sensitive and specific method for analysis of small molecules found in biological fluids. In this review, recent selected mercapturate quantification methods are summarized and specific cases are presented. The biological formation of mercapturates is introduced and their use as indicators of metabolic processing of reactive toxicants is discussed, as well as future trends and limitations in this area of research.
Collapse
Affiliation(s)
- Patricia I Mathias
- a Division of Applied Science and Technology , U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Biomonitoring and Health Assessment Branch, Robert a. Taft Laboratories , Cincinnati , OH , USA
| | - Clayton B'hymer
- a Division of Applied Science and Technology , U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Biomonitoring and Health Assessment Branch, Robert a. Taft Laboratories , Cincinnati , OH , USA
| |
Collapse
|
33
|
Gras CC, Carle R, Schweiggert RM. Determination of anthocyanins from black carrots by UHPLC-PDA after ultrasound-assisted extraction. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Sykora D, Vozka J, Tesarova E. Chromatographic methods enabling the characterization of stationary phases and retention prediction in high-performance liquid chromatography and supercritical fluid chromatography. J Sep Sci 2015; 39:115-31. [DOI: 10.1002/jssc.201501023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- David Sykora
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
| | - Jiri Vozka
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Eva Tesarova
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
35
|
Implementation of a single quad MS detector in routine QC analysis of peptide drugs. J Pharm Anal 2015; 6:24-31. [PMID: 29403959 PMCID: PMC5762454 DOI: 10.1016/j.jpha.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
A newly developed single quad mass spectrometry (MS) detector was coupled to a ultra-high performance liquid chromatography (UPLC) system and implemented in the routine quality control (QC) and impurity analysis of four therapeutic peptides, namely bleomycin sulfate, tyrothricin, vancomycin HCl and bacitracin, which were selected given their multi-component drug nature and their closely structurally related impurity profiles. The QC and impurity profiling results obtained using the ultra-high performance liquid chromatography ultraviolet/mass spectrometry (UPLC-UV/MS) detection system were analyzed against the results obtained using traditional high performance liquid chromatography-ultraviolet detection (HPLC-UV) methods derived from pharmacopoeial methods. In general, the used stationary phases of sub-2 µm particle (UPLC) technology resulted in lower limits of detection and higher resolution separations, which resulted in more detected impurities and shorter overall run times contrasting the traditional HPLC columns. Moreover, online coupling with a single quad MS detector allowed direct peak identification of the main compounds as well as small impurities, hereby increasing the information content without the need of reference standards.
Collapse
|
36
|
Langsi VK, Ashu-Arrah BA, Glennon JD. Sub-2-μm seeded growth mesoporous thin shell particles for high-performance liquid chromatography: Synthesis, functionalisation and characterisation. J Chromatogr A 2015; 1402:17-26. [DOI: 10.1016/j.chroma.2015.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
|
37
|
Ma Q, Ma W, Chen X, Wang Z, Bai H, Zhang L, Li W, Wang C, Li X. Comprehensive analysis of fatty alcohol ethoxylates by ultra high pressure hydrophilic interaction chromatography coupled with ion mobility spectrometry mass spectrometry using a custom-designed sub-2 μm column. J Sep Sci 2015; 38:2182-91. [PMID: 25847530 DOI: 10.1002/jssc.201500185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang Ma
- Chinese Academy of Inspection and Quarantine; Beijing China
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA
| | - Wei Ma
- Post-Doctoral Mobile Station of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin China
| | - Xi Chen
- Waters Corporation; Shanghai China
| | - Ziming Wang
- College of Chemistry; Jilin University; Changchun China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine; Beijing China
| | - Lanwei Zhang
- Post-Doctoral Mobile Station of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin China
| | - Wentao Li
- Chinese Academy of Inspection and Quarantine; Beijing China
| | - Chao Wang
- Chinese Academy of Inspection and Quarantine; Beijing China
| | - Xinshi Li
- Chinese Academy of Inspection and Quarantine; Beijing China
| |
Collapse
|
38
|
Development and validation of an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry method for the reliable quantification of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) and 14 other explosives and their degradation products in environmental water samples. Talanta 2015; 143:271-278. [PMID: 26078159 DOI: 10.1016/j.talanta.2015.04.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/20/2022]
Abstract
A comprehensive method for the determination and characterization of 15 common explosive compounds in water samples by ultra-high pressure liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS) is presented. The method allows the determination of 10 nitroaromatics, two nitroamines and three nitrate ester compounds. Among these, 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) was quantified and detected for the first time in our knowledge at trace levels (0.2 µg/L). Furthermore, the collision induced dissociation (CID) mass spectrum of TATB is discussed and a fragmentation mechanism is proposed. The signal for each explosive was normalized by isotopically-enriched congeners used as internal standards. The limits of detection (LOD) reached 20 ng/L, depending on the type of energetic molecule, which are adequate for water samples and the linearity was verified from 1.4 to 2 orders of magnitude. The sensitivity of the UHPLC-APCI-MS/MS approach allows direct injection of aqueous samples without preceding extraction for concentration. Besides, the method displays a good reliability with low signal suppression in various matrices such as spring water, mineral water, acidified water or ground water. The effectiveness of the method is demonstrated by the analysis of underground water samples containing traces of explosives from test fields in France.
Collapse
|
39
|
Metabolomics in the developmental origins of obesity and its cardiometabolic consequences. J Dev Orig Health Dis 2015; 6:65-78. [PMID: 25631626 DOI: 10.1017/s204017441500001x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this review, we discuss the potential role of metabolomics to enhance understanding of obesity-related developmental origins of health and disease (DOHaD). We first provide an overview of common techniques and analytical approaches to help interested investigators dive into this relatively novel field. Next, we describe how metabolomics may capture exposures that are notoriously difficult to quantify, and help to further refine phenotypes associated with excess adiposity and related metabolic sequelae over the life course. Together, these data can ultimately help to elucidate mechanisms that underlie fetal metabolic programming. Finally, we review current gaps in knowledge and identify areas where the field of metabolomics is likely to provide insights into mechanisms linked to DOHaD in human populations.
Collapse
|
40
|
Brezovska K, Petrovska G, Acevska J, Nakov N, Poceva-Panovska A, Tonic-Ribarska J, Hadzieva M, Dimitrovska A. Transfer of pharmacopoeial liquid chromatography reversedphase methods for determination of related compounds in diclofenac sodium and metamizole sodium from conventional to core-shell column. MAKEDONSKO FARMACEVTSKI BILTEN 2015. [DOI: 10.33320/maced.pharm.bull.2015.61.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-shell silica particles were developed as a new material for chromatographic stationary phases in order to provide fast and high efficiency separations of small and large molecules and complex samples, at pressures compatible with conventional HPLC equipment. The aim of our work was to show the applicability of the HPLC columns based on a core-shell technology for determination of related substances in diclofenac sodium and in metamizole sodium using the methods described in the corresponding monographs of the European pharmacopoeia. The obtained results have shown that the proposed methods can be successfully transferred on core shell column, with suitable adjustment of injection volume and flow rate. The advantage of using core-shell column is fast and highly efficient separation on conventional HPLC equipment with increased sensitivity of the method and high throughput of the analysis, providing enhanced lab productivity and reduced costs.
Collapse
|
41
|
Ahmed A, Myers P, Zhang H. Synthesis of nanospheres-on-microsphere silica with tunable shell morphology and mesoporosity for improved HPLC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12190-12199. [PMID: 25253125 DOI: 10.1021/la503015x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Core-shell particles have a wide range of applications. Most of the core-shell particles are prepared in two or multiple steps. Core-shell silica microspheres, with solid core and porous shell, have been used as novel packing materials in recent years for highly efficient liquid chromatography separation with relatively low back-pressure. These core-shell silica microspheres are usually prepared by the time-consuming layer-by-layer technique. Built on our previous report of one-pot synthesis of core-shell nanospheres-on-microspheres (termed as SOS particles for "spheres-on-spheres"), we describe here a two-stage synthesis for the introduction of shell mesoporosity into SOS particles with tunable shell morphology by co-condensation of tetraethyl orthosilicate (TEOS) with 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of surfactant in the second stage. With MPTMS as the primary precursor at the first stage, some other silica precursors (apart from TEOS) are also employed at the second stage. Expansion of the surfactant-templated mesopores with swelling agents during the reaction and by hydrothermal postsynthesis treatment is then performed to allow the pore sizes (> 6 nm) suitable for separation of small molecules in liquid chromatography. Compared to the standard SOS silica (both the nanospheres and microspheres contain nearly no mesopores), the introduction of mesoporosity into the nanosphere shell increases the separation efficiency of small molecule mixtures by 4 times as judged by the height equivalent plate number, while the separation of protein mixtures is not negatively affected.
Collapse
Affiliation(s)
- Adham Ahmed
- Department of Chemistry, University of Liverpool , Oxford Street, Liverpool L69 7ZD, United Kingdom
| | | | | |
Collapse
|
42
|
Monolithic and core–shell columns in comprehensive two-dimensional HPLC: a review. Anal Bioanal Chem 2014; 407:139-51. [DOI: 10.1007/s00216-014-8147-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
43
|
Zhong Q, Qiu X, Lin C, Shen L, Huo Y, Zhan S, Yao J, Huang T, Kawano SI, Hashi Y, Xiao L, Zhou T. An automatic versatile system integrating solid-phase extraction with ultra-high performance liquid chromatography–tandem mass spectrometry using a dual-dilution strategy for direct analysis of auxins in plant extracts. J Chromatogr A 2014; 1359:131-9. [DOI: 10.1016/j.chroma.2014.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/29/2014] [Accepted: 07/13/2014] [Indexed: 11/26/2022]
|
44
|
Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 2014; 1357:36-52. [DOI: 10.1016/j.chroma.2014.05.010] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/23/2022]
|
45
|
Araya-Farias M, Gaudreau A, Rozoy E, Bazinet L. Rapid HPLC-MS method for the simultaneous determination of tea catechins and folates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4241-4250. [PMID: 24734959 DOI: 10.1021/jf4053258] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An effective and rapid HPLC-MS method for the simultaneous separation of the eight most abundant tea catechins, gallic acid, and caffeine was developed. These compounds were rapidly separated within 9 min by a linear gradient elution using a Zorbax SB-C18 packed with sub 2 μm particles. This methodology did not require preparative and semipreparative HPLC steps. In fact, diluted tea samples can be easily analyzed using HPLC-MS as described in this study. The use of mass spectrometry detection for quantification of catechins ensured a higher specificity of the method. The percent relative standard deviation was generally lower than 4 and 7% for most of the compounds tested in tea drinks and tea extracts, respectively. Furthermore, the method provided excellent resolution for folate determination alone or in combination with catechins. To date, no HPLC method able to discriminate catechins and folates in a quick analysis has been reported in the literature.
Collapse
Affiliation(s)
- Monica Araya-Farias
- Institute of Nutrition and Functional Foods (INAF) and ‡Department of Food Sciences and Nutrition, Laval University , Quebec, QC, Canada G1V 0A6
| | | | | | | |
Collapse
|
46
|
Hawkridge AM. Practical Considerations and Current Limitations in Quantitative Mass Spectrometry-based Proteomics. QUANTITATIVE PROTEOMICS 2014. [DOI: 10.1039/9781782626985-00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Quantitative mass spectrometry (MS)-based proteomics continues to evolve through advances in sample preparation, chemical and biochemical reagents, instrumentation, and software. The breadth of proteomes and biological applications combined with unique experimental goals makes optimizing MS-based proteomics workflows a daunting task. Several MS-based instrument platforms are commercially available with LC-MS/MS being the most common for quantitative proteomics studies. Although the direction of LC-MS/MS instrumentation development is toward more user-friendly interfaces, there remain fundamental aspects of the technology that can be optimized for improving data quality. The intent of this chapter is to provide an introductory framework for understanding some of the more significant LC-MS/MS experimental conditions that can influence quantitative MS-based proteomics measurements, including electrospray ionization (ESI) bias and ion transmission efficiency. Because each commercial LC-MS/MS system is unique with regard to ESI source, transmission optics, ion isolation and trapping, ion fragmentation, and mass analysis, the use of design of experiments (DoE) is discussed as a potential approach for efficiently optimizing multiple inter-related factors.
Collapse
Affiliation(s)
- Adam M. Hawkridge
- Departments of Pharmaceutics & Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University School of Pharmacy Richmond VA 23298 USA
| |
Collapse
|
47
|
Daly CE, Ng LL, Hakimi A, Willingale R, Jones DJL. Qualitative and quantitative characterization of plasma proteins when incorporating traveling wave ion mobility into a liquid chromatography-mass spectrometry workflow for biomarker discovery: use of product ion quantitation as an alternative data analysis tool for label free quantitation. Anal Chem 2014; 86:1972-9. [PMID: 24397486 PMCID: PMC3998518 DOI: 10.1021/ac403901t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Discovery of protein biomarkers in clinical samples necessitates significant prefractionation prior to liquid chromatography-mass spectrometry (LC-MS) analysis. Integrating traveling wave ion mobility spectrometry (TWIMS) enables in-line gas phase separation which when coupled with nanoflow liquid chromatography and data independent acquisition tandem mass spectrometry, confers significant advantages to the discovery of protein biomarkers by improving separation and inherent sensitivity. Incorporation of TWIMS leads to a packet of concentrated ions which ultimately provides a significant improvement in sensitivity. As a consequence of ion packeting, when present at high concentrations, accurate quantitation of proteins can be affected due to detector saturation effects. Human plasma was analyzed in triplicate using liquid-chromatography data independent acquisition mass spectrometry (LC-DIA-MS) and using liquid-chromatography ion-mobility data independent acquisition mass spectrometry (LC-IM-DIA-MS). The inclusion of TWIMS was assessed for the effect on sample throughput, data integrity, confidence of protein and peptide identification, and dynamic range. The number of identified proteins is significantly increased by an average of 84% while both the precursor and product mass accuracies are maintained between the modalities. Sample dynamic range is also maintained while quantitation is achieved for all but the most abundant proteins by incorporating a novel data interpretation method that allows accurate quantitation to occur. This additional separation is all achieved within a workflow with no discernible deleterious effect on throughput. Consequently, TWIMS greatly enhances proteome coverage and can be reliably used for quantification when using an alternative product ion quantification strategy. Using TWIMS in biomarker discovery in human plasma is thus recommended.
Collapse
Affiliation(s)
- Charlotte E Daly
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary , Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Borges EM, Rostagno MA, Meireles MAA. Sub-2 μm fully porous and partially porous (core–shell) stationary phases for reversed phase liquid chromatography. RSC Adv 2014. [DOI: 10.1039/c3ra45418e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The need for increased throughput and superior performance has increased the demand for stationary phases with improved kinetic performance.
Collapse
Affiliation(s)
- Endler M. Borges
- Universidade do Oeste de Santa Catarina (UNOESC)
- Núcleo Biotecnológico. Rua Paese
- Videira-SC, Brasil
| | - Mauricio A. Rostagno
- LASEFI
- Department of Food Engineering
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas, Brazil
| | - M. Angela A. Meireles
- LASEFI
- Department of Food Engineering
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas, Brazil
| |
Collapse
|
49
|
Socia A, Foley JP. Sequential elution liquid chromatography can significantly increase the probability of a successful separation by simultaneously increasing the peak capacity and reducing the separation disorder. J Chromatogr A 2014; 1324:36-48. [DOI: 10.1016/j.chroma.2013.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
50
|
Challenges of Biopesticides Under the European Regulation (EC) No. 1107/2009. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63430-6.00015-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|