1
|
Alexandre L, Bendali A, Pereiro I, Azimani M, Dumas S, Malaquin L, Mai TD, Descroix S. Modular microfluidic system for on-chip extraction, preconcentration and detection of the cytokine biomarker IL-6 in biofluid. Sci Rep 2022; 12:9468. [PMID: 35676309 PMCID: PMC9176165 DOI: 10.1038/s41598-022-13304-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The cytokine interleukin 6 (IL-6) is involved in the pathogenesis of different inflammatory diseases, including cancer, and its monitoring could help diagnosis, prognosis of relapse-free survival and recurrence. Here, we report an innovative microfluidic approach that uses the fluidization of magnetic beads to specifically extract, preconcentrate and fluorescently detect IL-6 directly on-chip. We assess how the physical properties of the beads can be tuned to improve assay performance by enhancing mass transport, reduce non-specific binding and multiply the detection signal threefold by transitioning between packed and fluidization states. With the integration of a full ELISA protocol in a single microfluidic chamber, we show a twofold reduction in LOD compared to conventional methods along with a large dynamic range (10 pg/mL to 2 ng/mL). We additionally demonstrate its application to IL-6 detection in undiluted serum samples.
Collapse
|
2
|
Carrasco-Correa EJ, Cocovi-Solberg DJ, Herrero-Martínez JM, Simó-Alfonso EF, Miró M. 3D printed fluidic platform with in-situ covalently immobilized polymer monolithic column for automatic solid-phase extraction. Anal Chim Acta 2020; 1111:40-48. [PMID: 32312395 DOI: 10.1016/j.aca.2020.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023]
Abstract
In this work, 3D stereolithographic printing is proposed for the first time for the fabrication of fluidic devices aimed at in-situ covalent immobilization of polymer monolithic columns. Integration in advanced flow injection systems capitalized upon programmable flow was realized for fully automatic solid-phase extraction (SPE) and clean-up procedures as a 'front-end' to on-line liquid chromatography. The as-fabricated 3D-printed extraction column devices were designed to tolerate the pressure drop of forward-flow fluidic systems when handling large sample volumes as demonstrated by the determination of anti-microbial agents, plastic additives and monomers as models of emerging contaminants (4-hydroxybenzoic acid, methylparaben, phenylparaben, bisphenol A and triclosan). Decoration of the monolithic phase with gold nanoparticles (AuNPs) was proven most appropriate for the enrichment of phenolic-type target compounds. In particular, the absolute recoveries for the tested analytes ranged from 73 to 92% both in water and saliva samples. The 3D printed composite monolith showed remarkable analytical features in terms of loading capacity (2 mg g-1), breakthrough volume (10 mL), satisfactory batch-to-batch reproducibility (<9% RSD), and easy on-line coupling of the SPE device to HPLC systems. The fully automatic 3D-printed SPE-HPLC hyphenated system was also exploited for the on-line extraction, matrix clean-up and determination of triclosan in 200 μL of real saliva samples.
Collapse
Affiliation(s)
- Enrique Javier Carrasco-Correa
- University of Valencia, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100, Burjassot Valencia, Spain.
| | - David J Cocovi-Solberg
- FI-TRACE Group, Department of Chemistry, University of Balearic Islands, Carretera de Valldemossa, Km 7.5, E 07122, Palma de Mallorca, Spain; University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - José Manuel Herrero-Martínez
- University of Valencia, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100, Burjassot Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- University of Valencia, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100, Burjassot Valencia, Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of Balearic Islands, Carretera de Valldemossa, Km 7.5, E 07122, Palma de Mallorca, Spain.
| |
Collapse
|
3
|
Separation and preconcentration of actinides from concentrated nitric acid by extraction chromatography in microsystems. Talanta 2018; 185:586-591. [DOI: 10.1016/j.talanta.2018.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 04/08/2018] [Indexed: 01/05/2023]
|
4
|
Losno M, Ferrante I, Brennetot R, Descroix S, Mariet C. Design of experiments as tools to tailor impregnated polymers specific for radionuclides separation in microsystems. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Araya-Farias M, Dziomba S, Carbonnier B, Guerrouache M, Ayed I, Aboud N, Taverna M, Tran NT. A lab-on-a-chip for monolith-based preconcentration and electrophoresis separation of phosphopeptides. Analyst 2017; 142:485-494. [DOI: 10.1039/c6an02324j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A real μTAS integrating monolith-based IMAC enrichment, electrophoresis separation and fluorescence detection of phosphopeptides is reported for the first time.
Collapse
Affiliation(s)
- Monica Araya-Farias
- Institut Galien Paris Sud
- UMR 8612
- Protein and Nanotechnology in Analytical Science (PNAS)
- CNRS
- Univ. Paris-Sud
| | - Szymon Dziomba
- Institut Galien Paris Sud
- UMR 8612
- Protein and Nanotechnology in Analytical Science (PNAS)
- CNRS
- Univ. Paris-Sud
| | | | | | - Ichraf Ayed
- Institut Galien Paris Sud
- UMR 8612
- Protein and Nanotechnology in Analytical Science (PNAS)
- CNRS
- Univ. Paris-Sud
| | - Nacera Aboud
- Institut Galien Paris Sud
- UMR 8612
- Protein and Nanotechnology in Analytical Science (PNAS)
- CNRS
- Univ. Paris-Sud
| | - Myriam Taverna
- Institut Galien Paris Sud
- UMR 8612
- Protein and Nanotechnology in Analytical Science (PNAS)
- CNRS
- Univ. Paris-Sud
| | - N. Thuy Tran
- Institut Galien Paris Sud
- UMR 8612
- Protein and Nanotechnology in Analytical Science (PNAS)
- CNRS
- Univ. Paris-Sud
| |
Collapse
|
6
|
Groarke RJ, Brabazon D. Methacrylate Polymer Monoliths for Separation Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E446. [PMID: 28773570 PMCID: PMC5456823 DOI: 10.3390/ma9060446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 01/10/2023]
Abstract
This review summarizes the development of methacrylate-based polymer monoliths for separation science applications. An introduction to monoliths is presented, followed by the preparation methods and characteristics specific to methacrylate monoliths. Both traditional chemical based syntheses and emerging additive manufacturing methods are presented along with an analysis of the different types of functional groups, which have been utilized with methacrylate monoliths. The role of methacrylate based porous materials in separation science in industrially important chemical and biological separations are discussed, with particular attention given to the most recent developments and challenges associated with these materials. While these monoliths have been shown to be useful for a wide variety of applications, there is still scope for exerting better control over the porous architectures and chemistries obtained from the different fabrication routes. Conclusions regarding this previous work are drawn and an outlook towards future challenges and potential developments in this vibrant research area are presented. Discussed in particular are the potential of additive manufacturing for the preparation of monolithic structures with pre-defined multi-scale porous morphologies and for the optimization of surface reactive chemistries.
Collapse
Affiliation(s)
- Robert J Groarke
- Advanced Processing Technology Research Centre, Dublin City University, Collins Avenue, Dublin 9, Ireland.
- National Sensor Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Dermot Brabazon
- Advanced Processing Technology Research Centre, Dublin City University, Collins Avenue, Dublin 9, Ireland.
- National Sensor Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
7
|
Ali I, Alharbi OML, Marsin Sanagi M. Nano-capillary electrophoresis for environmental analysis. ENVIRONMENTAL CHEMISTRY LETTERS 2015; 14:79-98. [PMID: 32214934 PMCID: PMC7087629 DOI: 10.1007/s10311-015-0547-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/11/2015] [Indexed: 06/10/2023]
Abstract
Many analytical techniques have been used to monitor environmental pollutants. But most techniques are not capable to detect pollutants at nanogram levels. Hence, under such conditions, absence of pollutants is often assumed, whereas pollutants are in fact present at low but undetectable concentrations. Detection at low levels may be done by nano-capillary electrophoresis, also named microchip electrophoresis. Here, we review the analysis of pollutants by nano-capillary electrophoresis. We present instrumentations, applications, optimizations and separation mechanisms. We discuss the analysis of metal ions, pesticides, polycyclic aromatic hydrocarbons, explosives, viruses, bacteria and other contaminants. Detectors include ultraviolet-visible, fluorescent, conductivity, atomic absorption spectroscopy, refractive index, atomic fluorescence spectrometry, atomic emission spectroscopy, inductively coupled plasma, inductively coupled plasma-mass spectrometry, mass spectrometry, time-of-flight mass spectrometry and nuclear magnetic resonance. Detection limits ranged from nanogram to picogram levels.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, 110025 India
| | - Omar M. L. Alharbi
- Biology Department, Faculty of Sciences, Taibah University, P.O. Box 30002, Madinah Al-Munawarah, 41477 Saudi Arabia
| | - Mohd. Marsin Sanagi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor Malaysia
- Ibnu Sina Institute for Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
8
|
Abstract
Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.
Collapse
|
9
|
Mohamadi RM, Svobodova Z, Bilkova Z, Otto M, Taverna M, Descroix S, Viovy JL. An integrated microfluidic chip for immunocapture, preconcentration and separation of β-amyloid peptides. BIOMICROFLUIDICS 2015; 9:054117. [PMID: 26487903 PMCID: PMC4592438 DOI: 10.1063/1.4931394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/07/2015] [Indexed: 05/24/2023]
Abstract
We present an integrated microfluidic chip for detection of β-amyloid (Aβ) peptides. Aβ peptides are major biomarkers for the diagnosis of Alzheimer's disease (AD) in its early stages. This microfluidic device consists of three main parts: (1) An immunocapture microcolumn based on self-assembled magnetic beads coated with antibodies specific to Aβ peptides, (2) a nano-porous membrane made of photopolymerized hydrogel for preconcentration, and (3) a microchip electrophoresis (MCE) channel with fluorescent detection. Sub-milliliter sample volume is either mixed off-chip with antibody coated magnetic beads and injected into the device or is injected into an already self-assembled column of magnetic beads in the microchannel. The captured peptides on the beads are then electrokinetically eluted and re-concentrated onto the nano-membrane in a few nano-liters. By integrating the nano-membrane, total assay time was reduced and also off-chip re-concentration or buffer exchange steps were not needed. Finally, the concentrated peptides in the chip are separated by electrophoresis in a polymer-based matrix. The device was applied to the capture and MCE analysis of differently truncated peptides Aβ (1-37, 1-39, 1-40, and 1-42) and was able to detect as low as 25 ng of synthetic Aβ peptides spiked in undiluted cerebrospinal fluid (CSF). The device was also tested with CSF samples from healthy donors. CSF samples were fluorescently labelled and pre-mixed with the magnetic beads and injected into the device. The results indicated that Aβ1-40, an important biomarker for distinguishing patients with frontotemporal lobe dementia from controls and AD patients, was detectable. Although the sensitivity of this device is not yet enough to detect all Aβ subtypes in CSF, this is the first report on an integrated or semi-integrated device for capturing and analyzing of differently truncated Aβ peptides. The method is less demanding and faster than the conventional Western blotting method currently used for research.
Collapse
Affiliation(s)
- Reza M Mohamadi
- Curie Institute/CNRS/Université Pierre et Marie Curie , UMR 168, Paris, France
| | - Zuzana Svobodova
- Department of Biological and Biochemical Sciences, University of Pardubice , 53210 Pardubice, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, University of Pardubice , 53210 Pardubice, Czech Republic
| | - Markus Otto
- Department of Neurology, University of Ulm , Steinhövelstrasse 1, 89075 Ulm, Germany
| | - Myriam Taverna
- Faculté de Pharmacie, Institut Galien Paris Sud, University of Paris Sud , UMR 8612, Chatenay Malabry, France
| | - Stephanie Descroix
- Curie Institute/CNRS/Université Pierre et Marie Curie , UMR 168, Paris, France
| | - Jean-Louis Viovy
- Curie Institute/CNRS/Université Pierre et Marie Curie , UMR 168, Paris, France
| |
Collapse
|
10
|
Ferey L, Delaunay N. Capillary and microchip electrophoretic analysis of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2014; 407:2727-47. [PMID: 25542576 DOI: 10.1007/s00216-014-8390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants which can reach the environment and food in different ways. Because of their high toxicity, two international regulatory institutions, the US Environmental Protection Agency and the European Food Safety Authority, have classified PAHs as priority pollutants, generating an important demand for the detection and identification of PAHs. Thus, sensitive, fast, and cheap methods for the analysis of PAHs in environmental and food samples are urgently needed. Within this context, electrophoresis, in capillary or microchip format, displays attractive features. This review presents and critically discusses the published literature on the different approaches to capillary and microchip electrophoresis analysis of PAHs.
Collapse
Affiliation(s)
- Ludivine Ferey
- Laboratory of Analytical and Bioanalytical Sciences and Miniaturization, Chemistry, Biology, and Innovation (CBI), UMR 8231 CNRS - ESPCI ParisTech, PSL Research University, 75005, Paris, France
| | | |
Collapse
|
11
|
Centrifugal microfluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels. Talanta 2013; 116:488-94. [DOI: 10.1016/j.talanta.2013.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/25/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022]
|
12
|
Hua Y, Jemere AB, Dragoljic J, Harrison DJ. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics. LAB ON A CHIP 2013; 13:2651-9. [PMID: 23712291 DOI: 10.1039/c3lc50401h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.
Collapse
Affiliation(s)
- Yujuan Hua
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | | | | | | |
Collapse
|
13
|
Parameters Governing the Formation of Photopolymerized Silica Sol-Gel Monoliths in PDMS Microfluidic Chips. Chromatographia 2013; 76:993-1002. [PMID: 28450752 DOI: 10.1007/s10337-013-2493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although polydimethylsiloxane (PDMS) microfluidic chips provide an alternative to more expensive microfabricated glass chips, formation of monolithic stationary phases in PDMS is not a trivial task. Photopolymerized silica sol-gel monoliths were fabricated in PDMS based microfluidic devices using 3-trimethoxysilylpropylmethacrylate (MPTMOS) and glycidyloxypropyltrimethoxysilane (GPTMOS). The monolith formation was optimized by identifying a suitable porogen, controlling monomer concentration, functional additives, salts, porogen, wall attachment methods, and rinsing procedures. The resulting monoliths were evaluated using scanning electron microscopy, image analysis, differential scanning calorimetry, and separation performance. Monoliths functionalized with boronic acid ligands were used for the separation of cis-diol containing compounds both in batch mode and in the microfluidic chip.
Collapse
|
14
|
Ladner Y, Crétier G, Faure K. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: A cost-effective and easy-to-use technology. Electrophoresis 2012; 33:3087-94. [DOI: 10.1002/elps.201200238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/27/2012] [Accepted: 08/03/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Yoann Ladner
- Université de Lyon, Institut des Sciences Analytiques (UMR Université Lyon 1/CNRS 5280); Domaine universitaire de La Doua; Villeurbanne; France
| | - Gérard Crétier
- Université de Lyon, Institut des Sciences Analytiques (UMR Université Lyon 1/CNRS 5280); Domaine universitaire de La Doua; Villeurbanne; France
| | - Karine Faure
- Université de Lyon, Institut des Sciences Analytiques (UMR Université Lyon 1/CNRS 5280); Domaine universitaire de La Doua; Villeurbanne; France
| |
Collapse
|
15
|
Wang Z, Jemere AB, Jed Harrison D. Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices. Electrophoresis 2012; 33:3151-8. [DOI: 10.1002/elps.201200286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Wang
- Department of Chemistry; University of Alberta; Edmonton; AB; Canada
| | - Abebaw B. Jemere
- National Institute for Nanotechnology; National Research Council Canada; Edmonton; AB; Canada
| | | |
Collapse
|
16
|
Li Y, Aggarwal P, Tolley H, Lee M. Organic Monolith Column Technology for Capillary Liquid Chromatography. ADVANCES IN CHROMATOGRAPHY 2012; 50:237-80. [DOI: 10.1201/b11636-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
17
|
Kutter JP. Liquid phase chromatography on microchips. J Chromatogr A 2012; 1221:72-82. [DOI: 10.1016/j.chroma.2011.10.044] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 01/12/2023]
|
18
|
Bubble cell for magnetic bead trapping in capillary electrophoresis. Anal Bioanal Chem 2011; 401:3239-48. [DOI: 10.1007/s00216-011-5417-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
|
19
|
On-chip solid phase extraction and enzyme digestion using cationic PolyE-323 coatings and porous polymer monoliths coupled to electrospray mass spectrometry. J Chromatogr A 2011; 1218:4039-44. [DOI: 10.1016/j.chroma.2011.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022]
|
20
|
Abbood A, Herrenknecht C, Proczek G, Descroix S, Rodrigo J, Taverna M, Smadja C. Hexylacrylate-based mixed-mode monolith, a stationary phase for the nano-HPLC separation of structurally related enkephalins. Anal Bioanal Chem 2011; 400:459-68. [DOI: 10.1007/s00216-011-4762-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 12/15/2022]
|
21
|
Analyses of non-steroidal anti-inflammatory drugs by on-line concentration capillary electrochromatography using poly(stearyl methacrylate–divinylbenzene) monolithic columns. J Chromatogr A 2011; 1218:350-8. [DOI: 10.1016/j.chroma.2010.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 11/23/2022]
|
22
|
Kang QS, Li Y, Xu JQ, Su LJ, Li YT, Huang WH. Polymer monolith-integrated multilayer poly(dimethylsiloxane) microchip for online microextraction and capillary electrophoresis. Electrophoresis 2010; 31:3028-34. [PMID: 20872608 DOI: 10.1002/elps.201000210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We reported the in situ synthesis and use of porous polymer monolith (PPM) columns in an integrated multilayer PDMS/glass microchip for microvalve-assisted on-line microextraction and microchip electrophoresis for the first time. Under the control of PDMS microvalves, the grafting of the microchannel surface and in situ photopolymerization of poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith in a defined zone were successfully achieved. Different factors including the surface grafting, polymerization time, PDMS elastic properties (ratio of oligomer/curing reagent) and UV intensity that affect the monolith synthesis in the PDMS microchannel were investigated and optimized. Dopamine, a model analyte, has been online microextracted, eluted, electrophoresized and electrochemically detected in the microchip, with a mean concentration enrichment factor of 80 (n=3). The results demonstrated that the PPM could be synthesized successfully in the PDMS microchip with a homogeneous structure and excellent mechanical properties. Furthermore, owing to the intrinsic character using PDMS in large-scale integrated microsystems, the implantation of PPM pretreatment units in PDMS microchips would make it possible to deal with complicated analytical processes in a high-throughput way.
Collapse
Affiliation(s)
- Qin-Shu Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P R China
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
LC is one of the most powerful separation techniques as illustrated by its leading role in analytical sciences through both academic and industrial communities. Its implementation in microsystems appears to be crucial in the development of mu-Total Analysis System. If electrophoretic techniques have been widely used in miniaturized devices, LC has faced multiple challenges in the downsizing process. During the past 5 years, significant breakthroughs have been achieved in this research area, in both conception and use of LC on chip. This review emphasizes the development of novel stationary phases and their implementation in microchannels. Recent instrumental advances are also presented, highlighting the various driving forces (pressure, electrical field) that have been selected and their respective ranges of applications.
Collapse
Affiliation(s)
- Karine Faure
- Laboratoire des Sciences Analytiques, Université de Lyon, Villeurbanne, France.
| |
Collapse
|
24
|
Vázquez M, Paull B. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices. Anal Chim Acta 2010; 668:100-13. [DOI: 10.1016/j.aca.2010.04.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
|
25
|
Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 2010; 1217:902-24. [PMID: 19828151 PMCID: PMC2829304 DOI: 10.1016/j.chroma.2009.09.073] [Citation(s) in RCA: 423] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
The porous polymer monoliths went a long way since their invention two decades ago. While the first studies applied the traditional polymerization processes at that time well established for the preparation of polymer particles, creativity of scientists interested in the monolithic structures has later led to the use of numerous less common techniques. This review article presents vast variety of methods that have meanwhile emerged. The text first briefly describes the early approaches used for the preparation of monoliths comprising standard free radical polymerizations and includes their development up to present days. Specific attention is paid to the effects of process variables on the formation of both porous structure and pore surface chemistry. Specific attention is also devoted to the use of photopolymerization. Then, several less common free radical polymerization techniques are presented in more detail such as those initiated by gamma-rays and electron beam, the preparation of monoliths from high internal phase emulsions, and cryogels. Living processes including stable free radicals, atom transfer radical polymerization, and ring-opening metathesis polymerization are also discussed. The review ends with description of preparation methods based on polycondensation and polyaddition reactions as well as on precipitation of preformed polymers affording the monolithic materials.
Collapse
Affiliation(s)
- Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, MS 67R6110, Berkeley, CA 94720-8139, USA.
| |
Collapse
|
26
|
Kazarian AA, Hilder EF, Breadmore MC. Capillary electrophoretic separation of mono- and di-saccharides with dynamic pH junction and implementation in microchips. Analyst 2010; 135:1970-8. [DOI: 10.1039/c0an00010h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Lin CL, Cheng YJ, Huang HY, Lee S. Analyses of sulfonamide antibiotics by CEC using poly(divinylbenzene-1-octadecene-vinylbenzyl trimethyl ammonium chloride) monolithic columns. Electrophoresis 2009; 30:3828-37. [DOI: 10.1002/elps.200900386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Svec F. CEC: selected developments that caught my eye since the year 2000. Electrophoresis 2009; 30 Suppl 1:S68-82. [PMID: 19517503 DOI: 10.1002/elps.200900062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the last decade, a number of new developments have emerged in the field of CEC. This paper focuses only on monolithic columns prepared from synthetic polymers. Monolithic columns have become a well-established format of stationary phases for CEC immediately after their inception in the mid-1990s. They are readily prepared in situ from liquid precursors. Also, the control over both porous properties and surface chemistries is easy to achieve. These advantages make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. Since the number of papers concerned with just this single topic of polymer-based monolithic CEC columns is large, this overview describes only those approaches this author found interesting.
Collapse
Affiliation(s)
- Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8197, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Frantisek Svec
- Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Faure K, Albert M, Dugas V, Crétier G, Ferrigno R, Morin P, Rocca JL. Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation. Electrophoresis 2009; 29:4948-55. [PMID: 19130574 DOI: 10.1002/elps.200800235] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An acrylate monolith has been synthesized into a cyclic olefin copolymer microdevice for reversed-phase electrochromatography purposes. Microchannels, designed by hot embossing, were filled up with an acrylate monolith to serve as a hydrophobic stationary phase. A lauryl acrylate monolith was formulated to suit the hydrophobic material, by implementing 100% organic porogenic solvent. This new composition was tested in capillary prior to its transfer into the microfluidic device. Surface functionalization of the cyclic olefin copolymer surface was applied using UV-grafting technique to improve the covalent attachment of this monolith to the plastic walls of the microfluidic chip. The on-chip performances of this monolith were evaluated in detail for the reversed-phase electrochromatographic separation of polycyclic aromatic hydrocarbons, with plate heights reaching down to 10 microm when working at optimal velocity.
Collapse
Affiliation(s)
- Karine Faure
- Laboratoire des Sciences Analytiques, Université de Lyon, Villeurbanne, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Proczek G, Augustin V, Descroix S, Hennion MC. Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography. Electrophoresis 2009; 30:515-24. [DOI: 10.1002/elps.200800308] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Breadmore MC, Thabano JRE, Dawod M, Kazarian AA, Quirino JP, Guijt RM. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006-2008). Electrophoresis 2009; 30:230-48. [DOI: 10.1002/elps.200800435] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Sueyoshi K, Kitagawa F, Otsuka K. Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Sep Sci 2008; 31:2650-66. [PMID: 18693308 DOI: 10.1002/jssc.200800272] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microchip electrophoresis (MCE) has been advanced remarkably by the applications of several separation modes and the integration with several chemical operations on a single planer substrate. MCE shows superior analytical performance, e.g., high-speed analysis, high resolution, low consumption of reagents, and so on, whereas low-concentration sensitivity is still one of the major problems. To overcome this drawback, various online sample preconcentration techniques have been developed in MCE over the past 15 years, which have successfully enhanced the detection sensitivity in MCE. This review highlights recent developments in online sample preconcentration in MCE categorized on the basis of "dynamic" and "static" methods. The dynamic techniques including field amplified stacking, ITP, sweeping, and focusing have been easily applied to MCE, which provide effective enrichments of various analytes. The static techniques such as SPE and filtration have also been combined with MCE. In the static techniques, extremely high preconcentration efficiency can be obtained, compared to the dynamic methods. This review provides comprehensive tables listing the applications and sensitivity enhancement factors of these preconcentration techniques employed in MCE.
Collapse
Affiliation(s)
- Kenji Sueyoshi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
34
|
Varenne A, Descroix S. Recent strategies to improve resolution in capillary electrophoresis—A review. Anal Chim Acta 2008. [DOI: 10.1016/j.aca.2008.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Potter OG, Hilder EF. Porous polymer monoliths for extraction: Diverse applications and platforms. J Sep Sci 2008; 31:1881-906. [DOI: 10.1002/jssc.200800116] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|