1
|
Katane M, Homma H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol Pharm Bull 2024; 47:562-579. [PMID: 38432912 DOI: 10.1248/bpb.b23-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.
Collapse
Affiliation(s)
- Masumi Katane
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
2
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Zhang L, Tan QG, Fan JQ, Sun C, Luo YT, Liang RP, Qiu JD. Microfluidics for chiral separation of biomolecules. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kochetkov KA, Bystrova NA, Pavlov PA, Oshchepkov MS, Oshchepkov AS. Microfluidic Asymmetrical Synthesis and Chiral Analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Huy BT, Huong LTC, Linh PK, Huyen NTK, Tran NA, Tuan ND, Dao VD, Lee YI. Novel aspartic chiral optical sensor based on β-cyclodextrin-functionalized CdTe nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Identification of an l-serine/l-threonine dehydratase with glutamate racemase activity in mammals. Biochem J 2020; 477:4221-4241. [DOI: 10.1042/bcj20200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.
Collapse
|
7
|
Katane M, Motoda R, Ariyoshi M, Tateishi S, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Sakai-Kato K, Homma H. A colorimetric assay method for measuring d-glutamate cyclase activity. Anal Biochem 2020; 605:113838. [PMID: 32702438 DOI: 10.1016/j.ab.2020.113838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Risa Motoda
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo, 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
8
|
Biochemical characterization of d-aspartate oxidase from Caenorhabditis elegans: its potential use in the determination of free d-glutamate in biological samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140442. [PMID: 32376478 DOI: 10.1016/j.bbapap.2020.140442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic d-amino acids (i.e., free d-aspartate and d-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than d-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade d-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward d-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded d-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic d-amino acids in biological samples.
Collapse
|
9
|
d-Aspartate oxidase: distribution, functions, properties, and biotechnological applications. Appl Microbiol Biotechnol 2020; 104:2883-2895. [DOI: 10.1007/s00253-020-10439-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
10
|
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta 2019; 1075:1-26. [PMID: 31196414 DOI: 10.1016/j.aca.2019.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
In recent years, advances in sensitive analytical techniques have encouraged the analysis of various compounds in biological fluids. While blood serum, blood plasma and urine still remain the golden standards in clinical, toxicological and forensic science, analyses of other body fluids, such as breast milk, exhaled breath condensate, sweat, saliva, amniotic fluid, cerebrospinal fluid, or capillary blood in form of dried blood spots are becoming more popular. This review article focuses on capillary electrophoresis and microchip electrophoresis of small ions and molecules (e.g. inorganic cations/anions, basic/acidic drugs, small acids/bases, amino acids, peptides and other low molecular weight analytes) in various less conventional human body fluids and hopes to stimulate further interest in the field.
Collapse
Affiliation(s)
- Petr Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
11
|
Li Y, Han H, Yin J, He X, Tang Z, Li T, Yao K, Yin Y. d- andl-Aspartate regulates growth performance, inflammation and intestinal microbial community in young pigs. Food Funct 2019; 10:1028-1037. [DOI: 10.1039/c8fo01410h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dietary 1%d-Asp andl-Asp affect the growth performance and inflammation in young pigs, which might be associated with gut microbiota.
Collapse
Affiliation(s)
- Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Xingguo He
- Changsha LvYe Bio-technology Co
- Ltd
- Changsha
- China
| | - Zhiyi Tang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Kang Yao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| |
Collapse
|
12
|
Xiao MW, Bai XL, Liu YM, Yang L, Hu YD, Liao X. Rapid quantification of aloin A and B in aloe plants and aloe-containing beverages, and pharmaceutical preparations by microchip capillary electrophoresis with laser induced fluorescence detection. J Sep Sci 2018; 41:3772-3781. [PMID: 30152917 DOI: 10.1002/jssc.201800338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
A microchip capillary electrophoresis coupled with laser induced fluorescence detection method for the fast determination of aloin was developed and comprehensively applied for the quantification of aloin A and B present in seven aloe plant species, 42 aloin-containing crude drugs, ten aloe pharmaceutical preparations, and four aloe gel-containing functional foods. The excitation and emission wavelengths for detection of both aloins were set at 473 and 520 nm, respectively. Sample analysis on a 35 mm length of glass microchip channel was completed within 40 s. An interference study indicated that the other main anthraquinones present in the samples did not interrupt with the target aloins detection, demonstrating the good selectivity of this method. It is demonstrated that this method is fast, facile, and specific for determination of aloin A and B from matrix samples which can be applied to the quality control of a wide varieties of aloe species and aloe-derived products.
Collapse
Affiliation(s)
- Meng-Wei Xiao
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Lin Bai
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China
| | - Yi-Ming Liu
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China.,Department of Chemistry and Biochemistry, Jackson State University, Jackson, USA
| | - Li Yang
- Sichuan Maccura Biotechnology, Chengdu, P. R. China
| | - Ya-Dong Hu
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China
| | - Xun Liao
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China
| |
Collapse
|
13
|
Katane M, Ariyoshi M, Tateishi S, Koiwai S, Takaku K, Nagai K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Homma H. Structural and enzymatic properties of mammalian d-glutamate cyclase. Arch Biochem Biophys 2018; 654:10-18. [PMID: 30003876 DOI: 10.1016/j.abb.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 07/08/2018] [Indexed: 01/12/2023]
Abstract
d-Glutamate cyclase (DGLUCY) is a unique enzyme that reversibly converts free d-glutamate to 5-oxo-d-proline and H2O. Mammalian DGLUCY is highly expressed in the mitochondrial matrix in the heart, and its downregulation disrupts d-glutamate and/or 5-oxo-d-proline levels, contributing to the onset and/or exacerbation of heart failure. However, detailed characterisation of DGLUCY has not yet been performed. Herein, the structural and enzymatic properties of purified recombinant mouse DGLUCY were examined. The results revealed a dimeric oligomerisation state, and both d-glutamate-to-5-oxo-d-proline and 5-oxo-d-proline-to-d-glutamate reactions were catalysed in a stereospecific manner. Catalytic activity is modulated by divalent cations and nucleotides including ATP and ADP. Interestingly, the presence of Mn2+ completely abolished the 5-oxo-d-proline-to-d-glutamate reaction but stimulated the d-glutamate-to-5-oxo-d-proline reaction. The optimum pH is ∼8.0, similar to that in the mitochondrial matrix, and the catalytic efficiency for d-glutamate is markedly higher than that for 5-oxo-d-proline. These findings suggest that DGLUCY functions as a metalloenzyme that degrades d-glutamate in the mitochondrial matrix in mammalian cells. The results also provide insight into the correlation between DGLUCY enzyme activity and the physiological and pathological roles of d-glutamate and 5-oxo-d-proline in cardiac function, which is of relevance to the risk of onset of heart failure.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Sachi Koiwai
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kaoruko Takaku
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
14
|
Enantioselective determination of aspartate and glutamate in biological samples by ultrasonic-assisted derivatization coupled with capillary electrophoresis and linked to Alzheimer’s disease progression. J Chromatogr A 2018; 1550:68-74. [DOI: 10.1016/j.chroma.2018.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
15
|
García-Carmona L, Moreno-Guzmán M, González MC, Escarpa A. Class enzyme-based motors for “on the fly” enantiomer analysis of amino acids. Biosens Bioelectron 2017; 96:275-280. [DOI: 10.1016/j.bios.2017.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/28/2023]
|
16
|
Shoja Y, Rafati AA, Ghodsi J. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum. Enzyme Microb Technol 2017; 100:20-27. [PMID: 28284308 DOI: 10.1016/j.enzmictec.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM-1cm-2. The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples.
Collapse
Affiliation(s)
- Yalda Shoja
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Javad Ghodsi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| |
Collapse
|
17
|
Chiral separations for d -amino acid analysis in biological samples. J Pharm Biomed Anal 2016; 130:100-109. [DOI: 10.1016/j.jpba.2016.06.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
|
18
|
Establishment and Application of an Automated Chiral Two-dimensional High Performance Liquid Chromatography Method for Bio-analysis of D-Acidic Amino Acids. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60746-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem 2013; 405:7907-18. [DOI: 10.1007/s00216-013-6830-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 12/27/2022]
|
20
|
Zinellu A, Sotgia S, Deiana L, Carru C. Analysis of neurotransmitter amino acids by CE-LIF detection in biological fluids. Methods Mol Biol 2013; 919:35-42. [PMID: 22976088 DOI: 10.1007/978-1-62703-029-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitter amino acids like Alanine (Ala), Glutamic acid (Glu), Aspartic acid (Asp), Serine (Ser), Taurine (Tau), and Glycine (Gly) are widely distributed in biological fluids and tissues and they have important physiological functions, so that the evaluation of their levels in organisms plays an essential role in physiology. We here report a new capillary electrophoresis (CE) method with laser-induced fluorescence detection by which analytes are resolved and detected in less than 12 min both in human plasma and in other samples types, such as red blood cells, urine, cultured cells, cerebrospinal fluid, saliva, and vitreous humor, thus avoiding the typical limitations of the other methods normally suitable only in one or two matrix types.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | |
Collapse
|
21
|
Lata S, Batra B, Pundir C. Construction of d-amino acid biosensor based on d-amino acid oxidase immobilized onto poly (indole-5-carboxylic acid)/zinc sulfide nanoparticles hybrid film. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 2012; 404:2363-8. [PMID: 22960871 DOI: 10.1007/s00216-012-6384-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Chiral capillary electrophoresis method has been developed to separate aspartate and glutamate enantiomers to investigate the putative neuromodulator function of D-Asp in the central nervous system. To achieve appropriate detection sensitivity fluorescent derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and laser-induced fluorescence detection was applied. Although, simultaneous baseline separation of the two enantiomer pairs could be achieved by using 3 mM 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin (HPA-β-CD), further improvement of the chemical selectivity was required because of the high excess of L-enantiomers in real samples to be analyzed. The system selectivity was fine-tuned by combination of 8 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin and 5 mM HPA-β-CD in order to increase the resolution between aspartate and glutamate enantiomers. The method was validated for biological application. The limits of detection for D-Asp and D-Glu were 17 and 9 nM, respectively, while the limit of quantification for both analytes was 50 nM. This is the lowest quantification limit reported so far for NBD-tagged D-Asp and D-Glu obtained by validated capillary electrophoresis laser-induced fluorescence method. The applicability of the method was demonstrated by analyzing brain samples of 1-day-old chickens. In all the studied brain areas, the D-enantiomer contributed 1-2 % of the total aspartate content, corresponding to 17-45 nmol/g wet tissue.
Collapse
|
23
|
Fabrication of an amperometric d-amino acid biosensor based on nickel hexacyanoferrate polypyrrole hybrid film deposited on glassy carbon electrode. Bioprocess Biosyst Eng 2012; 36:81-9. [DOI: 10.1007/s00449-012-0763-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022]
|
24
|
Poinsot V, Carpéné MA, Bouajila J, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 2012; 33:14-35. [PMID: 22213525 DOI: 10.1002/elps.201100360] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.
Collapse
Affiliation(s)
- Véréna Poinsot
- Université Paul Sabatier, IMRCP, UMR 5623, Toulouse, France
| | | | | | | | | | | |
Collapse
|
25
|
Mu X, Qi L, Qiao J, Zhang H, Ma H. Study on alanine aminotransferase kinetics by microchip electrophoresis. Anal Biochem 2012; 421:499-505. [DOI: 10.1016/j.ab.2011.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 12/27/2022]
|
26
|
Han H, Miyoshi Y, Ueno K, Okamura C, Tojo Y, Mita M, Lindner W, Zaitsu K, Hamase K. Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3196-202. [DOI: 10.1016/j.jchromb.2011.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/07/2011] [Accepted: 01/22/2011] [Indexed: 11/26/2022]
|
27
|
Huang Y, Shi M, Zhao S, Liang H. Trace analysis of d-tyrosine in biological samples by microchip electrophoresis with laser induced fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3203-7. [DOI: 10.1016/j.jchromb.2011.01.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 01/09/2023]
|
28
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
29
|
Nagl S, Schulze P, Ohla S, Beyreiss R, Gitlin L, Belder D. Microfluidic chips for chirality exploration. Anal Chem 2011; 83:3232-8. [DOI: 10.1021/ac200150w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Qiao J, Qi L, Mu X, Chen Y. Monolith and coating enzymatic microreactors of l-asparaginase: kinetics study by MCE–LIF for potential application in acute lymphoblastic leukemia (ALL) treatment. Analyst 2011; 136:2077-83. [DOI: 10.1039/c1an15067g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Scanlan C, Shi T, Hatcher NG, Rubakhin SS, Sweedler JV. Synthesis, accumulation, and release of d-aspartate in the Aplysia californica CNS. J Neurochem 2010; 115:1234-44. [PMID: 20874765 PMCID: PMC2972370 DOI: 10.1111/j.1471-4159.2010.07020.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Aspartate (d-Asp) is an endogenous molecule that is often detected in CNS and endocrine tissues. Using capillary electrophoresis and a variety of radionuclide detection techniques, we examine the synthesis, release, and uptake/accumulation of d-Asp in the CNS of the marine mollusk Aplysia californica. We observe the preferential synthesis and accumulation of d-Asp over l-aspartate (l-Asp) in neuron-containing ganglia compared to surrounding sheath tissues. Little conversion of d-Asp to l-Asp is detected. The Ca(2+) ionophore ionomycin and elevated extracellular potassium stimulates release of d-Asp from the cerebral ganglia. Lastly, radioactive d-Asp in the extracellular media is efficiently taken up and accumulated by individual F-cluster neurons. These observations point to a role for d-Asp in cell-to-cell signaling with many characteristics similar to classical transmitters.
Collapse
Affiliation(s)
- Cory Scanlan
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Ting Shi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Nathan G. Hatcher
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
32
|
Zinellu A, Sotgia S, Pisanu E, Scanu B, Sanna M, Usai MF, Chessa R, Deiana L, Carru C. Quantification of neurotransmitter amino acids by capillary electrophoresis laser-induced fluorescence detection in biological fluids. Anal Bioanal Chem 2010; 398:1973-8. [PMID: 20803002 DOI: 10.1007/s00216-010-4134-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/13/2010] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
The role of neurotransmitter amino acids (NAAs) in the functioning of the nervous system has been the focus of increasingly intense research over the past several years. Among the various amino acids that have important roles as neurotransmitters, there are alanine (Ala), glutamic acid (Glu), aspartic acid (Asp), serine (Ser), taurine (Tau) and glycine (Gly). NAAs are present in plasma, cells and--at trace levels--in all biological fluids, but complex components in biological matrices make it difficult to determine them in biological samples. We describe a new capillary electrophoresis (CE) method with laser-induced fluorescence detection by which analytes are resolved in less than 12 minutes in a 18 mmol/L phosphate run buffer at pH 11.6. The use of elevated temperatures during sample derivatization leads to a drastic reduction in the reaction time, down to 20 min, compared to the 6-14 h usually described for reactions between FITC and amino acids at room temperature. In order to demonstrate its wide range of applications, the method was applied to the analysis of NAA in human plasma and in other sample types, such as red blood cells, urine, cultured cells, cerebrospinal fluid, saliva and vitreous humor, thus avoiding the typical limitations of other methods, which are normally suitable for use with only one or two matrix types.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Qiao J, Qi L, Ma H, Chen Y, Wang M, Wang D. Study on amino amides and enzyme kinetics of L-asparaginase by MCE. Electrophoresis 2010; 31:1565-71. [DOI: 10.1002/elps.200900520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|