1
|
Woiwode U, Sievers-Engler A, Lämmerhofer M. Cross-linked polysiloxane-coated stable bond O-9-(2,6-diisopropylphenylcarbamoyl)quinine and quinidine chiral stationary phases as well as application in enantioselective cryo-HPLC. Electrophoresis 2024; 45:989-999. [PMID: 37916661 DOI: 10.1002/elps.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
In this work, brush-type chiral stationary phases (CSPs) with O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinidine (DIPPCQD-brush/-SH) and O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinine (DIPPCQN-brush/-SH) were prepared as benchmarks for comparison with new corresponding polymeric CSPs with more stable bonding chemistry. These polymeric CSPs were prepared by coating a thin poly(3-mercaptopropyl)-methylsiloxane film together with the chiral selector onto vinyl-modified silica. In a second step, immobilization of the quinine/quinidine derivatives as well as cross-linking of the polysiloxane film to the vinyl-silica is achieved by a double thiol-ene click reaction. The polymeric CSPs exhibited similar enantioselectivity as the corresponding brush phases, but showed lower chromatographic efficiencies. Chiral acidic substances were separated into enantiomers (e.g., N-protected amino acids, herbicides like dichlorprop) in accordance with an enantioselective anion-exchange process. Oxidation of residual thiol groups of the polymer DIPPCQN-CSP introduced sulfonic acid co-ligands on the silica surface, which resulted in greatly reduced retention times. Acting as immobilized counterions, they allowed to reduce the concentration of counterions in the mobile phase, which is favorable for liquid chromatography (LC)-electrospray ionization-mass spectrometry application. Ibuprofen showed a single peak under ambient column temperature. However, application of cryogenic cooling of the column enabled to achieve baseline separation at -20°C column temperature. It can be explained by an enthalpically dominated separation, which leads to an increase in separation factors when the temperature is reduced. While it is quite uncommon to work at subzero degree column temperature, this work illustrates the potential to exploit such temperature regime for optimization of LC enantiomer separations.
Collapse
Affiliation(s)
- Ulrich Woiwode
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Tsui HW, Huang SX, Tseng TH. Heterogenous adsorption mechanisms for describing enantioselective retention in normal-phase liquid chromatography. J Chromatogr A 2023; 1704:464140. [PMID: 37315447 DOI: 10.1016/j.chroma.2023.464140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
In this study, the enantioselective retention behaviors of methyl mandelate (MM) and benzoin (B) were investigated using Chiralpak IB as a sorbent and ethanol, 1-propanol, and 1-butanol as solvent modifiers in the normal-phase mode. For both MM and B, similar chiral recognition mechanisms were observed, potentially involving at least two types of chiral adsorption sites. With a retention model describing local retention behaviors, an enantioselectivity model based on a three-site model was proposed to describe the data. Fitted parameters were also used to analyze the contributions of each type of adsorption site to the apparent retention behavior. Combining the local retention model with the three-site model provided a qualitative and quantitative explanation for the correlation between modifier concentration and enantioselectivity. Overall, our results indicated that heterogeneous adsorption mechanisms are a key aspect in understanding enantioselective retention behaviors. Distinct local adsorption sites contribute differently to apparent retention behaviors, with these contributions being influenced by the mobile phase composition to varying degrees. Hence, enantioselectivity changes with variations in modifier concentration.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan.
| | - Si-Xian Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| | - Ting-Hsien Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| |
Collapse
|
3
|
Unbiased Determination of Adsorption Isotherms by Inverse Method in Liquid Chromatography. Molecules 2023; 28:molecules28031031. [PMID: 36770697 PMCID: PMC9919363 DOI: 10.3390/molecules28031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The Inverse Method is a widely used technique for the determination of adsorption isotherms in liquid chromatography. In this method, isotherm is determined from the overloaded peak profile of the component by the iterative solution of the mass balance equation of liquid chromatography. Successful use of this method requires a prior assumption of equation of isotherm (Langmuir, BET etc.). In this work, we have developed an inverse method that gives results of similar accuracy to the frontal analysis without assuming the equation of the isotherm. The oversaturated peaks were calculated using a spline fitted to data points instead of the derivative of the isotherm. The distribution of the isotherm points were optimized for minimizing the difference between the measured and calculated overloaded peaks. The accuracy of the developed method was verified with synthetic benchmark peaks and by the determination of isotherm of buthyl-benzoate under real conditions. The results confirmed that the accuracy of the developed method is similar to that of Frontal Analysis.
Collapse
|
4
|
Tsui HW, Hsieh CH, Zhan CF. Effect of mobile-phase modifiers on the enantioselective retention behavior of methyl mandelate with an amylose 3,5-dimethylphenylcarbamate chiral stationary phase under reversed-phase conditions. J Sep Sci 2023; 46:e2200651. [PMID: 36401614 DOI: 10.1002/jssc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
In this study, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, acetone, and tert-butanol were used as organic modifiers in reversed-phase mode chiral liquid-chromatography to systematically investigate the effects of mobile phase components on the enantioselective retention behavior of methyl mandelate with immobilized amylose 3,5-dimethylphenylcarbamate-based sorbent called Chiralpak IA. A two-site enantioselective model was used to obtain information on the recognition mechanisms by observing the dependence of the enantioselectivity and retention factor difference on the modifier content. Similar enantioselective retention behaviors were observed for all modifiers, and characteristic modifier concentration points (PL , PM , and PH ) were identified. At modifier concentrations up to PM , the weakened hydrophobic environment resulted in polymer structural relaxation, which changed the recognition mechanisms. By contrast, at concentrations beyond PH , considerably different enantioselectivity behaviors were observed, indicating that the existence of dipole-dipole interaction, which was stronger at higher modifier concentrations, contributed to the retention mechanisms. The concentrations at which these characteristic points occurred were dependent on the carbon number of the modifier molecule. Modifiers with more carbon numbers facilitated the transition in the enantioselective behaviors. These results demonstrated that the proposed method can provide a physically consistent quantitative description of enantioselective retention behavior in reversed-phase mode.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Hung Hsieh
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chao-Fu Zhan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
5
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
6
|
Cavalcante dos Santos R, Cunha FC, Marcellos CFC, de Mello MSL, Tavares FW, Pereira N, Gomes Barreto A. Adsorption of Praziquantel Enantiomers on Chiral Cellulose tris 3-chloro, 4-methylphenylcarbamate by Frontal Analysis: Fisherian and Bayesian Parameter Estimation and Inference. J Chromatogr A 2022; 1676:463200. [DOI: 10.1016/j.chroma.2022.463200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
|
7
|
Yuan X, Shayiranbieke A, Xu R, Jiang H, Yang Y, Zhang Y, Yin G, Zhao X. Site-selective covalently immobilized alpha 1A adrenergic receptor for thermodynamic and extra-thermodynamic study of four ligands binding to the receptor by chromatographic methods. J Chromatogr A 2022; 1665:462827. [DOI: 10.1016/j.chroma.2022.462827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
|
8
|
Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography. J Chromatogr A 2021; 1662:462736. [PMID: 34923304 DOI: 10.1016/j.chroma.2021.462736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
To interpret the dependence of solute retention behavior on modifier content in reversed-phase liquid chromatography, a theoretical framework, based on the concentration dependence of solvophobic forces imposed on solutes and the competitive adsorptions of solutes and solvent modifiers, was proposed. The generality of the developed model was demonstrated by comparing the model with conventional retention models. The linear dependence of the Gibbs energy change of solute adsorption with respect to the modifier concentration was assumed, and the model was fitted to the experimental results, with good agreement demonstrated between the experimental data and the model. Retention behaviors were inferred to be determined by two key dimensionless groups that represented the reductions in the retention factors resulting from a weakened solvophobic interaction and modifier competitive adsorption. The retention behaviors were successfully deconvoluted for each contribution as a function of the modifier concentration by using the fitted parameters. The effects of both contributions on the retention behaviors were enhanced for the solutes with aromatic groups. The standard Gibbs energy change SLo of benzene adsorption was found to depend linearly on the number of modifier molecules present but independent of modifier identity. For the solutes associated with hydrogen-bonding groups, the degree of reduction in the solvophobic interactions was considerably reduced. Hence, the relative contributions of both mechanisms to solute retention depend greatly on the solute structure. Perturbation method was performed to investigate the modifier adsorption mechanisms. The results show that the standard Gibbs energy change SLo for the first-layer adsorption of modifiers changed linearly with the carbon number of modifier molecule. These results demonstrated that the proposed model can offer a physically consistent quantitative description of retention when solvent composition is varied.
Collapse
|
9
|
Chiral Monolithic Silica-Based HPLC Columns for Enantiomeric Separation and Determination: Functionalization of Chiral Selector and Recognition of Selector-Selectand Interaction. Molecules 2021; 26:molecules26175241. [PMID: 34500675 PMCID: PMC8434329 DOI: 10.3390/molecules26175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector–selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.
Collapse
|
10
|
Wang H, Shen J, Wu Y, Sun X, Ke Y. Enantioseparation of cloprostenol on the polysaccharide chiral stationary phase: Influence of the mobile phase on enantioselective adsorption. J Chromatogr A 2021; 1653:462413. [PMID: 34320432 DOI: 10.1016/j.chroma.2021.462413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Cloprostenol (CLO) is an important chiral drug widely used in veterinary practice. In high-performance liquid chromatography (HPLC), the acetonitrile/water system is more effective in the chiral resolution of CLO. The change in the ratio of acetonitrile and water has a great influence on the chiral selectivity of CLO. The enantioselective adsorption and nonselective adsorption of CLO on the polysaccharide stationary phase with three groups of mobile phases (Acetonitrile / 0.1 TFA; 95 Acetonitrile/5 H2O/0.1 TFA; 45 Acetonitrile/55 H2O/0.1 TFA) were determined and fitted with the subtraction fitting method (SFM). Adding a small amount of water to the mobile phase mainly reduced the enantioselective equilibrium adsorption constants Ks of (-)-CLO and thus changed the selectivity. Among them, the true separation factor (αtrue) of the 95 Acetonitrile/5 H2O mobile phase was as high as 92.86. Chiral preparation was performed on the basis of this mobile phase. The preparation performance in kkd (kilograms per kilogram of stationary phase purified compound per day) was 0.25 kg racemate/kg CSP/day.
Collapse
Affiliation(s)
- Huiying Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Shen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaling Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaotong Sun
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
11
|
Tsui HW, Zhang HL, Hsieh CH. Effect of 2-propanol content on solute retention mechanisms determined using amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase under normal- and reversed-phase conditions. J Chromatogr A 2021; 1650:462226. [PMID: 34087518 DOI: 10.1016/j.chroma.2021.462226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
The electrostatic interactions between chiral solutes and polysaccharide (PS)-based chiral selectors are the key to achieving chiral recognition; however, PS-based sorbents, derivatized of phenyl moieties, can exhibit considerably non-polar characteristics, and they are also useful for the separation of enantiomers in the reversed-phase mode. In this study, an immobilized amylose 3,5-dimethylphenylcarbamate-based sorbent was used to investigate the balance between electrostatic interactions and solvophobic interactions, with complementary effects on solute retention behavior when the isopropanol (IPA) concentration was altered. It was proposed that in both normal- and reversed-phase modes, information on the retention mechanisms could be obtained by observing the curvature of the logarithm of the retention factor versus the logarithm of the IPA concentration, and the slope values of the curves were related to the number of displaced IPA molecules upon solute adsorption. Using the proposed model and the two-site adsorption model, the retention behaviors of pantolactone (PL) enantiomers in both normal- and reversed-phase modes were investigated. The PL-sorbent interactions were classified into four types: electrostatic/enantioselective, electrostatic/nonselective, solvophobic/enantioselective, and solvophobic/nonselective. At IPA concentrations below 50 vol.% in n-hexane, the retention behaviors of PL were dominated by electrostatic/enantioselective sites, whereas at IPA concentrations beyond 50 vol.%, the solvophobic interactions of PL-sorbent were strengthened and mostly nonselective. By contrast, in the reversed-phase mode, a reverse in the enantiomeric elution order of PL was observed at 10 vol.% IPA, and considerably different enantioselectivity behaviors were found below and above 20 vol.%, indicating an abrupt change in the sorbent molecular environment. At IPA concentrations beyond 40 vol.%, the presence of PL-sorbent electrostatic interactions enhanced chiral recognition.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan.
| | - Hong-Lin Zhang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| | - Ching-Hung Hsieh
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| |
Collapse
|
12
|
Tsui HW, Ye PW, Huang SX. Effect of solvents on the chiral recognition mechanisms of immobilized cellulose-based chiral stationary phase. J Chromatogr A 2020; 1637:461796. [PMID: 33387913 DOI: 10.1016/j.chroma.2020.461796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
The effect of solvents on the enantioselectivities of four structurally similar chiral solutes with a cellulose derivative-based chiral stationary phase, Chiralpak IB, were studied using acetone (AC), 2-propanol (IPA), and tert-butanol (TBA) separately as polar modifiers. The enantioselectivities α of benzoin and methyl mandelate decrease with an increase in modifier concentration CM, whereas the enantioselectivity of pantolactone increased with increasing AC concentration. These results were attributed to the heterogeneous adsorption mechanisms of enantiomers. To interpret the dependence of enantioselectivity on modifier content, an enantioselectivity model based on a two-site adsorption model was proposed. The dependence of α on CM was inferred to be mainly due to the distinct modulating effects of modifier concentration on the two adsorption sites: the nonselective type-I site and enantioselective type-II site. The model fitted the benzoin data satisfactorily over a wide TBA concentration range. The retention factors as a function of TBA concentration were successfully deconvoluted for each site. With the use of the proposed model, it was inferred that the chiral recognitions of benzoin and methyl mandelate were mainly achieved by the presence of an aromatic group adjacent to the hydroxyl group. When using IPA and TBA separately as modifiers, the presence of an aromatic group adjacent to the ketone group mainly contributed to the nonselective π interactions and enantioselective steric interactions, respectively. These results, along with those of the modifier adsorption isotherms, determined using the perturbation method, as well as the retention behaviors of various achiral solutes, indicate that the molecular recognition mechanism of IB sorbent is highly sensitive to the adsorbate's molecular geometry. The molecular environment of the sorbent can be controlled using different modifiers, leading to distinct adsorption and retention mechanisms.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan.
| | - Pei-Wen Ye
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| | - Si-Xian Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan
| |
Collapse
|
13
|
A subtraction fitting method for independent determination of enantioselective and nonselective adsorption isotherms based on the single-component isotherms in the framework of the two-site model. J Chromatogr A 2020; 1632:461608. [DOI: 10.1016/j.chroma.2020.461608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/17/2022]
|
14
|
Peluso P, Sechi B, Lai G, Dessì A, Dallocchio R, Cossu S, Aubert E, Weiss R, Pale P, Mamane V, Chankvetadze B. Comparative enantioseparation of chiral 4,4’-bipyridine derivatives on coated and immobilized amylose-based chiral stationary phases. J Chromatogr A 2020; 1625:461303. [DOI: 10.1016/j.chroma.2020.461303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
|
15
|
Tsui HW, Chou PY, Ye PW, Chen SC, Chen YW. Effects of the Sorbent Backbone and Side Chain on Retention Mechanisms Using Immobilized Polysaccharide-Based Stationary Phases in Normal Phase Mode. Chromatographia 2020. [DOI: 10.1007/s10337-020-03898-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Distinct and Quantitative Validation Method for Predictive Process Modelling in Preparative Chromatography of Synthetic and Bio-Based Feed Mixtures Following a Quality-by-Design (QbD) Approach. Processes (Basel) 2019. [DOI: 10.3390/pr7090580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Process development, especially in regulated industries, where quality-by-design approaches have become a prerequisite, is cost intensive and time consuming. A main factor is the large number of experiments needed. Process modelling can reduce this number significantly by replacing experiments with simulations. However, this requires a validated model. In this paper, a process and model development workflow is presented, which focuses on implementing, parameterizing, and validating the model in four steps. The presented methods are laid out to gain, create, or generate the maximum information and process knowledge needed for successful process development. This includes design of experiments and statistical evaluations showing process robustness, sensitivity of target values to process parameters, and correlations between process and target values. Two case studies are presented. An ion exchange capture step for monoclonal antibodies focusing on high accuracy and low feed consumption; and one case study for small molecules focusing on rapid process development, emphasizing speed of parameter determination.
Collapse
|
17
|
Sun H, Liu J, Li Y, Wang J, Zhang Y. Characterization of the heterogeneous adsorption of three drugs on immobilized bovine serum albumin by adsorption energy distribution. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121727. [DOI: 10.1016/j.jchromb.2019.121727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
|
18
|
Tsui HW, Kuo CH, Huang YC. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition. J Chromatogr A 2019; 1595:127-135. [DOI: 10.1016/j.chroma.2019.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
19
|
Bajtai A, Lajkó G, Szatmári I, Fülöp F, Lindner W, Ilisz I, Péter A. Dedicated comparisons of diverse polysaccharide- and zwitterionic Cinchona alkaloid-based chiral stationary phases probed with basic and ampholytic indole analogs in liquid and subcritical fluid chromatography mode. J Chromatogr A 2018; 1563:180-190. [DOI: 10.1016/j.chroma.2018.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
|
20
|
Ilisz I, Bajtai A, Lindner W, Péter A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J Pharm Biomed Anal 2018; 159:127-152. [PMID: 29980014 DOI: 10.1016/j.jpba.2018.06.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
As the understanding of the various biological actions of compounds with different stereochemistry has grown, the necessity to develop methods for the analytical qualification and quantification of chiral products has become particularly important. The last quarter of the century has seen a vast growth of diverse chiral technologies, including stereocontrolled synthesis and enantioselective separation and analysis concepts. By the introduction of covalently bonded silica-based chiral stationary phases (CSPs), the so-called direct liquid chromatographic (LC) methods of enantiomer separation became the state-of-the-art methodology. Although a large number of CSPs is available nowadays, the design and development of new chiral selectors and CSPs are still needed since it is obvious that in practice one needs a good portfolio of different CSPs and focused "chiral columns" to tackle the challenging tasks. This review discusses and summarizes direct enantiomer separations of chiral acids and ampholytes applying anionic and zwitterionic ion-exchangers derived from Cinchona alkaloids with emphasis on literature data published in the last 10 years. Our aim is to provide an overview of practical solutions, while focusing on the integration of molecular recognition and methodological variables.
Collapse
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Institute of Pharmaceutical Analysis, University of Szeged, Somogyi utca 4, H-6720 Szeged, Hungary.
| | - Attila Bajtai
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 83, 1090 Vienna, Austria
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
21
|
Li Q, Ning X, An Y, Stanley BJ, Liang Y, Wang J, Zeng K, Fei F, Liu T, Sun H, Liu J, Zhao X, Zheng X. Reliable Analysis of the Interaction between Specific Ligands and Immobilized Beta-2-Adrenoceptor by Adsorption Energy Distribution. Anal Chem 2018; 90:7903-7911. [DOI: 10.1021/acs.analchem.8b00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Xiaohui Ning
- Institute of Analytical Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yuxin An
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Brett J. Stanley
- Department of Chemistry & Biochemistry, California State University, San Bernardino, California 92407-2397, United States
| | - Yuan Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Fuhuan Fei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Ting Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Huanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jiajun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| |
Collapse
|
22
|
Tsui HW, Cheng KT, Lin AY, Chen SC, Hung YL, Chou PY. Solvent effects on the retention mechanisms of an amylose-based sorbent. J Chromatogr A 2018; 1556:64-72. [DOI: 10.1016/j.chroma.2018.04.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
|
23
|
Forssén P, Multia E, Samuelsson J, Andersson M, Aastrup T, Altun S, Wallinder D, Wallbing L, Liangsupree T, Riekkola ML, Fornstedt T. Reliable Strategy for Analysis of Complex Biosensor Data. Anal Chem 2018; 90:5366-5374. [PMID: 29589451 PMCID: PMC6150654 DOI: 10.1021/acs.analchem.8b00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
When
using biosensors, analyte biomolecules of several different
concentrations are percolated over a chip with immobilized ligand
molecules that form complexes with analytes. However, in many cases
of biological interest, e.g., in antibody interactions, complex formation
steady-state is not reached. The data measured are so-called sensorgram,
one for each analyte concentration, with total complex concentration
vs time. Here we present a new four-step strategy for more reliable
processing of this complex kinetic binding data and compare it with
the standard global fitting procedure. In our strategy, we first calculate
a dissociation graph to reveal if there are any heterogeneous interactions.
Thereafter, a new numerical algorithm, AIDA, is used to get the number
of different complex formation reactions for each analyte concentration
level. This information is then used to estimate the corresponding
complex formation rate constants by fitting to the measured sensorgram
one by one. Finally, all estimated rate constants are plotted and
clustered, where each cluster represents a complex formation. Synthetic
and experimental data obtained from three different QCM biosensor
experimental systems having fast (close to steady-state), moderate,
and slow kinetics (far from steady-state) were evaluated using the
four-step strategy and standard global fitting. The new strategy allowed
us to more reliably estimate the number of different complex formations,
especially for cases of complex and slow dissociation kinetics. Moreover,
the new strategy proved to be more robust as it enables one to handle
system drift, i.e., data from biosensor chips that deteriorate over
time.
Collapse
Affiliation(s)
- Patrik Forssén
- Department of Engineering and Chemical Sciences , Karlstad University , SE-651 88 Karlstad , Sweden
| | - Evgen Multia
- Department of Chemistry , P.O. Box 55, FI-00014 University of Helsinki , Finland
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences , Karlstad University , SE-651 88 Karlstad , Sweden
| | - Marie Andersson
- Department of Engineering and Chemical Sciences , Karlstad University , SE-651 88 Karlstad , Sweden
| | - Teodor Aastrup
- Attana AB , Björnäsvägen 21 , SE-114 19 Stockholm , Sweden
| | - Samuel Altun
- Attana AB , Björnäsvägen 21 , SE-114 19 Stockholm , Sweden
| | | | - Linus Wallbing
- Attana AB , Björnäsvägen 21 , SE-114 19 Stockholm , Sweden
| | | | - Marja-Liisa Riekkola
- Department of Chemistry , P.O. Box 55, FI-00014 University of Helsinki , Finland
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences , Karlstad University , SE-651 88 Karlstad , Sweden
| |
Collapse
|
24
|
Asnin LD, Stepanova MV. Van't Hoff analysis in chiral chromatography. J Sep Sci 2018; 41:1319-1337. [DOI: 10.1002/jssc.201701264] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Leonid D. Asnin
- Department of Chemistry and Biotechnology; Perm National Research Polytechnic University; Perm Russia
| | - Maria V. Stepanova
- Department of Chemistry and Biotechnology; Perm National Research Polytechnic University; Perm Russia
| |
Collapse
|
25
|
Szabó ZI, Foroughbakhshfasaei M, Noszál B, Tóth G. Enantioseparation of racecadotril using polysaccharide-type chiral stationary phases in polar organic mode. Chirality 2017; 30:95-105. [DOI: 10.1002/chir.22772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Zoltán-István Szabó
- Faculty of Pharmacy; University of Medicine and Pharmacy Tîrgu Mureş; Tîrgu Mureş Romania
| | | | - Béla Noszál
- Department of Pharmaceutical Chemistry; Semmelweis University; Budapest Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry; Semmelweis University; Budapest Hungary
| |
Collapse
|
26
|
Woiwode U, Sievers-Engler A, Zimmermann A, Lindner W, Sánchez-Muñoz OL, Lämmerhofer M. Surface-anchored counterions on weak chiral anion-exchangers accelerate separations and improve their compatibility for mass-spectrometry-hyphenation. J Chromatogr A 2017; 1503:21-31. [DOI: 10.1016/j.chroma.2017.04.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
|
27
|
|
28
|
Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption. J Chromatogr A 2016; 1468:200-208. [DOI: 10.1016/j.chroma.2016.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/21/2022]
|
29
|
Combining Chemometric Models with Adsorption Isotherm Measurements to Study Omeprazole in RP-LC. Chromatographia 2016; 79:1283-1291. [PMID: 27738352 PMCID: PMC5039227 DOI: 10.1007/s10337-016-3151-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/21/2016] [Accepted: 06/26/2016] [Indexed: 11/25/2022]
Abstract
The adsorption of the proton-pump inhibitor omeprazole was investigated using RP-LC with chemometric models combined with adsorption isotherm modelling to study the effect of pH and type of organic modifier (i.e., acetonitrile or methanol). The chemometric approach revealed that omeprazole was tailing with methanol and fronting with acetonitrile along with increased fronting at higher pH. The increased fronting with higher pH for acetonitrile was explored using a pH-dependent adsorption isotherm model that was determined using the inverse method and it agreed well with the experimental data. The model indicated that the peaks exhibit more fronting at high pH due to a larger fraction of charged omeprazole molecules. This model could accurately predict the shape of elution profiles at arbitrary pH levels in the studied interval. Using a two-layer adsorption isotherm model, the difference between acetonitrile and methanol was studied at the lowest pH at which almost all omeprazole molecules are neutral. Omeprazole had adsorbate–adsorbate interactions that were similar in strength for the acetonitrile and methanol mobile phases, while the solute–adsorbent interactions were almost twice as strong with methanol. The difference in the relative strengths of these two interactions likely explains the different peak asymmetries (i.e., tailing/fronting) in methanol and acetonitrile. In conclusion, thermodynamic modelling can complement chemometric modeling in HPLC method development and increase the understanding of the separation.
Collapse
|
30
|
Szabó ZI, Szőcs L, Horváth P, Komjáti B, Nagy J, Jánoska Á, Muntean DL, Noszál B, Tóth G. Liquid chromatography with mass spectrometry enantioseparation of pomalidomide on cyclodextrin-bonded chiral stationary phases and the elucidation of the chiral recognition mechanisms by NMR spectroscopy and molecular modeling. J Sep Sci 2016; 39:2941-9. [PMID: 27279456 DOI: 10.1002/jssc.201600354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 01/04/2023]
Abstract
A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second-generation immunomodulatory drug, using β-cyclodextrin-bonded stationary phases. Four cyclodextrin columns (β-, hydroxypropyl-β-, carboxymethyl-β-, and sulfobutyl-β-cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β-cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1-201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide-β-cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied.
Collapse
Affiliation(s)
- Zoltán-István Szabó
- Faculty of Pharmacy, University of Medicine and Pharmacy of Tîrgu Mureș, Romania
| | - Levente Szőcs
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Balázs Komjáti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - József Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ádám Jánoska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | | | - Béla Noszál
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
ÿsberg D, Samuelsson J, Fornstedt T. A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography. J Chromatogr A 2016; 1457:97-106. [DOI: 10.1016/j.chroma.2016.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 11/30/2022]
|
32
|
Forssén P, Fornstedt T. A model free method for estimation of complicated adsorption isotherms in liquid chromatography. J Chromatogr A 2015. [DOI: 10.1016/j.chroma.2015.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Leśko M, Åsberg D, Enmark M, Samuelsson J, Fornstedt T, Kaczmarski K. Choice of Model for Estimation of Adsorption Isotherm Parameters in Gradient Elution Preparative Liquid Chromatography. Chromatographia 2015; 78:1293-1297. [PMID: 26435545 PMCID: PMC4580716 DOI: 10.1007/s10337-015-2949-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/14/2015] [Indexed: 11/24/2022]
Abstract
The inverse method is a numerical method for fast estimation of adsorption isotherm parameters directly from a few overloaded elution profiles and it was recently extended to adsorption isotherm acquisition in gradient elution conditions. However, the inverse method in gradient elution is cumbersome due to the complex adsorption isotherm models found in gradient elution. In this case, physicochemically correct adsorption models have very long calculation times. The aim of this study is to investigate the possibility of using a less complex adsorption isotherm model, with fewer adjustable parameters, but with preserved/acceptable predictive abilities. We found that equal or better agreement between experimental and predicted elution profiles could be achieved with less complex models. By being able to select a model with fewer adjustable parameters, the calculation times can be reduced by at least a factor of 10.
Collapse
Affiliation(s)
- Marek Leśko
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35 959 Rzeszów, Poland
| | - Dennis Åsberg
- Department of Engineering and Chemical Sciences, INTERACT, Karlstad University, 651 88 Karlstad, Sweden
| | - Martin Enmark
- Department of Engineering and Chemical Sciences, INTERACT, Karlstad University, 651 88 Karlstad, Sweden
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, INTERACT, Karlstad University, 651 88 Karlstad, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, INTERACT, Karlstad University, 651 88 Karlstad, Sweden
| | - Krzysztof Kaczmarski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35 959 Rzeszów, Poland
| |
Collapse
|
34
|
Binding of angiogenesis inhibitor kringle 5 to its specific ligands by frontal affinity chromatography. J Chromatogr A 2015; 1401:42-51. [DOI: 10.1016/j.chroma.2015.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 11/21/2022]
|
35
|
Enmark M, Åsberg D, Shalliker A, Samuelsson J, Fornstedt T. A closer study of peak distortions in supercritical fluid chromatography as generated by the injection. J Chromatogr A 2015; 1400:131-9. [DOI: 10.1016/j.chroma.2015.04.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
36
|
Witos J, Samuelsson J, Cilpa-Karhu G, Metso J, Jauhiainen M, Riekkola ML. Partial filling affinity capillary electrophoresis including adsorption energy distribution calculations--towards reliable and feasible biomolecular interaction studies. Analyst 2015; 140:3175-82. [PMID: 25751597 DOI: 10.1039/c5an00210a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this work, a method to study and analyze the interaction data in free solution by exploiting partial filling affinity capillary electrophoresis (PF-ACE) followed by adsorption energy distribution calculations (AED) prior model fit to adsorption isotherms will be demonstrated. PF-ACE-AED approach allowed the possibility to distinguish weak and strong interactions of the binding processes between the most common apolipoprotein E protein isoforms (apoE2, apoE3, apoE4) of high density lipoprotein (HDL) and apoE-containing HDL2 with major glycosaminoglycan (GAG) chain of proteoglycans (PGs), chondroitin-6-sulfate (C6S). The AED analysis clearly revealed the heterogeneity of the binding processes. The major difference was that they were heterogeneous with two different adsorption sites for apoE2 and apoE4 isoforms, whereas interestingly for apoE3 and apoE-containing HDL2, the binding was homogeneous (one site) adsorption process. Moreover, our results allowed the evaluation of differences in the binding process strengths giving the following order with C6S: apoE-containing HDL2 > apoE2 > apoE4 > apoE3. In addition, the affinity constant values determined could be compared with those obtained in our previous studies for the interactions between apoE isoforms and another important GAG chain of PGs - dermatan sulfate (DS). The success of the combination of AED calculations prior to non-linear adsorption isotherm model fit with PF-ACE when the concentration range was extended, confirmed the power of the system in the clarification of the heterogeneity of biological processes studied.
Collapse
Affiliation(s)
- Joanna Witos
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Investigation of the structure–selectivity relationships and van’t Hoff analysis of chromatographic stereoisomer separations of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on Cinchona alkaloid-based chiral stationary phases. J Chromatogr A 2015; 1384:67-75. [DOI: 10.1016/j.chroma.2015.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/18/2022]
|
38
|
Comparison of the separation performances of cinchona alkaloid-based zwitterionic stationary phases in the enantioseparation of β2- and β3-amino acids. Molecules 2014; 20:70-87. [PMID: 25546622 PMCID: PMC6272689 DOI: 10.3390/molecules20010070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/15/2014] [Indexed: 01/10/2023] Open
Abstract
The enantiomers of twelve unusual β2- and β3-homoamino acids containing the same side-chains were separated on chiral stationary phases containing a quinine- or quinidine-based zwitterionic ion-exchanger as chiral selector. The effects of the mobile phase composition, the nature and concentration of the acid and base additives and temperature on the separations were investigated. The changes in standard enthalpy, ∆(∆H°), entropy, ∆(∆S°), and free energy, ∆(∆G°), were calculated from the linear van’t Hoff plots derived from the ln α vs.1/T curves in the studied temperature range (10–50 °C). The values of the thermodynamic parameters depended on the nature of the selectors, the structures of the analytes, and the positions of the substituents on the analytes. A comparison of the zwitterionic stationary phases revealed that the quinidine-based ZWIX(−)™ column exhibited much better selectivity for both β2- and β3-amino acids than the quinine-based ZWIX(+)™ column, and the separation performances of both the ZWIX(+)™ and ZWIX(−)™ columns were better for β2-amino acids. The elution sequence was determined in some cases and was observed to be R <S and S < R on the ZWIX(+)™ and ZWIX(−)™ columns, respectively.
Collapse
|
39
|
Khater S, West C. Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases. J Chromatogr A 2014; 1373:197-210. [DOI: 10.1016/j.chroma.2014.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/29/2022]
|
40
|
Polymethacrylate monoliths with immobilized poly-3-mercaptopropyl methylsiloxane film for high-coverage surface functionalization by thiol-ene click reaction. J Chromatogr A 2014; 1367:123-30. [DOI: 10.1016/j.chroma.2014.09.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
|
41
|
Cecchi T. Theoretical Models of Ion Pair Chromatography: A Close Up of Recent Literature Production. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Teresa Cecchi
- a Accademia delle Scienze dell'Istituto di Bologna , Bologna , Italy
| |
Collapse
|
42
|
High-performance liquid chromatographic enantioseparation of cationic 1,2,3,4-tetrahydroisoquinoline analogs on Cinchona alkaloid-based zwitterionic chiral stationary phases. Anal Bioanal Chem 2014; 407:961-72. [DOI: 10.1007/s00216-014-8247-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
|
43
|
Ilisz I, Gecse Z, Pataj Z, Fülöp F, Tóth G, Lindner W, Péter A. Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior. J Chromatogr A 2014; 1363:169-77. [DOI: 10.1016/j.chroma.2014.06.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/04/2014] [Accepted: 06/25/2014] [Indexed: 11/17/2022]
|
44
|
Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. I. A thermodynamic perspective. J Chromatogr A 2014; 1362:206-17. [DOI: 10.1016/j.chroma.2014.08.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022]
|
45
|
Investigation of plateau methods for adsorption isotherm determination in supercritical fluid chromatography. J Chromatogr A 2014; 1354:129-38. [DOI: 10.1016/j.chroma.2014.05.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022]
|
46
|
Liquid chromatographic enantiomer separation with special focus on zwitterionic chiral ion-exchangers. Anal Bioanal Chem 2014; 406:6095-103. [DOI: 10.1007/s00216-014-7930-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
47
|
Ciogli A, Simone P, Villani C, Gasparrini F, Laganà A, Capitani D, Marchetti N, Pasti L, Massi A, Cavazzini A. Revealing the Fine Details of Functionalized Silica Surfaces by Solid-State NMR and Adsorption Isotherm Measurements: The Case of Fluorinated Stationary Phases for Liquid Chromatography. Chemistry 2014; 20:8138-48. [DOI: 10.1002/chem.201304330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/25/2014] [Indexed: 11/11/2022]
|
48
|
Asnin LD, Nikitina Y. Effect of competing binding modes on retention in chromatography and capillary electrophoresis. A theoretical consideration. J Sep Sci 2014; 37:390-2. [DOI: 10.1002/jssc.201301074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Leonid D. Asnin
- Perm National Research Polytechnic University; Department of Chemistry and Biotechnology; Perm Russian Federation
| | - Yuliya Nikitina
- Perm National Research Polytechnic University; Department of Chemistry and Biotechnology; Perm Russian Federation
| |
Collapse
|
49
|
Agmo Hernández V, Samuelsson J, Forssén P, Fornstedt T. Enhanced interpretation of adsorption data generated by liquid chromatography and by modern biosensors. J Chromatogr A 2013; 1317:22-31. [DOI: 10.1016/j.chroma.2013.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/17/2022]
|
50
|
Samuelsson J, Forssén P, Fornstedt T. Sample conditions to avoid pH distortion in RP-LC. J Sep Sci 2013; 36:3769-75. [DOI: 10.1002/jssc.201300217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jörgen Samuelsson
- Department of Engineering and Chemical Sciences; Karlstad University; Karlstad Sweden
| | - Patrik Forssén
- Department of Engineering and Chemical Sciences; Karlstad University; Karlstad Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences; Karlstad University; Karlstad Sweden
| |
Collapse
|