1
|
Krata AA, Domagała J, Głowacki R. Hydrophilic interaction liquid chromatography based method for simultaneous determination of purines and their derivatives in food spices. Food Chem 2024; 441:138285. [PMID: 38176140 DOI: 10.1016/j.foodchem.2023.138285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
This work presents method for separation and quantification of adenine, guanine, xanthine, hypoxanthine, uric acid, and creatinine in food spices using hydrophilic interaction liquid chromatography with UV detection. Optimized conditions allowed separation with mobile phases containing acetonitrile and additives ammonium acetate (90:10, v/v, pH 6.1) or formate (90:10, v/v, pH 3.2). In food spices no uric acid was detected, creatinine (16 ± 2 μg g-1) was found only in instant dried yeast. The highest content of purines was determined in dried yeast (xanthine 110 ± 8 μg g-1, hypoxanthine 441 ± 24 μg g-1, adenine 84 ± 16 μg g-1, guanine 163 ± 12 μg g-1), high in curry, herbal pepper, and chicken seasoning, the lowest concentration was in black pepper (hypoxanthine 12 ± 2 μg g-1, adenine 27 ± 3 μg g-1). To best of our knowledge, no such complementary method and obtained data have been reported so far.
Collapse
Affiliation(s)
- Agnieszka Anna Krata
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Pomorska 163 St., Lodz, Poland.
| | - Julia Domagała
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Pomorska 163 St., Lodz, Poland.
| | - Rafał Głowacki
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Pomorska 163 St., Lodz, Poland.
| |
Collapse
|
2
|
Goyon A, Scott B, Yehl P, Zhang K. Online Nucleotide Mapping of mRNAs. Anal Chem 2024; 96:8674-8681. [PMID: 38712815 DOI: 10.1021/acs.analchem.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Messenger RNA (mRNA) can be sequenced via indirect approaches such as Sanger sequencing and next generation sequencing (NGS), or direct approaches like bottom-up mass spectrometry (MS). Direct sequencing allows the confirmation of RNA modifications. However, the conventional bottom-up MS approach involves time-consuming in-solution digestions that require a large amount of sample, and can lead to the RNase contamination of the LC-MS system and column. Here, we describe a platform that enables online nucleotide mapping of mRNAs via the use of immobilized RNase cartridges and 2D-LC-MS instrumentation. The online approach was compared to conventional offline digestion protocols adapted from two published studies. For this purpose, five model mRNAs of varying lengths (996-4521 nucleotides) and chemistries (unmodified uridine vs 5-methoxyuridine (5moU)) were analyzed. The profiles and sequence coverages obtained after RNase T1 digestion were discussed. The online nucleotide mapping achieved comparable or slightly greater sequence coverage for the 5 mRNAs (5.8-51.5%) in comparison to offline approaches (3.7-50.4%). The sequence coverage was increased to 65.6-85.6 and 69.7-85.0% when accounting for the presence of nonunique digestion products generated by the RNase T1 and A, respectively. The online nucleotide mapping significantly reduced the digestion time (from 15 to <5 min), increased the signal intensity by more than 10-fold in comparison to offline approaches.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brandon Scott
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Yehl
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Rout S, Cadalbert R, Schröder N, Wang J, Zehnder J, Gampp O, Wiegand T, Güntert P, Klingler D, Kreutz C, Knörlein A, Hall J, Greenwald J, Riek R. An Analysis of Nucleotide-Amyloid Interactions Reveals Selective Binding to Codon-Sized RNA. J Am Chem Soc 2023; 145:21915-21924. [PMID: 37782045 PMCID: PMC10571083 DOI: 10.1021/jacs.3c06287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/03/2023]
Abstract
Interactions between RNA and proteins are the cornerstone of many important biological processes from transcription and translation to gene regulation, yet little is known about the ancient origin of said interactions. We hypothesized that peptide amyloids played a role in the origin of life and that their repetitive structure lends itself to building interfaces with other polymers through avidity. Here, we report that short RNA with a minimum length of three nucleotides binds in a sequence-dependent manner to peptide amyloids. The 3'-5' linked RNA backbone appears to be well-suited to support these interactions, with the phosphodiester backbone and nucleobases both contributing to the affinity. Sequence-specific RNA-peptide interactions of the kind identified here may provide a path to understanding one of the great mysteries rooted in the origin of life: the origin of the genetic code.
Collapse
Affiliation(s)
- Saroj
K. Rout
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Riccardo Cadalbert
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Nina Schröder
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Wang
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Zehnder
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Olivia Gampp
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Thomas Wiegand
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim/Ruhr, Germany
| | - Peter Güntert
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
- Institute
of Biophysical Chemistry, Goethe University, 60438 Frankfurt
am Main, Germany
- Department
of Chemistry, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - David Klingler
- Institute
of Organic Chemistry and Center for Molecular Biosciences Innsbruck
(CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute
of Organic Chemistry and Center for Molecular Biosciences Innsbruck
(CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Anna Knörlein
- Institute
of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonathan Hall
- Institute
of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jason Greenwald
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Roland Riek
- Institute
of Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Guidolin V, Jacobs FC, MacMillan ML, Villalta PW, Balbo S. Liquid Chromatography-Mass Spectrometry Screening of Cyclophosphamide DNA Damage In Vitro and in Patients Undergoing Chemotherapy Treatment. Chem Res Toxicol 2023; 36:1278-1289. [PMID: 37490747 PMCID: PMC11231964 DOI: 10.1021/acs.chemrestox.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
DNA alkylating drugs have been used as frontline medications to treat cancer for decades. Their chemical reaction with DNA leads to the blockage of DNA replication, which impacts cell replication. While this impacts rapidly dividing cancerous cells, this process is not selective and results in highly variable and often severe side effects in patients undergoing alkylating-drug based therapies. The development of biomarkers to identify patients who effectively respond with tolerable toxicities vs patients who develop serious side effects is needed. Cyclophosphamide (CPA) is a commonly used chemotherapeutic drug and lacks biomarkers to evaluate its therapeutic effect and toxicity. Upon administration, CPA is metabolically activated and converted to phosphoramide mustard and acrolein, which are responsible for its efficacy and toxicity, respectively. Previous studies have explored the detection of the major DNA adduct of CPA, the interstrand DNA-DNA cross-link G-NOR-G, finding differences in the cross-link amount between Fanconi Anemia and non-Fanconi Anemia patients undergoing chemotherapy treatment. In this study, we take advantage of our DNA adductomic approach to comprehensively profile CPA's and its metabolites' reactions with DNA in vitro and in patients undergoing CPA-based chemotherapy. This investigation led to the detection of 40 DNA adducts in vitro and 20 DNA adducts in patients treated with CPA. Moreover, acrolein-derived DNA adducts were quantified in patient samples. The results suggest that CPA-DNA damage is very complex, and an evaluation of DNA adduct profiles is necessary when evaluating the relationship between CPA-DNA damage and patient outcome.
Collapse
Affiliation(s)
- Valeria Guidolin
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Foster C. Jacobs
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Margaret L. MacMillan
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Blood and Marrow Transplantation & Cellular Therapy Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Factors affecting mixed-mode retention properties of cation-exchange stationary phases. J Chromatogr A 2023; 1695:463934. [PMID: 36972662 DOI: 10.1016/j.chroma.2023.463934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Cation-exchange stationary phases were characterized in different chromatographic modes (HILIC, RPLC, IC) and applied to the separation of non-charged hydrophobic and hydrophilic analytes. The set of columns under investigation included both commercially available cation-exchangers and self-prepared PS/DVB-based columns, the latter consisting of adjustable amounts of carboxylic and sulfonic acid functional groups. The influence of cation-exchange site and polymer substrate on the multimodal properties of cation-exchangers was identified using selectivity parameters, polymer imaging and excess adsorption isotherms. Introducing weakly acidic cation-exchange functional groups to the unmodified PS/DVB-substrate effectively reduced hydrophobic interactions, whilst a low degree of sulfonation (0.09 to 0.27% w/w sulphur) mainly influenced electrostatic interactions. Silica substrate was found to be another important factor for inducing hydrophilic interactions. The presented results demonstrate that cation-exchange resins are suitable for mixed-mode applications and offer versatile selectivity.
Collapse
|
6
|
Herniman JM, Worsley PR, Greenhill R, Bader DL, John Langley G. Development of ultra-high-performance supercritical fluid chromatography-mass spectrometry assays to analyze potential biomarkers in sweat. J Sep Sci 2021; 45:542-550. [PMID: 34796639 DOI: 10.1002/jssc.202100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022]
Abstract
Liquid chromatography-mass spectrometry methods were required to afford the rapid separation and detection of purines and small organic acids. These compounds are found in sweat and sebum and are potential biomarkers for the early detection of pressures sores. Two ultra-high-performance supercritical fluid chromatography-mass spectrometry assays have been successfully developed for both classes of compounds. Separation for purines was achieved using a gradient of supercritical carbon dioxide and methanol with a 1-aminoanthracene sub 2 μm particle size column followed by positive ion electrospray ionization. Separation for organic acids was achieved using a gradient of supercritical carbon dioxide and methanol (50 mM ammonium acetate 2% water) with a Diol sub 2 μm particle size column followed by negative ion electrospray ionization. Calibration curves were created in the absence of internal standards and R2 values > 0.96 were achieved using single ion monitoring methods for the protonated purines and the deprotonated acids. The two new assays afford rapid analytical methods for the separation and detection of potential biomarkers in human sweat leading to the early detection and prevention of pressure sores.
Collapse
Affiliation(s)
- Julie M Herniman
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| | - Peter R Worsley
- Faculty of Environmental and Health Sciences, School of Health Sciences, University of Southampton, Southampton, UK
| | - Rachel Greenhill
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| | - Dan L Bader
- Faculty of Environmental and Health Sciences, School of Health Sciences, University of Southampton, Southampton, UK
| | - G John Langley
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Qin Y, Zhong Q, Zhang Y, Lin X, Fu P, Lin H. Micro-flow hydrophilic interaction liquid chromatography coupled with triple quadrupole mass spectrometry detects modified nucleosides in the transfer RNA pool of cyanobacteria. J Sep Sci 2021; 44:3208-3218. [PMID: 34212504 DOI: 10.1002/jssc.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022]
Abstract
Post-transcriptional modification of nucleosides is observed in almost all elements of RNA. Modified nucleosides finely tune the structure of RNA molecules and affect vital functions, such as the modified wobble position 34 of transfer RNAs expanding the reading preference of anticodons to codons. Recent investigations have revealed that the modification species and their frequencies in an RNA element are not stable but vary with specific cellular factors including metabolites and particular proteins (writers, readers, and erasers). To understand the link between dynamic RNA modifications and biological processes, sensitive and reliable methods for determining modified nucleosides are required. In this study, micro-flow (8 μL/min) hydrophilic interaction liquid chromatography was coupled with triple quadrupole mass spectrometry for the simultaneous determination of adenosine, uridine, cytidine, guanosine, and 20 modified nucleosides. The method was calibrated using 0.1-1000 nM standards (∼0.03-300 ng/mL) and successfully applied to the determination of transfer RNA modifications in the model cyanobacterium Synechococcus elongatus PCC 7942. A protocol for the isolation of a clean transfer RNA pool was optimized, requiring only 25 ng for the identification and quantification of transfer RNA modifications. This micro-flow liquid chromatography-tandem mass spectrometry method constitutes the first step toward monitoring dynamic ribonucleoside modifications in a limited RNA sample.
Collapse
Affiliation(s)
- Yichao Qin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China.,College of Tropical Crops, Hainan University, Haikou, P. R. China
| | - Qisheng Zhong
- Shimadzu Corporation, Guangzhou branch, Guangzhou, P. R. China
| | - Ying Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China.,College of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China.,College of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Huan Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
8
|
Huang M, Xu X, Qiu H, Li N. Analytical characterization of DNA and RNA oligonucleotides by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1648:462184. [PMID: 33991753 DOI: 10.1016/j.chroma.2021.462184] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/28/2021] [Accepted: 04/18/2021] [Indexed: 01/06/2023]
Abstract
Liquid chromatography-mass spectrometry has been widely implemented as a powerful tool for providing in-depth characterization of nucleic acid therapeutic modalities, such as anti-sense oligonucleotides and small interfering RNAs (siRNAs). In this study, we developed a generic hydrophilic interaction liquid chromatography (HILIC) hyphenated with tandem mass spectrometry method in the absence of ion-pairing reagents and demonstrated its capability as an attractive and robust alternative for oligonucleotide and siRNA analysis. HILIC separation of mixtures of unmodified and fully phosphorothioate-modified DNA oligonucleotides and their synthetic 3' exonuclease-digested metabolites were also assessed. High-resolution mass spectrometric (HRMS) analysis was used to determine the deconvoluted masses of oligonucleotide and siRNA standards and their impurities. To enable unbiased sequence characterization with tandem mass spectrometry (MS/MS), we also optimized higher-energy C-trap dissociation (HCD) on improving the sequence coverage of DNA and RNA oligonucleotides. Lastly, we evaluated on-column sensitivity for a phosphorothioate oligonucleotide by performing targeted analysis with either targeted selected ion monitoring (tSIM) or parallel reaction monitoring (PRM). Higher on-column sensitivity of 13 ng, equivalent to 2.0 pmol, of a phosphorothioate oligonucleotide was achieved by tSIM analysis as compared to PRM analysis.
Collapse
Affiliation(s)
- Ming Huang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Xiaobin Xu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| | - Haibo Qiu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| | - Ning Li
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
9
|
Wei-Qi K, Yuan Z, Yu Z, Xue-Song F. An Overview of Pretreatment and Analysis of Nucleotides in Different Samples (Update since 2010). Crit Rev Anal Chem 2021; 52:1624-1643. [PMID: 33840326 DOI: 10.1080/10408347.2021.1907173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nucleotides, which are important low-molecular-weight compounds present in organisms, are precursors of nucleic acids and participate in various regulatory and metabolic functions. Sensitive and valid methods for monitoring and determining nucleotides and nucleosides in different samples are urgently required. Due to the presence of numerous endogenous interferences in complex matrices and the high polarity of the molecules of the phosphate moiety, the determination of nucleotide content is challenging. This review summarizes the pretreatment and analysis methods of nucleotides in different samples. Advanced pretreatment methods, including different microextraction methods, solid-phase extraction based on novel materials, QuEChERS, are clearly displayed, and continuous progress which has been made in LC, LC-MS/MS and capillary electrophoresis methods are discussed. Moreover, the strengths and weaknesses of different methods are discussed and compared. Highlight:Advanced pretreatment and detection methods of nucleotides were critically reviewed.Microextraction technology was one of the trends of nucleotides pretreatment in the future.Applications of novel materials and supercritical fluid were highlighted.The evolution and advance of HRMS analyzers were in detailed.
Collapse
Affiliation(s)
- Kang Wei-Qi
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhang Yuan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhou Yu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Xue-Song
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Kang L, Liu J, Zhang H, Jiang M, Jin Y, Zhang M, Hu P. Improved ultra-high performance liquid chromatographic method for simultaneous determination of five gout-related metabolites in human serum. J Sep Sci 2020; 44:954-962. [PMID: 33348445 DOI: 10.1002/jssc.202000974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
Creatinine and purines are gout-related metabolites commonly quantified by liquid chromatography coupled with ultraviolet and mass spectrometry. However, the high cost of liquid chromatography coupled with mass spectrometry hindered its extensive use in ordinary hospitals and clinical laboratories. Using the traditional liquid chromatography method, the full separation of these metabolites in complex biological samples is still not achieved. In this study, an improved ultra-high-performance liquid chromatography with ultraviolet spectroscopy method was reported for quantitative determination of five gout-related metabolites (i.e., creatinine, uric acid, hypoxanthine, xanthine, and inosine) in human serum within 10 min. A UHPLC system equipped with a hydrophilic C18 column was used to improve separation, shorten analysis time, and increase analysis throughput. The performance of the method was validated by evaluating linearity (squared correlation coefficient > 0.9991), recovery (92.8-100.0%, with relative standard deviation < 4.7%), accuracy (relative errors < 14.6%), precision (0.2-4.1% for intraday and 2.1-7.3% for interday) and stability (-14.1 to 8.3% in autosampler for 12 h and -13.3 to 2.2% for freeze-thaw cycles). This method was successfully applied to quantify gout-related metabolites in serum samples of healthy controls and gout patients, which was expected to be used in the clinical investigation of gout at different stages.
Collapse
Affiliation(s)
- Lu Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Ju Liu
- Department of Rheumatology, Jiujiang First People's Hospital, Jiujiang, P. R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Min Jiang
- Department of Rheumatology, Jiujiang First People's Hospital, Jiujiang, P. R. China
| | - Yidian Jin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
11
|
Abstract
The discovery and analysis of modifications on proteins and nucleic acids has provided functional information that has rapidly accelerated the field of epigenetics. While protein post-translational modifications (PTMs), especially on histones, have been highlighted as critical components of epigenetics, the post-transcriptional modification of RNA has been a subject of more recently emergent interest. Multiple RNA modifications have been known to be present in tRNA and rRNA since the 1960s, but the exploration of mRNA, small RNA, and inducible tRNA modifications remains nascent. Sequencing-based methods have been essential to the field by creating the first epitranscriptome maps of m6A, m5C, hm5C, pseudouridine, and inosine; however, these methods possess significant limitations. Here, we discuss the past, present, and future of the application of mass spectrometry (MS) to the study of RNA modifications.
Collapse
MESH Headings
- Animals
- Humans
- Mass Spectrometry
- Molecular Structure
- Nucleosides
- Nucleotides
- Protein Processing, Post-Translational
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Richard Lauman
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
12
|
Burgos-Gil R, Peris-García E, Ruiz-Angel M, Baeza-Baeza J, García-Alvarez-Coque M. Protocol to compare column performance applied to hydrophilic interaction liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Galeano Garcia P, Zimmermann BH, Carazzone C. Hydrophilic Interaction Liquid Chromatography Coupled to Mass Spectrometry and Multivariate Analysis of the De Novo Pyrimidine Pathway Metabolites. Biomolecules 2019; 9:biom9080328. [PMID: 31370321 PMCID: PMC6722987 DOI: 10.3390/biom9080328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we describe the optimization of a Hydrophilic Interaction Liquid Chromatography coupled to mass spectrometry (HILIC-MS) method for the evaluation of 14 metabolites related to the de novo synthesis of pyrimidines (dnSP) while using multivariate analysis, which is the metabolic pathway for pyrimidine nucleotide production. A multivariate design was used to set the conditions of the column temperature, flow of the mobile phase, additive concentration, gradient rate, and pH of the mobile phase in order to attain higher peak resolution and ionization efficiency in shorter analysis times. The optimization process was carried out while using factorial fractional designs, Box–Behnken design and central composite design while using two zwitterionic columns, ZIC-p-HILIC and ZIC-HILIC, polymeric, and silica-based columns, respectively. The factors were evaluated while using resolution (R), retention factor (k), efficiency of the column (N), and peak height (h) as the response variables. The best optimized conditions were found with the ZIC-p-HILIC column: elution gradient rate 2 min, pH 7.0, temperature 45 °C, mobile phase flow of 0.35 mL min−1, and additive (ammonium acetate) concentration of 6 mM. The total analysis time was 28 min. The ZIC-p-HILIC LC-MS method yielded satisfactory results for linearity of calibration curves, limit of detection (LOD), and limit of quantification (LOQ). The method has been shown to be appropriate for the analysis of dnSP on samples of tomato plants that were infected with Phytophthora infestans.
Collapse
Affiliation(s)
- Paula Galeano Garcia
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
- "Grupo de Investigación en Productos Naturales Amazónicos", Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
| | - Barbara H Zimmermann
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
| |
Collapse
|
14
|
Yuan Y, Jiang M, Zhang H, Liu J, Zhang M, Hu P. Simultaneous quantification of urinary purines and creatinine by ultra high performance liquid chromatography with ultraviolet spectroscopy and quadrupole time‐of‐flight mass spectrometry: Method development, validation, and application to gout study. J Sep Sci 2019; 42:2523-2533. [PMID: 31144454 DOI: 10.1002/jssc.201900170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yuan Yuan
- School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai P. R. China
| | - Min Jiang
- Department of RheumatologyJiujiang First People's Hospital Jiujiang P. R. China
| | - Hongyang Zhang
- School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai P. R. China
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai P. R. China
| | - Ju Liu
- Department of RheumatologyJiujiang First People's Hospital Jiujiang P. R. China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai P. R. China
| | - Ping Hu
- School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai P. R. China
| |
Collapse
|
15
|
Rastegar L, Mighani H, Ghassempour A. A comparison and column selection of Hydrophilic Interaction Liquid Chromatography and Reversed-Phase High-Performance Liquid Chromatography for detection of DNA methylation. Anal Biochem 2018; 557:123-130. [PMID: 30030996 DOI: 10.1016/j.ab.2018.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023]
Abstract
5-methylcytosine (5mC) is an epigenetic mark which has a profound effect on various fundamental processes in cells. In present study, at first Hydrophilic Interaction Liquid Chromatography (HILIC) was compared with Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) based on their selectivity (α), retention factor (k), and resolution (R) for cytosine (C) and 5mC nucleobases. We tried to justify the separation mechanism on the basis of mobile phase and solute polarity, structural characterization of solute and stationary phases, log Do/w, and pka under both modes. Then, these two modes were compared in order to select the best column for measurement of methylation level in two real samples with less analytical complexity (i.e. animal and bacteria) and a highly complex sample (i.e. plant), after chemical hydrolysis of DNA. In this favor, diol and cyano (CN) columns in HILIC mode as well as C8 and C18 in RP-HPLC were investigated. Optimum separation and the best validation parameters were obtained for CN column with Limit of Detection (LOD) of 1.4 pmol and Limit of Quantification (LOQ) of 4.8 pmol for 5mC. When the CN column was used in HILIC-UV procedure, separation of 5mC and C bases was achieved in all types of hydrolyzed DNA solutions.
Collapse
Affiliation(s)
- Leila Rastegar
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hossein Mighani
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, Tehran, Iran.
| |
Collapse
|
16
|
Rageh AH, Pyell U. “Pseudostationary Ion-Exchanger” Sweeping as an Online Enrichment Technique in the Determination of Nucleosides in Urine via Micellar Electrokinetic Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3570-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
New stationary phase for hydrophilic interaction chromatography to separate chito-oligosaccharides with degree of polymerization 2-6. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:33-40. [DOI: 10.1016/j.jchromb.2018.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/14/2022]
|
18
|
Domínguez-Álvarez J, Mateos-Vivas M, Rodríguez-Gonzalo E, García-Gómez D, Bustamante-Rangel M, Delgado Zamarreño MM, Carabias-Martínez R. Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Al-Massaedh “AA, Pyell U. Mixed-mode acrylamide-based continuous beds bearing tert -butyl groups for capillary electrochromatography synthesized via complexation of N - tert -butylacrylamide with a water-soluble cyclodextrin. Part I: Retention properties. J Chromatogr A 2016; 1477:114-126. [DOI: 10.1016/j.chroma.2016.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
20
|
A hyperbranched polyethylenimine functionalized stationary phase for hydrophilic interaction liquid chromatography. Anal Bioanal Chem 2016; 408:3633-8. [DOI: 10.1007/s00216-016-9446-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
21
|
Iverson CD, Zhang Y, Lucy CA. Diazonium modification of porous graphitic carbon with catechol and amide groups for hydrophilic interaction and attenuated reversed phase liquid chromatography. J Chromatogr A 2015; 1422:186-193. [PMID: 26506445 DOI: 10.1016/j.chroma.2015.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022]
Abstract
Porous graphitic carbon (PGC) is an increasingly popular and attractive phase for HPLC on account of its chemical and thermal stability, and its unique separation mechanism. However, native PGC is strongly hydrophobic and in some instances excessively retentive. As part of our effort to build a library of hydrophilic covalently modified PGC phases, we functionalized PGC with catechol and amide groups by means of aryl diazonium chemistry to produce two new phases. Successful grafting was confirmed by X-ray photoelectron spectroscopy (XPS). Under HILIC conditions, the Catechol-PGC showed up to 5-fold increased retention relative to unmodified PGC and selectivity that differed from four other HILIC phases. Under reversed phase conditions, the Amide-PGC reduced the retentivity of PGC by almost 90%. The chromatographic performance of Catechol-PGC and Amide-PGC is demonstrated by separations of nucleobases, nucleosides, phenols, alkaline pharmaceuticals, and performance enhancing stimulants. These compounds had retention factors (k) ranging from 0.5 to 13.
Collapse
Affiliation(s)
- Chad D Iverson
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Ya Zhang
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Charles A Lucy
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
22
|
Synthesis and characterization of phosphodiester stationary bonded phases for liquid chromatography. Talanta 2015; 143:35-41. [DOI: 10.1016/j.talanta.2015.04.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 11/23/2022]
|
23
|
Gagliardi LG, Tascon M, Castells CB. Effect of temperature on acid–base equilibria in separation techniques. A review. Anal Chim Acta 2015; 889:35-57. [DOI: 10.1016/j.aca.2015.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/16/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
|
24
|
Sakaguchi Y, Miyauchi K, Kang BI, Suzuki T. Nucleoside Analysis by Hydrophilic Interaction Liquid Chromatography Coupled with Mass Spectrometry. Methods Enzymol 2015; 560:19-28. [PMID: 26253964 DOI: 10.1016/bs.mie.2015.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA molecules contain a wide variety of chemical modifications that cannot be deduced from the genomic sequence. RNA modifications confer a chemical diversity to simple RNA molecules, enabling a greater variety of biological functions. To detect RNA modifications, highly sensitive analytical tools are required. Liquid chromatography/mass spectrometry (LC/MS) has been playing a vital role in analyzing minor modified nucleosides in RNA specimens from various sources. Reverse-phase chromatography (RPC) has been used for LC/MS for a long time because RPC is compatible with electrospray ionization (ESI) MS. However, RPC is not always suitable for detecting hydrophilic or polar nucleosides. We here describe a different mode of LC/MS for detecting RNA modifications using hydrophilic interaction liquid chromatography (HILIC). HILIC/ESI-MS is a valuable alternative for profiling modified nucleosides.
Collapse
Affiliation(s)
- Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Byeong-il Kang
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
25
|
Dereplication of known nucleobase and nucleoside compounds in natural product extracts by capillary electrophoresis-high resolution mass spectrometry. Molecules 2015; 20:5423-37. [PMID: 25822081 PMCID: PMC6272742 DOI: 10.3390/molecules20045423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
Nucleobase and nucleoside compounds exist widely in various organisms. An often occurring problem in the discovery of new bioactive compounds from natural products is reisolation of known nucleobase and nucleoside compounds. To resolve this problem, a capillary electrophoresis-high resolution mass spectrometry (CE-HR-MS) method providing both rapid separation and accurate mass full-scan MS data was developed for the first time to screen and dereplicate known nucleobase and nucleoside compounds in crude extracts of natural products. Instrumental parameters were optimized to obtain optimum conditions for CE separation and electrospray ionization-time-of-flight mass spectrometry (ESI-TOF/MS) detection. The proposed method was verified to be precise, reproducible, and sensitive. Using this method, known nucleobase and nucleoside compounds in different marine medicinal organisms including Syngnathus acus Linnaeus; Hippocampusjaponicus Kaup and Anthopleura lanthogrammica Berkly were successfully observed and identified. This work demonstrates that CE-HR-MS combined with an accurate mass database may be used as a powerful tool for dereplicating known nucleobase and nucleoside compounds in different types of natural products. Rapid dereplication of known nucleobase and nucleoside compounds allows researchers to focus on other leads with greater potential to yield new substances.
Collapse
|
26
|
Determination of N-acetylglucosamine in cosmetic formulations and skin test samples by hydrophilic interaction liquid chromatography and UV detection. J Pharm Biomed Anal 2015; 107:125-30. [DOI: 10.1016/j.jpba.2014.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022]
|
27
|
Moravcová D, Haapala M, Planeta J, Hyötyläinen T, Kostiainen R, Wiedmer SK. Separation of nucleobases, nucleosides, and nucleotides using two zwitterionic silica-based monolithic capillary columns coupled with tandem mass spectrometry. J Chromatogr A 2014; 1373:90-6. [PMID: 25465366 DOI: 10.1016/j.chroma.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The capability of employing synthesized zwitterionic silica-based monolithic capillary columns (140 mm × 0.1mm) for separation of highly polar and hydrophilic nucleobases, nucleosides, and nucleotides in hydrophilic interaction chromatography is reported. The suitability of the columns for on-line conjunction with electrospray tandem mass spectrometry was explored. Our results show that the grafted layer of zwitterionic monomer ([2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide or 2-methacryloyloxyethyl phosphorylcholine) on the silica monolithic surface significantly improved the separation selectivity and reproducibility, as compared to the bare silica monolith. The stepwise elution from 90% to 70% of acetonitrile enabled separation of a complex sample mixture containing 21 compounds with a total analysis time less than 40 min.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 60200 Brno, Czech Republic.
| | - Markus Haapala
- Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Josef Planeta
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| | | | - Risto Kostiainen
- Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
28
|
Zhang F, Shen G, Ji S, Yang B. Recent Advances of Stationary Phases for Hydrophilic Interaction Liquid Chromatography and Ion Chromatography. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Feifang Zhang
- a School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Guobing Shen
- a School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Shunli Ji
- a School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Bingcheng Yang
- a School of Pharmacy , East China University of Science and Technology , Shanghai , China
| |
Collapse
|
29
|
Tyteca E, Guillarme D, Desmet G. Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: separation of nucleobases and nucleosides. J Chromatogr A 2014; 1368:125-31. [PMID: 25441348 DOI: 10.1016/j.chroma.2014.09.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/15/2022]
Abstract
In this study, the separation of twelve nucleobases and nucleosides was optimized via chromatogram simulation (i.e., prediction of individual retention times and estimation of the peak widths) with the use of an empirical (reversed-phase) non-linear model proposed by Neue and Kuss. Retention time prediction errors of less than 2% were observed for all compounds on different stationary phases. As a single HILIC column could not resolve all peaks, the modeling was extended to coupled-column systems (with different stationary phase chemistries) to increase the separation efficiency and selectivity. The analytical expressions for the gradient retention factor on a coupled column system were derived and accurate retention time predictions were obtained (<2% prediction errors in general). The optimized gradient (predicted by the optimization software) included coupling of an amide and an pentahydroxy functionalized silica stationary phases with a gradient profile from 95 to 85%ACN in 6 min and resulted in almost baseline separation of the twelve nucleobases and nucleosides in less than 7 min. The final separation was obtained in less than 4h of instrument time (including equilibration times) and was fully obtained via computer-based optimization. As such, this study provides an example of a case where individual retention modeling can be used as a way to optimize the gradient conditions in the HILIC mode using a non-linear model such as the Neue and Kuss model.
Collapse
Affiliation(s)
- Eva Tyteca
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 20, Boulevard d'Yvoy, 1211 Geneva 4, Switzerland
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
30
|
Al-Massaedh AA, Pyell U. Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: investigation of the chromatographic efficiency dependent on the retention mode. J Chromatogr A 2014; 1349:80-9. [PMID: 24856967 DOI: 10.1016/j.chroma.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/26/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022]
Abstract
In our previous work we have described the synthesis, characterization, and optimization of the chromatographic efficiency of a highly crosslinked macroporous mixed-mode acrylamide-based monolithic stationary phase synthesized by in situ free radical copolymerization of cyclodextrin-solubilized N-adamantyl acrylamide, piperazinediacrylamide, methacrylamide and vinylsulfonic acid in aqueous medium in pre-treated fused silica capillaries of 100μm I.D. In the present work, we study with different classes of neutral analytes (with varied hydrophobicity) the impact of the type of retention mode (influenced by the type of analyte and the mobile phase composition) and the impact of the solute functionality on the chromatographic efficiency and peak symmetry with a monolith synthesized under optimized synthesis parameters. With this monolithic capillary high separation efficiencies (up to ca. 220,000m(-1)) are obtained for the separation of different analyte classes (alkylphenones, nitrotoluenes, and phenolic compounds with k=0.2-0.55) in the reversed-phase mode, in the normal-phase mode, and in the mixed mode. For neutral alkylanilines (k<0.25) plate numbers of about 300,000m(-1) are routinely reached in the reversed-phase elution mode. For phenolic solutes separated in a mixed mode there is a solute-specific influence on peak symmetry and chromatographic efficiency. With increasing efficiency of the monolith, axial diffusion becomes an important mechanism of band broadening. For those peaks, which do not show a significant asymmetry (asymmetry factor ≤1.05), it is confirmed that plate heights gained via the tangent method are equivalent to those gained via moment analysis.
Collapse
Affiliation(s)
- Ayat Allah Al-Massaedh
- University of Marburg, Department of Chemistry, Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | - Ute Pyell
- University of Marburg, Department of Chemistry, Hans-Meerwein-Straße, D-35032 Marburg, Germany.
| |
Collapse
|
31
|
Li Y, Yang J, Jin J, Sun X, Wang L, Chen J. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. J Chromatogr A 2014; 1337:133-9. [DOI: 10.1016/j.chroma.2014.02.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
|
32
|
Kučera R, Kovaříková P, Pasáková-Vrbatová I, Slaninová J, Klimeš J. Zirconia--a stationary phase capable of the separation of polar markers of myocardial metabolism in hydrophilic interaction chromatography. J Sep Sci 2014; 37:1089-93. [PMID: 24591308 DOI: 10.1002/jssc.201301330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 11/12/2022]
Abstract
Creatine, phosphocreatine, and adenine nucleotides are highly polar markers of myocardial metabolism that are poorly retained on RP silica sorbents. Zirconia represents an alternative material to silica with high promise to be used in hydrophilic interaction chromatography (HILIC). This study describes a first systematic investigation of the ability of ZrO2 to separate creatine, phosphocreatine, adenosine 5'-monophosphate, adenosine 5'-diphosphate, and adenosine 5'-triphosphate and compares the results with those obtained on TiO2 . All analytes showed a HILIC-like retention pattern when mobile phases of different strengths were tested. Stronger retention and better column performance were achieved in organic-rich mobile phases as compared to aqueous conditions, where poor retention and insufficient column performance were observed. The effect of mobile phase pH and ionic strength was evaluated as well. The analysis of myocardial tissue demonstrated that all compounds were separated in a relevant biological material and thus proved ZrO2 as a promising phase for HILIC of biological samples that deserves further investigation.
Collapse
Affiliation(s)
- Radim Kučera
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | | | | | | | | |
Collapse
|
33
|
Lee M, Kim DH, Shin YJ, Choi SZ, Son M, Sung SH. Analysis ofDioscorea japonicaby Hydrophilic Interaction Liquid Chromatography. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.862628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Shi Q, Chen JH, Zhao HQ, Li X, Zheng L, Wang XR, Zang JY. Rapid simultaneous determination of 15 nucleosides and nucleobases in marine medicinal organism Anthopleura lanthogrammica Berkly by micellar electrokinetic capillary chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Zhang G, Walker AD, Lin Z, Han X, Blatnik M, Steenwyk RC, Groeber EA. Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry. J Chromatogr A 2013; 1325:129-36. [PMID: 24377733 DOI: 10.1016/j.chroma.2013.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/25/2022]
Abstract
We present here a novel and highly sensitive ion-pair hydrophilic interaction chromatography-tandem mass spectrometry (IP-HILIC-MS/MS) method for quantitation of highly polar acid metabolites like adenine nucleotides. A mobile phase based on diethylamine (DEA) and hexafluoro-2-isopropanol (HFIP) and an aminopropyl (NH2) column were applied for a novel chromatographic separation for the determination of AMP, ADP and ATP in biological matrices. This novel IP-HILIC mechanism could be hypothesized by the ion-pairing reagent (DEA) in the mobile phase forming neutral and hydrophilic complexes with the analytes of polar organic acids. The IP-HILIC-MS/MS assay for adenine nucleotides was successfully validated with satisfactory linearity, sensitivity, accuracy, reproducibility and matrix effects. The lower limit of quantitation (LLOQ) at 2.00ng/mL obtained for ATP showed a least 10-fold higher sensitivity than previous LC-MS/MS assays except nano-LC-MS/MS assay. In summary, this novel IP-HILIC-MS/MS assay provides a sensitive method for nucleotides bioanalysis and shows great potential to determine a number of organic acids in biological matrices.
Collapse
Affiliation(s)
- Guodong Zhang
- Biomarker Research, Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | - Annie D Walker
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Zhaosheng Lin
- Biomarker Research, Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA
| | - Xiaogang Han
- Biomarker Research, Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA
| | - Matthew Blatnik
- Biomarker Research, Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA
| | - Rick C Steenwyk
- Biomarker Research, Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA
| | - Elizabeth A Groeber
- Biomarker Research, Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
36
|
Fischer R, Bowness P, Kessler BM. Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics 2013; 13:3371-86. [PMID: 24155035 PMCID: PMC4265265 DOI: 10.1002/pmic.201300192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘-OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC-MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics-based studies. Limitations and requirements are discussed as well as extensions to the LC-MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC-MS, CE-MS or NMR.
Collapse
Affiliation(s)
- Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
37
|
Rageh AH, Pyell U. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides. J Chromatogr A 2013; 1316:135-46. [DOI: 10.1016/j.chroma.2013.09.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022]
|
38
|
Vieira E, Brandão T, Ferreira IMPLVO. Evaluation of Brewer's spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8724-8729. [PMID: 24004163 DOI: 10.1021/jf4021619] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present work evaluates the influence of serial yeast repitching on nucleotide composition of brewer's spent yeast extracts produced without addition of exogenous enzymes. Two procedures for disrupting cell walls were compared, and the conditions for low-cost and efficient RNA hydrolysis were selected. A HILIC methodology was validated for the quantification of nucleotides and nucleosides in yeast extracts. Thirty-seven samples of brewer's spent yeast ( Saccharomyces pastorianus ) organized according to the number of serial repitchings were analyzed. Nucleotides accounted for 71.1-88.2% of the RNA products; 2'AMP was the most abundant (ranging between 0.08 and 2.89 g/100 g dry yeast). 5'GMP content ranged between 0.082 and 0.907 g/100 g dry yeast. The sum of 5'GMP, 5'IMP, and 5'AMP represented between 25 and 32% of total nucleotides. This works highlights for the first time that although serial repitching influences the content of monophosphate nucleotides and nucleosides, the profiles of these RNA hydrolysis products are not affected.
Collapse
Affiliation(s)
- Elsa Vieira
- REQUIMTE - Departamento de Ciências Quı́micas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto , Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | | | |
Collapse
|
39
|
Li F, Duan JA, Qian D, Guo S, Ding Y, Liu X, Qian Y, Peng Y, Ren Y, Chen Y. Comparative analysis of nucleosides and nucleobases from different sections of Elaphuri Davidiani Cornu and Cervi Cornu by UHPLC–MS/MS. J Pharm Biomed Anal 2013; 83:10-8. [DOI: 10.1016/j.jpba.2013.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 11/16/2022]
|
40
|
Gumustas M, Kurbanoglu S, Uslu B, Ozkan SA. UPLC versus HPLC on Drug Analysis: Advantageous, Applications and Their Validation Parameters. Chromatographia 2013. [DOI: 10.1007/s10337-013-2477-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R. Stationary phases for separation of nucleosides and nucleotides by hydrophilic interaction liquid chromatography. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Bittová M, Havliš J, Fuksová H, Vrbková B, Trnková L. Toward reading the sequence of short oligonucleotides from their retention factors obtained by means of hydrophilic interaction chromatography and ion-interaction reversed-phase liquid chromatography. J Sep Sci 2013; 35:3227-34. [PMID: 23175142 DOI: 10.1002/jssc.201200482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 11/08/2022]
Abstract
Retention characteristics of selected synthetic 5'-terminal phosphate absent penta-nucleotides containing adenine, guanine, and thymine were studied in relation to their sequence by hydrophilic interaction chromatography and ion-interaction reversed-phase liquid chromatography. The organic solvent content, pH, and buffer concentration in mobile phases were evaluated as influential separation conditions. Data demonstrate that both compared chromatographic modes can be used to separate synthetic penta-nucleotides according to their nucleotide composition. Moreover, reversed-phase liquid chromatography allows separation according to their sequence. We have found a simple linear additive model to describe the retention order in both separation modes in regard to their sequence. In hydrophilic interaction chromatography, the retention behavior is controlled primarily by the hydrophilicity of involved nucleotides and minimally by their sequence position. For reversed-phase liquid chromatography, the nucleotide hydrophobicity plays an important role in their retention properties and the influence of their location in sequence on the retention increases toward the center and decreases toward the termini. Our results show that the penta-nucleotide sequence, and thus its spatial arrangement induced by the surrounding environment, is highly related to the retention properties, so it may be hypothetically used to read the sequence from the retention properties acquired under particular separation conditions.
Collapse
Affiliation(s)
- Miroslava Bittová
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
43
|
Greco G, Letzel T. Main Interactions and Influences of the Chromatographic Parameters in HILIC Separations. J Chromatogr Sci 2013; 51:684-93. [DOI: 10.1093/chromsci/bmt015] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
44
|
Thermodynamic studies of a zwitterionic stationary phase in hydrophilic interaction liquid chromatography. J Chromatogr A 2013; 1272:81-9. [DOI: 10.1016/j.chroma.2012.11.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/07/2012] [Accepted: 11/25/2012] [Indexed: 11/21/2022]
|
45
|
Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. J Chromatogr A 2012. [DOI: 10.1016/j.chroma.2012.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Kozlík P, Šímová V, Kalíková K, Bosáková Z, Armstrong DW, Tesařová E. Effect of silica gel modification with cyclofructans on properties of hydrophilic interaction liquid chromatography stationary phases. J Chromatogr A 2012; 1257:58-65. [DOI: 10.1016/j.chroma.2012.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
|
47
|
Zhang L, Dai X, Xu F, Wang F, Gong B, Wei Y. Preparation of imidazole-functionalized silica by surface-initiated atom transfer radical polymerization and its application for hydrophilic interaction chromatography. Anal Bioanal Chem 2012; 404:1477-84. [PMID: 22772141 DOI: 10.1007/s00216-012-6210-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
A novel imidazole-functionalized stationary phase for hydrophilic interaction chromatography (HILIC) was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). 1-Vinylimidazole as a monomer was polymerized on the surface of initiator-immobilized silica by SI-ATRP using CuCl and 2,2'-bipyridyl as a catalyst. The graft chain length and polymer grafting density were controlled by varying the ratio of monomer to initiator. The resulting materials were characterized by elemental analysis and thermogravimetric analysis. Then, high-performance liquid chromatography separation of eight nucleobases/nucleosides was performed on the imidazole-functionalized chromatographic column in HILIC mode. The effects of mobile phase composition, buffer pH, and column temperature on the separation of nucleobases/nucleosides were investigated, and the retention mechanisms were studied. Chromatographic parameters were calculated, and the results showed that surface adsorption through hydrogen bonding and electrostatic interaction dominated the retention behavior of the solutes in HILIC mode. Lastly, the stationary phase was successfully used to determine the nucleobases and nucleosides from Cordyceps militaris.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Energy & Chemical Engineering, Ningxia University, Yinchuan, China
| | | | | | | | | | | |
Collapse
|
48
|
Marrubini G, Fattorini P, Previderé C, Goi S, Sorçaburu Cigliero S, Grignani P, Serra M, Biesuz R, Massolini G. Experimental design applied to the optimization of microwave-assisted DNA hydrolysis. J Chromatogr A 2012; 1249:8-16. [PMID: 22749458 DOI: 10.1016/j.chroma.2012.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The assessment of the integrity of the DNA primary structure and the identification of canonical and modified bases are useful tools in medical, pharmaceutical, and forensic applications. In this article we report on the first microwave-assisted hydrolyses of deoxyribonucleoside-triphosphates (dNTPs) and human DNA using "Design of Experiments" methodology. We use hydrophilic interaction chromatography (HILIC) and UV detection at 260 nm for the determination of purinic and pyrimidinic bases at levels of 0.5 μM. We use a ZIC-HILIC 150mm × 2.1 mm i.d., 5 μm particle size column and ammonium formate buffers in acetonitrile for gradient separation of the analytes. We then compare the final concentrations of Thymine, Adenine, Cytosine, and Guanine with the nominal amounts of such bases in the dNTPs and DNA submitted to hydrolysis. After optimization of the hydrolysis (11.5 min, 0.15 M aqueous HCl, 150 °C), the method turns out to be suitable for the determination of products released from quantities of human DNA as low as 500 ng with precision (RSD<10%) and accuracy (REC 97-104%). These results confirm that the kinetics of the release of the bases depends on their molecular structure and show that the concentration of the substrate plays a relevant role. We conclude with a discussion of the method and a comparison to the methods described in previous studies.
Collapse
Affiliation(s)
- Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hydrophilic interaction ultra performance liquid chromatography retention prediction under gradient elution. Anal Bioanal Chem 2012; 404:701-9. [PMID: 22580420 DOI: 10.1007/s00216-012-6015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
The development and application of new separation mechanisms such as hydrophilic interaction chromatography (HILIC) is of high importance for the simultaneous analysis of polar molecules such as primary metabolites. However the retention mechanism in HILIC is not fully understood and as a result retention prediction tools are not at hand for this chromatographic approach. In the present report we study the utility of a simple algorithm, based on a simple linear and/or a simple logarithmic retention model, for retention prediction in HILIC gradient separation of a mixture of 23 selected compounds including (poly)amines, amino acids, saccharides, and other molecules. Utilizing two types of gradient elution programs with or without an isocratic part, retention data were collected in order to build prediction models. Starting from at least three gradient runs the prediction of analyte retention was very satisfactory for all gradient programs tested, providing useful evidence of the value of such retention time prediction methodologies.
Collapse
|
50
|
Chen Y, Bicker W, Wu J, Xie M, Lindner W. Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4243-4252. [PMID: 22500559 DOI: 10.1021/jf300076j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In order to develop a simple, efficient, and sensitive method for comprehensive analysis of the nucleosides and nucleobases in natural products, a zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) method for the simultaneous determination of 16 nucleosides and nucleobases has been studied. A mechanistic study confirmed that ZIC-HILIC separation showed a mixed-mode effect of both hydrophilic and electrostatic interactions. This method was validated to be precise, accurate, and sensitive with overall precision (intra- and interday) less than 1.8% (RSD), and LOD and LOQ was in the range of 0.005-0.029 μg/mL and 0.018-0.096 μg/mL, respectively. With this method, the nucleosides and nucleobases in Ganoderma of different species (G. atrum, G. lucidum, and G. sinense) and origins were quantified. The results showed that the contents varied with the species and origins. With the aid of hierarchical cluster analysis (HCA), cultivated Ganoderma from different origins and species were successfully discriminated. It is for the first time that the content of nucleosides and nucleobases in G. atrum is reported and compared. Our data showed that HILIC had advantages as a useful and potential tool for the study of the bioactive components in Ganoderma as well as their quality control, and could therefore be used for the determination of the analytes in other natural products.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. of China
| | | | | | | | | |
Collapse
|