1
|
Qiao Y, Yin B, Zhou W, Wang M, Chang Z, Zhou J, Yue M, Chen J, Liu F, Feng Z. Nutrient consumption patterns of Lactobacillus acidophilus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5982-5990. [PMID: 38427028 DOI: 10.1002/jsfa.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND One of the greatest challenges in using Lactobacillus acidophilus as a probiotic is acid stress. The current research aimed to identify substances that help L. acidophilus resist acid stress; this was achieved through assessing its nutrient consumption patterns under various pH conditions. RESULTS The consumption rates of alanine, uracil, adenine, guanine, niacin, and manganese were consistently higher than 60% for L. acidophilus LA-5 cultured at pH 5.8, 4.9, and 4.4. The consumption rates of glutamic acid + glutamine and thiamine increased with decreasing pH and were higher than 60% at pH 4.9 and 4.4. The viable counts of L. acidophilus LA-5 were significantly increased under the corresponding acidic stress conditions (pH 4.9 and 4.4) through the appropriate addition of either alanine (3.37 and 2.81 mmol L-1), glutamic acid + glutamine (4.77 mmol L-1), guanine (0.13 and 0.17 mmol L-1), niacin (0.02 mmol L-1), thiamine (0.009 mmol L-1), or manganese (0.73 and 0.64 mmol L-1) (P < 0.05). The viable counts of L. acidophilus LA-5 cultured in a medium supplemented with combined nutritional factors was 1.02-1.03-fold of the counts observed in control medium under all acid conditions (P < 0.05). CONCLUSION Alanine, glutamic acid + glutamine, guanine, niacin, thiamine, and manganese can improve the growth of L. acidophilus LA-5 in an acidic environment in the present study. The results will contribute to optimizing strategies to enhance the acid resistance of L. acidophilus and expand its application in the fermentation industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Boxing Yin
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
| | - Wei Zhou
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
2
|
Zhang Y, Han H, Li D, Fan Y, Liu M, Ren H, Liu L. Botanical characterization, phytochemistry, biosynthesis, pharmacology clinical application, and breeding techniques of the Chinese herbal medicine Fritillaria unibracteata. Front Pharmacol 2024; 15:1428037. [PMID: 39135808 PMCID: PMC11317884 DOI: 10.3389/fphar.2024.1428037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Fritillaria unibracteata (FRU) belongs to the genus Fritillaria of the Liliaceae family. It is one of the original plants of the Chinese medicinal material "Chuanbeimu" and also a biological resource featured in the Tibetan Plateau of China. The dried bulbs of FRU are used in traditional Chinese medicine. The chemical constituents of FRU that have been isolated and identified include alkaloids, sterols, organic acids and their esters, nucleosides and volatile oils. FRU has antitussive, expectorant, anti-asthmatic, anti-inflammatory, antibacterial, acute lung injury-reducing, antifibrosis, antitumor, and other pharmacological effects. This valuable plant has an extremely high market demand, and over the years, due to over-exploitation, FRU has now been listed as a key species that is endangered and scarcely cultivated in China as a traditional Chinese medicinal herb. However, research on FRU is rare, and its effective components, resource control, and mechanisms of action need further study. This review systematically discusses the herbal characteristics, resource distribution, chemical composition, biosynthesis, pharmacological effects, clinical application, and breeding techniques of FRU, hoping to provide a reference for further research and the use of FRU.
Collapse
Affiliation(s)
- Yamei Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Hongping Han
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
- Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province, Xining, China
| | - Dingai Li
- Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
| | - Yanan Fan
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Meng Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Huimin Ren
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Lu Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| |
Collapse
|
3
|
Fan Y, Sun G, Kaw HY, Zhu L, Wang W. Analytical characterization of nucleotides and their concentration variation in drinking water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152510. [PMID: 34968603 DOI: 10.1016/j.scitotenv.2021.152510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Nucleotides, as the basic building blocks of nucleic acids, widely exist in aqueous environment. In this study, we developed a solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) method for the analysis of 5'-adenosine monophosphate (AMP), 5'-uridine monophosphate (UMP), 5'-cytidine monophosphate (CMP) and 5'-guanosine monophosphate (GMP). The method achieved limits of detection (LODs) of 0.1-1.0 ng/L, and recoveries of 85-95% for the four tested nucleotides. The occurrence and concentrations of the four nucleotides in water from eight representative drinking water treatment and distribution systems in China were determined using this method. All four nucleotides were detectable in water treatment plant (WTP) influent and effluent, at concentrations of up to 30 ng/L and with occurrence frequency of around 90%. The concentrations of identified nucleotides increased 3-10 times after 10 km of water age in the water distribution system. Biological filters and coagulation increased the concentrations of nucleotides, conversely, active carbon, ozonation, and ultrafiltration membrane removed nucleotides in water. The effects of active carbon and coagulation were further confirmed using laboratory-controlled experiment. In addition, monochlorinated nucleotides were identified as the chlorination products of nucleotides.
Collapse
Affiliation(s)
- Yi Fan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Guangrong Sun
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
4
|
Kumar D, Joshi R, Sharma A, Nadda G, Kumar D. A Comprehensive Search of the Primary and Secondary Metabolites and Radical Scavenging Potential of Trillium govanianum Wall. ex D. Don. Chem Biodivers 2021; 18:e2100300. [PMID: 34375021 DOI: 10.1002/cbdv.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Trillium govanianum rhizomes are traditionally consumed as a raw powder and decoction for the treatment of health complications. Hence, the present study aimed to investigate whether aqueous and alcoholic extracts of T. govanianum rhizomes under hot and cold extraction conditions have similar or dissimilar chemical, nutrient, and antioxidant profiles. The total phenolics, flavonoids, carbohydrates, proteins, fats, and energy values were estimated in all the conditionally prepared samples. The total phenolics (21.23±1.4 mg GAE/g extract), flavonoids (70.57±3.24 mg RE/g extract) were found higher in hot ethanolic extract (TGHEt), while cold water extract (TGGC) showed higher nutrients including amino acids (10.545±0.219 mg/g) and nucleosides (1.803±0.018 mg/g). The nutrient energy value (2.60 and 2.49 Kcal/g extract) was higher in cold and hot ethanolic extracts. Further, TGHEt scavenged the DPPH. (IC50 ; 870±22 μg/mL) and ABTS.+ (IC50 ; 80±1.49 μg/mL) effectively and proved its highest antioxidant activity compared to other samples. In LC/MS/MS-based metabolite profiling, twenty-six metabolites (fatty acids, steroidal saponins, triterpene saponins, ecdysteroid hormones) were confirmed with mass fragmentation and literature, while one hundred nine metabolites were identified using the METLIN database. The principal component analysis showed clustering of hot condition extracts while cold extracts were differentially located in quadrants. The heatmaps exhibited the associations and differences between metabolite composition, solvents, and extraction conditions. The identified metabolites speculatively predicted the biosynthesis pathway of T. govanianum. Findings also illustrated that T. govanianum is a source of bioactive nutritional components and saponins. The current metabolite profiling of T. govanianum will help in its agricultural and biotechnological interventions for higher quality produce.
Collapse
Affiliation(s)
- Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, HP, India
| | - Aakriti Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Gireesh Nadda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Wang Y, Hou H, Ren Q, Hu H, Yang T, Li X. Natural drug sources for respiratory diseases from Fritillaria: chemical and biological analyses. Chin Med 2021; 16:40. [PMID: 34059098 PMCID: PMC8165352 DOI: 10.1186/s13020-021-00450-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fritillaria naturally grows in the temperate region of Northern Hemisphere and mainly distributes in Central Asia, Mediterranean region, and North America. The dried bulbs from a dozen species of this genus have been usually used as herbal medicine, named Beimu in China. Beimu had rich sources of phytochemicals and have extensively applied to respiratory diseases including coronavirus disease (COVID-19). Fritillaria species have alkaloids that act as the main active components that contribute multiple biological activities, including anti-tussive, expectorant, and anti-asthmatic effects, especially against certain respiratory diseases. Other compounds (terpenoids, steroidal saponins, and phenylpropanoids) have also been identified in species of Fritillaria. In this review, readers will discover a brief summary of traditional uses and a comprehensive description of the chemical profiles, biological properties, and analytical techniques used for quality control. In general, the detailed summary reveals 293 specialized metabolites that have been isolated and analyzed in Fritillaria species. This review may provide a scientific basis for the chemical ecology and metabolomics in which compound identification of certain species remains a limiting step.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, 272000, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China
| | - Tiechui Yang
- Nin Jiom Medicine Manufactory (Hong Kong) Limited, Hong Kong, 999077, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No 16, Neinanxiao Street, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
6
|
Chen T, Zhong F, Yao C, Chen J, Xiang Y, Dong J, Yan Z, Ma Y. A Systematic Review on Traditional Uses, Sources, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicity of Fritillariae Cirrhosae Bulbus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1536534. [PMID: 33273948 PMCID: PMC7676930 DOI: 10.1155/2020/1536534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Fritillariae Cirrhosae Bulbus (known as chuanbeimu in Chinese, FCB) is a famous folk medicine which has been widely used to relieve cough and eliminate phlegm for thousands of years in China. The medicine originates from dried bulbs of six species of Fritillaria which are distributed in the temperate zone of the Northern Hemisphere. Increasing attention has been paid to FCB because of its excellent medicinal value such as being antitussive, expectorant, analgesic, anticancer, anti-inflammatory, and antioxidative. During the past years, a large number of research studies have been conducted to investigate the phytochemistry, pharmacology, and pharmacokinetics of FCB. A range of compounds have been isolated and identified from FCB, including alkaloids, saponins, nucleosides, organic acids, terpenoids, and sterols. Among them, alkaloids as the main active ingredient have been illustrated to exert significant therapeutic effects on many diseases such as cancer, acute lung injury, chronic obstructive pulmonary disease, asthma, Parkinson's disease, and diabetes. Due to the excellent medical value and low toxicity, FCB has a huge market all over the world and triggers a growing enthusiasm among researchers. However, there is still a lack of systematic review. Hence, in this work, we reviewed the FCB-based articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in the recent years. The traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of FCB were discussed in the review, which aims to provide a reference for further development and utilization of FCB.
Collapse
Affiliation(s)
- Ting Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Furong Zhong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Cheng Yao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiqing Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhuyun Yan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| |
Collapse
|
7
|
Altaweraqi RA, Yao SYM, Smith KM, Cass CE, Young JD. HPLC reveals novel features of nucleoside and nucleobase homeostasis, nucleoside metabolism and nucleoside transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183247. [PMID: 32126230 DOI: 10.1016/j.bbamem.2020.183247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022]
Abstract
Humans possess three members of the cation-coupled concentrative nucleoside transporter CNT (SLC 28) family, hCNT1-3: hCNT1 is selective for pyrimidine nucleosides but also transports adenosine, hCNT2 transports purine nucleosides and uridine, and hCNT3 transports both pyrimidine and purine nucleosides. hCNT1/2 transport nucleosides using the transmembrane Na+ electrochemical gradient, while hCNT3 is both Na+- and H+-coupled. By producing recombinant hCNT3 in Xenopus laevis oocytes, we have used radiochemical high performance liquid chromatography (HPLC) analysis to investigate the metabolic fate of transported [3H] or [14C] pyrimidine and purine nucleosides once inside cells. With the exception of adenosine, transported nucleosides were generally subject to minimal intracellular metabolism. We also used radiochemical HPLC analysis to study the mechanism by which adenosine functions as a low Km, low Vmax permeant of hCNT1. hCNT1-producing oocytes were pre-loaded with [3H] uridine, after which efflux of accumulated radioactivity was measured in transport medium alone, or in the presence of extracellular non-radiolabelled adenosine or uridine. hCNT1-mediated [3H]-efflux was stimulated by extracellular uridine, but inhibited by extracellular adenosine, with >95% of the radioactivity exiting cells being unmetabolized uridine, consistent with a low transmembrane mobility of the hCNT1/adenosine complex. Humans also possess four members of the equilibrative nucleoside transporter ENT (SLC 29) family, hENT1-4. Of these, hENT1 and hENT2 transport both nucleosides and nucleobases into and out of cells, but their relative contributions to nucleoside and nucleobase homeostasis and, in particular, to adenosine signaling via purinoreceptors, are not known. We therefore used HPLC to determine plasma nucleoside and nucleobase concentrations in wild-type, mENT1-, mENT2- and mENT1/mENT2-knockout (KO) mice, and to compare the findings with knockout of mCNT3. Results demonstrated that ENT1 was more important than ENT2 or CNT3 in determining plasma adenosine concentrations, indicated modest roles of ENT1 in the homeostasis of other nucleosides, and suggested that none of the transporters is a major participant in handling of nucleobases.
Collapse
Affiliation(s)
- Reema A Altaweraqi
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sylvia Y M Yao
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Kyla M Smith
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Carol E Cass
- Membrane Protein Disease Research Group, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James D Young
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
8
|
Xue Y, Xie J, Xu XS, Yong L, Hu B, Liang J, Li XD, Qing LS. UPLC-QqQ/MS combined with similarity assessment of 17 nucleic acid constituents in 147 edible fungi from Sichuan Basin, China. Food Res Int 2018; 120:577-585. [PMID: 31000274 DOI: 10.1016/j.foodres.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022]
Abstract
Nucleic acid constituents are the main functional ingredients in edible fungi, therefore understanding the nucleic acid constituents of edible fungi often eaten on the table by the Chinese people is of significant value. In this study, Sichuan Provincial Center for Disease Control and Prevention collected 147 samples of edible fungi (including certain species that the Chinese often eat) from different parts of the Sichuan Basin. A new UPLC-QqQ/MS method has been developed to determine the 17 nucleic acid constituents in these 147 samples, including guanosine, adenosine, uridine, cytidine, inosine, thymidine, xanthosine dehydrate, 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxyuridine, 2'-deoxycytidine, 2'-deoxyinosine, guanosine 5'-monophosphate, adenosine 5'-monophosphate, uridine 5'-monophosphate, cytidine 5'-monophosphate, and inosine 5'-monophosphate. Finally, similarity assessment of the main edible fungus was performed using vectorial angle cosine method, and hierarchical cluster analysis was used to classify all the 147 samples. The results showed that some edible fungi have high similarities, especially in Lentinula edodes (Berk.) Pegler, the monogenic nucleotides content of which (55.84 ± 8.4 mg/100 g) is far greater than any other edible fungus, which is directly related to its taste. For quality control, this paper proposed to use the reference values of total nucleic acid compounds in edible fungi computed by percentile threshold method. This is the first time a comprehensive evaluation of nucleic acid constituents of different edible fungi of daily consumption was conducted for a large region, and the results is conducive to the quality evaluation and quality control of edible fungus.
Collapse
Affiliation(s)
- Ying Xue
- Chengdu Medical College, Chengdu 610500, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Sichuan Provincial Center for Disease Control and Prevention, Chengdu 610041, China
| | - Jing Xie
- Chengdu Medical College, Chengdu 610500, China
| | - Xian-Shun Xu
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu 610041, China
| | - Li Yong
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu 610041, China
| | - Bin Hu
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu 610041, China
| | - Jian Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xing-De Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu Medical College, Chengdu 610500, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Farooq S, Shakeel-u-Rehman, Dangroo NA, Priya D, Banday JA, Sangwan PL, Qurishi MA, Koul S, Saxena AK. Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Prangos pabularia. PLoS One 2014; 9:e108713. [PMID: 25314269 PMCID: PMC4196845 DOI: 10.1371/journal.pone.0108713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
Phytochemical analysis of the dichloromethane:methanol (1:1) extract of root parts of Prangos pabularia led to the isolation of twelve cytotoxic constituents, viz., 6-hydroxycoumarin (1), 7-hydroxycoumarin (2), heraclenol-glycoside (3), xanthotoxol (4), heraclenol (5), oxypeucedanin hydrate (6), 8-((3,3-dimethyloxiran-2-yl)methyl)-7-methoxy-2H-chromen-2-one (7), oxypeucedanin hydrate monoacetate (8), xanthotoxin (9), 4-((2-hydroxy-3-methylbut-3-en-1-yl)oxy)-7H-furo[3,2-g]chromen-7-one (10), imperatorin (11) and osthol (12). The isolates were identified using spectral techniques in the light of literature. 3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity screening of the isolated constituents was carried out against six human cancer cell lines including lung (A549 and NCI-H322), epidermoid carcinoma (A431), melanoma (A375), prostate (PC-3) and Colon (HCT-116) cell lines. Osthol (12) exhibited the highest cytotoxicity with IC50 values of 3.2, 6.2, 10.9, 14.5, 24.8, and 30.2 µM against epidermoid carcinoma (A431), melanoma (A375), lung (NCI-H322), lung (A549), prostate (PC-3) and colon (HCT-116) cell lines respectively. Epidermoid carcinoma cell line A431 was sensitive to most of the compounds followed by lung (A549) cancer cell line. Finally a simple and reliable HPLC method was developed (RP-HPLC-DAD) and validated for the simultaneous quantification of these cytotoxic constituents in Prangos pabularia. The extract was analyzed using a reversed-phase Agilent ZORBAX eclipse plus column C18 (4.6×250 mm, 5 µm) at 250 nm wavelength using a gradient water-methanol solvent system at a flow rate of 0.8 ml/min. The RP-HPLC method is validated in terms of recovery, linearity, accuracy and precision (intra and inter-day validation). This method, because of shorter analysis time, makes it valuable for the commercial quality control of Prangos pabularia extracts and its future pharmaceutical preparations.
Collapse
Affiliation(s)
- Saleem Farooq
- Bio-organic Chemistry Section, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Shakeel-u-Rehman
- Bio-organic Chemistry Section, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Department of Chemistry, University of Kashmir, Srinagar, India
| | - Nisar Ahmad Dangroo
- Bio-organic Chemistry Section, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dev Priya
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | | | - Pyare Lal Sangwan
- Bio-organic Chemistry Section, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | | | - Surrinder Koul
- Bio-organic Chemistry Section, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajit Kumar Saxena
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
10
|
Shi Q, Chen JH, Zhao HQ, Li X, Zheng L, Wang XR, Zang JY. Rapid simultaneous determination of 15 nucleosides and nucleobases in marine medicinal organism Anthopleura lanthogrammica Berkly by micellar electrokinetic capillary chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Hao DC, Gu XJ, Xiao PG, Peng Y. Phytochemical and biological research of Fritillaria medicine resources. Chin J Nat Med 2014; 11:330-44. [PMID: 23845541 DOI: 10.1016/s1875-5364(13)60050-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 12/30/2022]
Abstract
The genus Fritillaria is a botanical source for various pharmaceutically active components, which have been commonly used in traditional Chinese medicine for thousands of years. Increasing interest in Fritillaria medicinal resources has led to additional discoveries of steroidal alkaloids, saponins, terpenoids, glycosides and many other compounds in various Fritillaria species, and to investigations on their chemotaxonomy, molecular phylogeny and pharmacology. In continuation of studies on Fritillaria pharmacophylogeny, the phytochemistry, chemotaxonomy, molecular biology and phylogeny of Fritillaria and their relevance to drug efficacy is reviewed. Literature searching is used to characterize the global scientific effort in the flexible technologies being applied. The interrelationship within Chinese Bei Mu species and between Chinese species, and species distributed outside of China, is clarified by the molecular phylogenetic inferences based on nuclear and chloroplast DNA sequences. The incongruence between chemotaxonomy and molecular phylogeny is revealed and discussed. It is essential to study more species for both the sustainable utilization of Fritillaria medicinal resources and for finding novel compounds with potential clinical utility. Systems biology and omics technologies will play an increasingly important role in future pharmaceutical research involving the bioactive compounds of Fritillaria.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment, Dalian Jiaotong University, Dalian 116028, China.
| | | | | | | |
Collapse
|
12
|
Khan I, Sangwan PL, Dar AA, Rafiq RA, Farrukh MR, Dhar JK, Tasduq SA, Koul S. A validated high-performance thin-layer chromatography method for the identification and simultaneous quantification of six markers from Platanus orientalis
and their cytotoxic profiles against skin cancer cell lines. J Sep Sci 2013; 36:2602-10. [DOI: 10.1002/jssc.201300380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Imran Khan
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Payare L. Sangwan
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Alamgir A. Dar
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Rather A. Rafiq
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Mufti R. Farrukh
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Jagdish K. Dhar
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Sheikh A. Tasduq
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| | - Surrinder Koul
- Bioorganic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu Jammu and Kashmir India
| |
Collapse
|
13
|
Li F, Yang FQ, Xia ZN. Simultaneous Determination of Ten Nucleosides and Related Compounds by MEEKC with [BMIM]PF6 as Oil Phase. Chromatographia 2013. [DOI: 10.1007/s10337-013-2507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Peng R, Ma P, Mo R, Sun N. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis P. Y. Li. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Tao WW, Duan JA, Yang NY, Guo S, Zhu ZH, Tang YP, Qian DW. Determination of nucleosides and nucleobases in the pollen of Typha angustifolia by UPLC-PDA-MS. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:373-378. [PMID: 22025417 DOI: 10.1002/pca.1367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The pollen of Typha angustifolia L. has been used traditionally for the treatment of dysmenorrhea, stranguria and metrorrhagia in China. Recently, nucleosides and nucleobases have been proven as important bioactive compounds. Exploration of the nucleoside and nucleobase profiles from the pollen of T. angustifolia is important for improving its therapeutic value and could be convenient for its quality evaluation. OBJECTIVE To establish an UPLC-PDA-MS method for simultaneous determination of nucleosides and nucleobases in the pollen of T. angustifolia. METHODOLOGY The analysis was performed on an Acuity UPLCHSS T3 column with a gradient elution of 5 mM ammonium acetate and methanol solution at a flow rate of 0.3 mL/min. RESULTS Satisfactory separation of these compounds was obtained in less than 12 min. All calibration curves showed good linear regression (r² > 0.9995). The method provided good accuracy, precision, recovery, and sensitivity for the quantification of the 10 compounds analysed. CONCLUSION The UPLC method established is very helpful for optimising their content and could be convenient for quality evaluation of the pollen of T. angustifolia, which has not been reported as far as we are aware.
Collapse
Affiliation(s)
- Wei-Wei Tao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Cohen S, Tzuri G, Harel-Beja R, Itkin M, Portnoy V, Sa'ar U, Lev S, Yeselson L, Petrikov M, Rogachev I, Aharoni A, Ophir R, Tadmor Y, Lewinsohn E, Burger Y, Katzir N, Schaffer AA. Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:343-53. [PMID: 22406955 DOI: 10.1007/s00122-012-1837-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/24/2012] [Indexed: 05/18/2023]
Abstract
Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of <5, compared to the sweet cultivars that are generally characterized by mature fruit pH values of >6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.
Collapse
Affiliation(s)
- S Cohen
- Deparment of Vegetable Research, Volcani Center-ARO, 50250 Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Duan B, Huang L, Chen S. Chemical fingerprint analysis of Fritillaria delavayi Franch. by high-performance liquid chromatography. J Sep Sci 2012; 35:513-8. [DOI: 10.1002/jssc.201100373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Khan I, Sangwan PL, Dhar JK, Koul S. Simultaneous quantification of five marker compounds of Betula utilis stem bark using a validated high-performance thin-layer chromatography method. J Sep Sci 2011; 35:392-9. [DOI: 10.1002/jssc.201100647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/30/2011] [Accepted: 10/30/2011] [Indexed: 01/11/2023]
|
19
|
Tiwari N, Luqman S, Masood N, Gupta MM. Validated high performance thin layer chromatographic method for simultaneous quantification of major iridoids in Vitex trifolia and their antioxidant studies. J Pharm Biomed Anal 2011; 61:207-14. [PMID: 22226914 DOI: 10.1016/j.jpba.2011.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/01/2022]
Abstract
Negundoside (1), agnuside (2) and 6'-p-hydroxy benzoyl mussaenosidic acid (3) are known bioactive metabolites in Vitex trifolia. In the present study a simple precise and reproducible method was developed for simultaneous quantitation of NS (1), AS (2) and HMA (3) and the antioxidant capacity of above markers has also been determined. Marker compounds have been resolved using silica gel 60 F(254) plates, petroleum ether (60-80)/toluene/acetone/water (10:10:80:2 v/v/v/v) as the mobile phases. The method does not employ any derivatisation procedure and can be used as a quality control tool for routine analysis of drugs V. trifolia and V. negundo together with their commercial extracts. NS (1), AS (2) and HMA (3) showed significant activity in DPPH and NO radical scavenging assays.
Collapse
Affiliation(s)
- Neerja Tiwari
- Analytical Chemistry Department, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | | | | | | |
Collapse
|
20
|
Chen P, Li W, Li Q, Wang Y, Li Z, Ni Y, Koike K. Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography. Talanta 2011; 85:1634-41. [DOI: 10.1016/j.talanta.2011.06.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
|
21
|
SHI Q, CHEN J, LI X, CAO W, ZHENG L, ZANG J, WANG X. Comparison of different buffer systems for separation of 15 nucleosides by capillary electrophoresis. Se Pu 2011; 29:481-7. [DOI: 10.3724/sp.j.1123.2011.00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Nikitas P, Pappa-Louisi A, Agrafiotou P, Mansour A. Multilinear gradient elution optimization in reversed-phase liquid chromatography based on logarithmic retention models: Application to separation of a set of purines, pyrimidines and nucleosides. J Chromatogr A 2011; 1218:5658-63. [DOI: 10.1016/j.chroma.2011.06.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 11/30/2022]
|