1
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann Lab Med 2022; 42:121-140. [PMID: 34635606 PMCID: PMC8548246 DOI: 10.3343/alm.2022.42.2.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
The process of method development for a diagnostic assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) involves several disparate technologies and specialties. Additionally, method development details are typically not disclosed in journal publications. Method developers may need to search widely for pertinent information on their assay(s). This review summarizes the current practices and procedures in method development. Additionally, it probes aspects of method development that are generally not discussed, such as how exactly to calibrate an assay or where to place quality controls, using examples from the literature. This review intends to provide a comprehensive resource and induce critical thinking around the experiments for and execution of developing a clinically meaningful LC-MS/MS assay.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Berthelette KD, Walter TH, Gilar M, Gritti F, MacDonald TS, Soares M. Evaluating MISER chromatography as a tool for characterizing HILIC column equilibration. J Chromatogr A 2020; 1619:460931. [PMID: 32008823 DOI: 10.1016/j.chroma.2020.460931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Hydrophilic Interaction Liquid Chromatography (HILIC) is a technique for retaining polar analytes that uses polar stationary phases and acetonitrile-rich mobile phases. While this technique has several advantages over reversed-phase liquid chromatography (RPLC), one main drawback is the reported need for longer column equilibration. The reason for this is not fully understood and is a topic of current investigation. In order to better understand and reduce the equilibration needs, accurate characterization of column equilibration under varying conditions is required. The current method of characterizing HILIC column equilibration produces limited data points per test, or low time resolution, and is highly dependent on the column and probe compounds being used. There is a need for an improved method for characterizing HILIC column equilibration, especially if trends across stationary phases are to be observed. In this work, MISER, or Multiple Injections in a Single Experimental Run, is evaluated as a possible tool for characterizing HILIC column equilibration. MISER improves time resolution by allowing for replicate injections without interruption of data collection, enabling a more thorough evaluation of column equilibration compared to traditional techniques. Experimental results gathered using MISER show that equilibration of a BEH Amide column is notably shorter when equilibrating from acetonitrile to mobile phases containing higher percentages of water. Column equilibration to a 10% aqueous mobile phase was found to be approximately 5-fold faster than equilibration to a 3% aqueous mobile phase.
Collapse
Affiliation(s)
| | | | - Martin Gilar
- Waters Corporation, Milford, MA 01757, United States
| | | | | | - Miguel Soares
- Waters Corporation, Milford, MA 01757, United States
| |
Collapse
|
3
|
Zhang J, Zhao C, Zeng Z, Luo P, Zhao Y, Zhao J, Li L, Lu X, Xu G. Sample-directed pseudotargeted method for the metabolic profiling analysis of rice seeds based on liquid chromatography with mass spectrometry. J Sep Sci 2015; 39:247-55. [PMID: 26517975 DOI: 10.1002/jssc.201500858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
Abstract
Rice is one of the most important food crops in the world. Metabolite composition in rice seeds varies significantly depending on genetic variety, climatic alternation and agricultural practice. Metabolomics is a powerful tool to reveal the metabolic response of rice to various conditions. In this work, a rice seed sample-directed pseudotargeted metabolomics method was first established and validated based on ultra high performance liquid chromatography with triple quadrupole mass spectrometry in the multiple reaction monitoring mode. A total of 749 and 617 ion pairs in positive and negative modes were achieved, respectively. Among them, about 200 metabolites were identified or tentatively identified. The developed method showed better linearity and repeatability than those of non-targeted metabolomics method. Good intra-day and inter-day precisions, recoveries and wide linear range were also obtained. Furthermore, the method was applied for the investigation of metabolic variation of rice seeds with two wild cultivars and their transgenic lines that were grown in two locations. Principal component analysis indicated that the effects of cultivar and location on metabolic variations were far more than those of gene modification. The nonparametric Mann-Whitney U test revealed that most metabolites were influenced by cultivar, location and gene modifications together.
Collapse
Affiliation(s)
- Junjie Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxia Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongda Zeng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ping Luo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanni Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jieyu Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lili Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Klepacki J, Klawitter J, Klawitter J, Thurman JM, Christians U. A high-performance liquid chromatography-tandem mass spectrometry-based targeted metabolomics kidney dysfunction marker panel in human urine. Clin Chim Acta 2015; 446:43-53. [PMID: 25871999 DOI: 10.1016/j.cca.2015.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/28/2015] [Accepted: 04/03/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Previous studies have examined and documented fluctuations in urine metabolites in response to disease processes and drug toxicity affecting glomerular filtration, tubule cell metabolism, reabsorption, oxidative stress, purine degradation, active secretion and kidney amino acylase activity representative of diminished renal function. However, a high-throughput assay that incorporates metabolites that are surrogate markers for such changes into a kidney dysfunction panel has yet to be described. METHODS A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the quantification of ten metabolites associated with the Krebs cycle, purine degradation, and oxidative stress in human urine was developed and validated. Normal values were assessed in healthy adult (n=120) and pediatric (n=36) individuals. In addition, 9 pediatric renal transplant recipients patients were evaluated before and after initial dosing of the immunosuppressant tacrolimus in a proof-of-concept study. RESULTS The assay met all predefined acceptance criteria. The lower limit of quantification ranged from 0.1 to 1000 μmol/l. Inter-day trueness and imprecisions ranged from 91.4-112.9% and 1.5-12.4%, respectively. The total assay run time was 5.5 minutes. Concentrations of glucose, sorbitol, and trimethylamine oxide (TMAO) were elevated in pediatric renal transplant patients (n=9) prior to transplantation as well as before and immediately after initial dosing of tacrolimus. One month post-transplant urine metabolite patterns matched those of healthy children (n=36). CONCLUSIONS The LC-MS/MS assay will provide the basis for further large-scale clinical studies to explore these analytes as molecular markers for the patients with renal insufficiency.
Collapse
Affiliation(s)
- Jacek Klepacki
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Renal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua M Thurman
- Department of Renal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry. Anal Biochem 2015; 475:4-13. [PMID: 25600449 DOI: 10.1016/j.ab.2015.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 11/22/2022]
Abstract
Modeling of metabolic networks as part of systems metabolic engineering requires reliable quantitative experimental data of intracellular concentrations. The hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry (HILIC-ESI-MS/MS) method was used for quantitative profiling of more than 50 hydrophilic key metabolites of cellular metabolism. Without prior derivatization, sugar phosphates, organic acids, nucleotides, and amino acids were measured under alkaline and acidic mobile phase conditions with pre-optimized multiple reaction monitoring (MRM) transitions. Irrespective of the polarity mode of the acquisition method used, alkaline conditions achieved the best quantification limits and linear dynamic ranges. Fully 90% of the analyzed metabolites presented detection limits better than 0.5pmol (on column), and 70% presented 1.5-fold higher signal intensities under alkaline mobile phase conditions. The quality of the method was further demonstrated by absolute quantification of selected metabolites in intracellular extracts of Escherichia coli. In addition, quantification bias caused by matrix effects was investigated by comparison of calibration strategies: standard-based external calibration, isotope dilution, and standard addition with internal standards. Here, we recommend the use of alkaline mobile phase with polymer-based zwitterionic hydrophilic interaction chromatography (ZIC-pHILIC) as the most sensitive scenario for absolute quantification for a broad range of metabolites.
Collapse
|
6
|
Sample preparation and orthogonal chromatography for broad polarity range plasma metabolomics: Application to human subjects with neurodegenerative dementia. Anal Biochem 2014; 455:48-54. [DOI: 10.1016/j.ab.2014.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
|
7
|
Wu Q, Wang Y, Gu X, Zhou J, Zhang H, Lv W, Chen Z, Yan C. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2014; 37:1728-35. [PMID: 24771673 DOI: 10.1002/jssc.201400222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Qian Wu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Xue Gu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Junyi Zhou
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Huiping Zhang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| | - Wang Lv
- Zhejiang Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Zhe Chen
- Zhejiang Hospital of Traditional Chinese Medicine; Zhejiang Chinese Medical University; Hangzhou China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
8
|
Kolmert J, Forngren B, Lindberg J, Öhd J, Åberg KM, Nilsson G, Moritz T, Nordström A. A quantitative LC/MS method targeting urinary 1-methyl-4-imidazoleacetic acid for safety monitoring of the global histamine turnover in clinical studies. Anal Bioanal Chem 2014; 406:1751-62. [PMID: 24429974 DOI: 10.1007/s00216-013-7594-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/09/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
Abstract
Anaphylaxis is a potentially life-threatening condition triggered mainly by the release of inflammatory mediators, notably histamine. In pharmaceutical research, drug discovery, and clinical evaluation, it may be necessary to accurately assess the potential of a compound, event, or disorder to promote the release of histamine. In contrast to the measurement of plasma histamine, determination of the stable metabolite 1-methyl-4-imidazoleacetic acid (tele-MIAA) in urine provides a noninvasive and more reliable methodology to monitor histamine release. This study presents a repeatable high-performance liquid chromatography coupled to electrospray mass spectrometry (LC-ESI-MS) method where tele-MIAA is baseline separated from its structural isomer 1-methyl-5-imidazoleacetic acid (pi-MIAA) and an unknown in human urine. The ion-pairing chromatography method, in reversed-phase mode, based on 0.5 mM tridecafluoroheptanoic acid demonstrated high repeatability and was applied in a clinical development program that comprised a large number of clinical samples from different cohorts. The inter- and intra-run precision of the method for tele-MIAA were 8.4 and 4.3%, respectively, at the mean urinary concentration level, while method accuracy was between -16.2 and 8.0% across the linear concentration range of 22-1,111 ng mL(-1). Overall, method precision was greater than that reported in previously published methods and enabled the identification of gender differences that were independent of age or demography. The median concentration measured in female subjects was 3.0 μmol mmol(-1) of creatinine, and for male subjects, it was 2.1 μmol mmol(-1) of creatinine. The results demonstrate that the method provides unprecedented accuracy, precision, and practicality for the measurement of tele-MIAA in large clinical settings.
Collapse
Affiliation(s)
- J Kolmert
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuehnbaum NL, Britz-McKibbin P. New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era. Chem Rev 2013; 113:2437-68. [DOI: 10.1021/cr300484s] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naomi L. Kuehnbaum
- Department of Chemistry
and Chemical Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
10
|
Schuster G, Lindner W. Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships. J Chromatogr A 2013; 1273:73-94. [DOI: 10.1016/j.chroma.2012.11.075] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 11/30/2022]
|
11
|
Chester TL. Recent Developments in High-Performance Liquid Chromatography Stationary Phases. Anal Chem 2012; 85:579-89. [DOI: 10.1021/ac303180y] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas L. Chester
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati,
Ohio 45221-0172, United States
| |
Collapse
|