1
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
2
|
Trinh THT, Ye L, Hajizadeh S. Impact of double cryogelation process on a macroporous dye-affinity hydrogel. J Sep Sci 2023; 46:e2300017. [PMID: 36780629 DOI: 10.1002/jssc.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Cryogels with interconnected channels allow high flow-through properties and mass transfer when dealing with complex mixtures such as non-clarified crude extracts. However, their mechanical strength can be challenged due to a large void volume inside the polymeric network. We have addressed this problem by forming a double-layer cryogel applied as a dye-affinity chromatography gel. In this study, poly(acrylamide-co-allyl glycidyl ether) cryogel was prepared at sub-zero temperature. The second layer was then prepared inside the primary cryogel under the same conditions to form a double-layer network. Cibacron Blue F3GA, a dye molecule, was immobilized on the surface of the cryogels. Bovine serum albumin was used as a model molecule to study the adsorption/elution procedure in batch and continuous modes. The maximum batch binding capacity and the dynamic binding capacity for the single-layer cryogel were 18 and 0.11, and for the double-layer cryogel were 7.5 and 0.9 mg/g of gel, respectively. However, the mechanical stability of the double-layer cryogel increased 7-fold (144 kPa). It was found that the kinetic and adsorption isotherms follow pseudo-second-order and Freundlich models, respectively. The regeneration of the columns after adsorption/elution cycles was evaluated, and no significant loss of capacity was observed after 10 cycles.
Collapse
Affiliation(s)
- Thi Hoai Thu Trinh
- Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden.,Chemical laboratory, Ejendals AB, Leksand, Sweden
| | - Lei Ye
- Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Solmaz Hajizadeh
- Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Hajizadeh S, Dicko C, Bülow L. Interaction of haemin with albumin-based macroporous cryogel: Adsorption isotherm and fluorescence quenching studies. Front Bioeng Biotechnol 2022; 10:1072153. [DOI: 10.3389/fbioe.2022.1072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Albumin-based cryogels for capturing haemin were synthesised by crosslinking different biomolecules, bovine serum albumin (BSA) and ovalbumin (OVA). The impact of the protein and coupling agent concentrations on cryogel’s mechanical properties, swelling ratios and polymerisation yields, as well as autoclaving as a post-treatment on the cryogel, were studied. We found that BSA (50 mg/ml) and the crosslinker (N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, 46 mg/ml) formed a cryogel with optimum physical characteristics at a comparatively low protein concentration. The cryogel’s mechanical stability was increased using a double-layer cryogel approach by crosslinking the BSA proteins at subzero temperature inside an acrylamide and hydroxyethyl methacrylate premade cryogels. Batch binding and kinetic adsorption isotherms of haemin on the cryogels were assessed to evaluate their binding capacity toward the porphyrin molecule. The results showed that single-layer cryogels (BSA and OVA) had a higher capacity (∼0.68 mg/ml gel) and higher reaction rate constant towards haemin adsorption than double-layer gels. In contrast, the double-layer cryogels had higher mechanical strength than single-layer gels. The experimental results suggested that the cryogels followed the Freundlich model and the pseudo-second-order isotherm for batch adsorption and kinetics, respectively. The interaction between haemin and the gels was studied by fluorescence quenching. We found between 1.1 and 1.6 binding sites for different cryogels.
Collapse
|
4
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
5
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
6
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
7
|
Baydemir Peşint G, Zenger O, Perçin I, Denizli A. Spongy membranes for peroxidase purification from Brassica oleracea roots. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Yıldırım M, Baydemir Peşint G. Molecularly imprinted spongy columns for Angiotensin(II) recognition from human serum. Biotechnol Prog 2020; 37:e3112. [PMID: 33342088 PMCID: PMC7883249 DOI: 10.1002/btpr.3112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Angiotensin II (AngII), the effector peptide of the renin angiotensin system and has an important role in regulating cardiovascular hemodynamics and structure. AngII is an important biomarker for certain diseases that are associated with cardiovascular disorders, i.e., influenza, SARS‐CoV‐2, tumors, hypertension, etc. However, AngII presents in blood in very low concentrations and they are not stable due to their reactivity, therefore spontaneous detection of AngII is a big challenge. In this study, AngII‐imprinted spongy columns (AngII‐misc) synthesized for AngII detection from human serum, and characterized by surface area measurements (BET), swelling tests, scanning electron microscopy (SEM), FTIR studies. AngII binding studies were achieved from aqueous environment and maximum binding capacity was found as 0.667 mg/g. It was calculated that the AngII‐miscs recognized AngII 8.27 and 14.25 times more selectively than competitor Angiotensin I and Vasopressin molecules. Newly produced AngII‐misc binds 60.5 pg/g AngII from crude human serum selectively. It has a great potential for spontaneous detection of AngII from human serum for direct and critical measurements in serious diseases, that is, heart attacks, SARS‐CoV‐2, etc.
Collapse
Affiliation(s)
- Mehtap Yıldırım
- Bioengineering DepartmentAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey
| | - Gözde Baydemir Peşint
- Bioengineering DepartmentAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey
| |
Collapse
|
9
|
Affiliation(s)
- Nilay Bereli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Handan Yavuz
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Sun L, Feng X, Zhong T, Zhang X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J Sep Sci 2020; 43:3315-3326. [DOI: 10.1002/jssc.202000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lifen Sun
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xiyun Feng
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Tianyi Zhong
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xufeng Zhang
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| |
Collapse
|
11
|
Farías T, Hajizadeh S, Ye L. Cryogels with high cisplatin adsorption capacity: Towards removal of cytotoxic drugs from wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Ivanov AE, Ljunggren L. Thin poly(vinyl alcohol) cryogels: reactive groups, macropores and translucency in microtiter plate assays. Heliyon 2019; 5:e02913. [PMID: 31844765 PMCID: PMC6895650 DOI: 10.1016/j.heliyon.2019.e02913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022] Open
Abstract
Thin macroporous poly(vinyl alcohol) (PVA) hydrogels were produced by cross-linking of PVA in a semi-frozen state with glutaraldehyde (GA) on glass slides or in the wells of microtiter plates. The 100-130 μm-thick gels were mechanically transferable, squamous translucent films with a high porosity of 7.2 ± 0.3 mL/g dry PVA i.e. similar to larger cylindrical PVA monoliths of the same composition. Additional treatment of the gels with 1% GA increased the aldehyde group content from 0.7 to 2.4 μmol/mL as estimated using dinitrophenylhydrazine (DNPH) reagent. Translucency of the gels allowed registration of UV-visible spectra of the DNPH-stained films. The catalytic activity of trypsin covalently immobilized on thin gels in the microtiter plates was estimated with chromogenic substrate directly in the wells, and indicated that the amount of protein immobilized was at least 0.34 mg/mL gel. Human immunoglobulin G (IgG) immobilized on thin gels at 0.1-10 mg/mL starting concentrations could be detected in a concentration-dependent manner due to recognition by anti-human rabbit IgG conjugated with peroxidase and photometric registration of the enzymatic activity. The results indicate good permeability of the hydrogel pores for macromolecular biospecific reagents and suggest applications of thin reactive PVA hydrogels in photometric analytical techniques.
Collapse
Affiliation(s)
- Alexander E Ivanov
- VitroSorb AB, Medeon Science Park, Per Albin Hanssons Väg 41, SE-20512, Malmö, Sweden
| | - Lennart Ljunggren
- Malmö University, Faculty of Health and Society, Department of Biomedical Science, SE-20506, Malmö, Sweden
| |
Collapse
|
13
|
Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Hajizadeh S, Kettisen K, Gram M, Bülow L, Ye L. Composite imprinted macroporous hydrogels for haemoglobin purification from cell homogenate. J Chromatogr A 2017; 1534:22-31. [PMID: 29289339 DOI: 10.1016/j.chroma.2017.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Purification of haemoglobin (Hb) has been studied for many years due to its ability to act as an oxygen carrier and its possible use in urgent clinical treatment. In this study, different types of chromatography columns were developed for Hb purification. Two of them showed satisfactory results as affinity chromatography columns and were thus studied more extensively. The affinity adsorbents were prepared by molecular imprinting techniques. In the first case, Pickering emulsion polymerization was used to prepare affinity adsorbents based on molecular imprinting technology. The imprinted particles were immobilized via covalent bonds on the surface of cryogel, a macroporous hydrogel produced by free radical polymerization under sub-zero temperature. In the second case, the affinity sites for Hb were formed directly on an acrylamide cryogel by protein imprinting during the cryogelation. The dynamic binding capacity of the composite cryogel with the immobilized particles and the directly imprinted acrylamide cryogel was found to be 5.2 mg/g and 3.6 mg/g, respectively. The affinity columns showed high selectivity towards Hb in spite of the presence of serum albumin as well as other interfering substances in non-clarified cell homogenates. The maximum capacity in batch mode, the fluid flow and other physical and chemical properties of these columns were investigated.
Collapse
Affiliation(s)
- Solmaz Hajizadeh
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden.
| | - Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden
| | - Magnus Gram
- Lund University, Department of Clinical Sciences Lund, Infection Medicine, 22184, Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden
| |
Collapse
|
15
|
Noppe W, Deckmyn H. Development and screening of epoxy-spacer-phage cryogels for affinity chromatography: Enhancing the binding capacity. J Sep Sci 2017; 40:2575-2583. [DOI: 10.1002/jssc.201700247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Wim Noppe
- IRF Life Sciences; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
| | - Hans Deckmyn
- IRF Life Sciences; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
- Laboratory for Thrombosis Research; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
| |
Collapse
|
16
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
17
|
Andaç M, Galaev IY, Denizli A. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:69-80. [DOI: 10.1016/j.jchromb.2015.09.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
18
|
Zhang J, He T, Tang L, Zhang ZQ. Boronic acid functionalized Fe3
O4
magnetic microspheres for the specific enrichment of glycoproteins. J Sep Sci 2016; 39:1691-9. [DOI: 10.1002/jssc.201500921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
- Institute of Sport Biology, School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Tian He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
| | - Liang Tang
- Institute of Sport Biology, School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
| |
Collapse
|
19
|
von der Ehe C, Buś T, Weber C, Stumpf S, Bellstedt P, Hartlieb M, Schubert US, Gottschaldt M. Glycopolymer-Functionalized Cryogels as Catch and Release Devices for the Pre-Enrichment of Pathogens. ACS Macro Lett 2016; 5:326-331. [PMID: 35614729 DOI: 10.1021/acsmacrolett.5b00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly porous cryogel is prepared and subsequently functionalized with an atom transfer radical polymerization (ATRP) initiator at the surface. Two new glycomonomers are introduced, which possess deprotected mannose as well as glucose moieties. These are copolymerized with N-isopropylacrylamide (NiPAm) from the cryogel surface, providing a highly hydrophilic porous material, which is characterized by SEM, FT-IR spectroscopy, and NMR spectroscopy. This functionalized support can be applied for affinity chromatography of whole cells owing to the high pore space and diameter. Such an application is exemplified by investigating the ability to capture Escherichia coli bacteria, revealing selective binding interactions of the bacteria with the mannose glycopolymer-functionalized cryogel surface. Thus, the presented glycopolymer-cryogel represents a promising material for affinity chromatography or enrichment of cells.
Collapse
Affiliation(s)
- Christian von der Ehe
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Tanja Buś
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Steffi Stumpf
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Peter Bellstedt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Matthias Hartlieb
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Michael Gottschaldt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
20
|
Abstract
Affinity chromatography is one of the well-known separation techniques especially if high purity is desired. Introducing ligands on monolithic structure gives the possibility for purifying complex media such as plasma and crude extract. This chapter is focusing on the preparation of cryogels as monolithic column and immobilization of concanavalin A on its surface as ligand for capturing the glycoprotein horseradish peroxidase.
Collapse
|
21
|
Baydemir G, Andaç M, Perçin I, Derazshamshir A, Denizli A. Molecularly imprinted composite cryogels for hemoglobin depletion from human blood. J Mol Recognit 2015; 27:528-36. [PMID: 25042707 DOI: 10.1002/jmr.2376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022]
Abstract
A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity.
Collapse
Affiliation(s)
- Gözde Baydemir
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
22
|
Chromatographic adsorption of serum albumin and antibody proteins in cryogels with benzyl-quaternary amine ligands. J Chromatogr A 2015; 1381:173-83. [DOI: 10.1016/j.chroma.2014.11.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|
23
|
PHEMA based composite cryogels with loaded hydrophobic beads for lysozyme purification. Colloids Surf B Biointerfaces 2014; 123:859-65. [DOI: 10.1016/j.colsurfb.2014.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/24/2022]
|
24
|
Xu Z, Uddin KM, Kamra T, Schnadt J, Ye L. Fluorescent boronic acid polymer grafted on silica particles for affinity separation of saccharides. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1406-14. [PMID: 24444898 PMCID: PMC3963438 DOI: 10.1021/am405531n] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/20/2014] [Indexed: 05/06/2023]
Abstract
Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins.
Collapse
Affiliation(s)
- Zhifeng Xu
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
- Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
- Key Laboratory of
Functional Organometallic Materials, College
of Hunan Province, Hengyang, Hunan 421008, China
| | | | - Tripta Kamra
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Lund University, Box
118, 221 00 Lund, Sweden
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Lund University, Box
118, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
| |
Collapse
|
25
|
Wang C, Bai S, Tao SP, Sun Y. Evaluation of steric exclusion chromatography on cryogel column for the separation of serum proteins. J Chromatogr A 2014; 1333:54-9. [PMID: 24552971 DOI: 10.1016/j.chroma.2014.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Steric exclusion chromatography (SXC) is a new mode of protein chromatography, in which large proteins are retained on hydrophilic stationary phase surface due to the steric exclusion of polyethylene glycol (PEG) in the mobile phase, and thereafter the retained proteins can be eluted by reducing PEG concentration. In this work, SXC was evaluated on a polyacrylamide cryogel monolith. Microscopic observation of γ-globulin precipitates on the gel surface in SXC was reported for the first time. Due to the compact packing of protein precipitates on the stationary phase surface, the dynamic retention capacity of the cryogel monolith for γ-globulin reached 20 mg/mL bed volume, much higher than those of cryogel beds in adsorption-based chromatography. The effect of molecular weight and concentration of PEG, solution pH and salt concentration on protein retention capacity was in agreement with the earlier work on SXC. Because the cryogel monoliths with interconnected macropores (10-100 μm) allow much easy flow-through of viscous PEG buffer, the SXC can be operated at low back pressure. Hence, the cryogel monoliths are more suitable for SXC than other monoliths of narrow pores reported previously. In the separation of bovine serum proteins, albumin was recovered in the breakthrough fraction with high purity, and globulin was over eight times concentrated in the elution pool. This work has, thus, demonstrated the rapid serum protein separation and concentration by SXC on the cryogel monolith columns.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shu Bai
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Shi-Peng Tao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
26
|
|
27
|
Double sequential modifications of composite cryogel beds for enhanced ion-exchange capacity of protein. J Chromatogr A 2013; 1307:73-9. [DOI: 10.1016/j.chroma.2013.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/15/2022]
|
28
|
Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J Chromatogr A 2013; 1274:6-12. [DOI: 10.1016/j.chroma.2012.10.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022]
|