1
|
Jaag S, Wen C, Peters B, Lämmerhofer M. Kinetic performance comparison of superficially porous, fully porous and monolithic reversed-phase columns by gradient kinetic plots for the separation of protein biopharmaceuticals. J Chromatogr A 2022; 1676:463251. [PMID: 35752149 DOI: 10.1016/j.chroma.2022.463251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
To find the best performing column for the analysis of protein-based biopharmaceuticals is a significant challenge as meanwhile numerous modern columns with distinct stationary phase morphologies are available for reversed-phase liquid chromatography. Especially when besides morphology also several other column factors are different, it is hard to decide about the best performing column a priori. To cope with this problem, in the present work 13 different reversed-phase columns dedicated for protein separations were systematically tested by the gradient kinetic plot method. A comprehensive comparison of columns with different morphologies (monolithic, fully porous and superficially porous particle columns), particle sizes and pore diameters as well as column length was performed. Specific consideration was also given to various monolithic columns which recently shifted a bit out of the prime focus in the scientific literature. The test proteins ranged from small proteins starting from 12 kDa, to medium sized proteins (antibody subunits obtained after IdeS-digestion and disulphide reduction) and an intact antibody. The small proteins cytochrome c, lysozyme and β-lactoglobulin could be analysed with similar performance by the best columns of all three column morphologies while for the antibody fragments specific fully porous and superficially porous particle columns were superior. A 450 Å 3,5 µm superficially porous particle column showed the best performance for the intact antibody while a 1.7 µm fully porous particle column with 300 Å showed equivalent performance to the best superficially porous column with thin shell and 400 Å pore size for proteins between 12 and 25 kDa. While the majority of the columns had C4 bonding chemistry, the silica monolith with C18 bonding and 300 Å mesopore size approximated the best performing particle columns and outperformed a C4 300 Å wide-pore monolith. The current work can support the preferred choice for the most suitable reversed-phase column for protein separations.
Collapse
Affiliation(s)
- Simon Jaag
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Chunmei Wen
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Benjamin Peters
- Instrumental Analytics R&D, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Ewonde RE, De Vos J, Broeckhoven K, Eβer D, Eeltink S. Assessment of the resolving power of hydrophobic interaction chromatography for intact protein analysis on non-porous butyl polymethacrylate phases. J Chromatogr A 2021; 1651:462310. [PMID: 34166860 DOI: 10.1016/j.chroma.2021.462310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
This study reports on the assessment of the separation performance of hydrophobic interaction chromatography for intact protein analysis using non-porous butyl polymethacrylate phases. The maximum peak capacity in inverse gradient mode was reached at a volumetric flow rate which was significantly (10-20 times) higher than the flow rate yielding the minimum plate height in isocratic mode, as the gradient volume dominates the peak-capacity generation. The flow rate yielding the maximum peak capacity increased with decreasing gradient volume, i.e., steeper gradients, and also depends on the magnitude of the mass-transfer contribution to peak dispersion (affected by particle size and molecular diffusion coefficient of proteins) at these high flow rates. The maximum peak capacity using a 100 mm long column packed with 4 µm particles for steep 7.5 min gradients was determined to be 60. Increasing the column length by coupling columns leads to better gradient performance than increasing the gradient duration for gradients of 60 min and longer. Using a coupled column system (2 × 100 mm long columns packed with 4 µm particles), the maximum peak capacity was determined to be 105, which was 33% higher compared to that of a single column while applying a similar gradient volume. Decreasing the particle size to 2.3 µm leads to higher peak capacities even though the column was operated at lower volumetric flow rate. The maximum peak capacity obtained with the 2.3 µm column was 128% higher than was obtained with the coupled column. Even at suboptimal conditions, the 2.3 µm column yields a higher peak capacity (14%) than when using two coupled columns packed with 4 µm at optimal conditions (gradient time of 120 min and a flow rate of 0.5 mL/min).
Collapse
Affiliation(s)
- Raphael Ewonde Ewonde
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jelle De Vos
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Ken Broeckhoven
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | | | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
3
|
Ali F, AlOthman ZA, Al-Shaalan NH. Mixed-mode open tubular column for peptide separations by capillary electrochromatography. J Sep Sci 2021; 44:2602-2611. [PMID: 33905621 DOI: 10.1002/jssc.202100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
Mixed-mode chromatography open tubular column has been developed for peptide separation in electrochromatography. A column with 92 cm effective length and 50 μm internal diameter is fabricated internally with a copolymer sheet of restricted thickness. Catalyst facilitated binding of the coupling agent 3,5-bis (trifluoromethyl) phenyl isocyanate has been carried out at the interior surface of the column. The initiator sodium diethyldithiocarbamate was bound to the coupling agent. A small amount of N-[2-(acryloylamino) phenyl] acrylamide was used along with methacrylic acid and styrene in the monomer mixture to induce a little polar character in the stationary phase fabricated inside the column. Twenty-three peptides have been separated from a chemically digested protein mixture present in cytochrome C in capillary electrochromatography, in addition to the separation of six commercial peptides. We achieved an average plate count of over 1.5 million/m with the column of current study both for the digested protein components and commercial peptides using 70/30% v/v (acetonitrile/20 mM ammonium formate) at pH 6.5. In addition, the column resulted in baseline separation of all the peptides with very good resolution, enhanced peak capacity, and better retention time span.
Collapse
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zeid A AlOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Nys G, Cobraiville G, Fillet M. Multidimensional performance assessment of micro pillar array column chromatography combined to ion mobility-mass spectrometry for proteome research. Anal Chim Acta 2019; 1086:1-13. [DOI: 10.1016/j.aca.2019.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023]
|
5
|
Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S. High-Resolution Nano-Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of Complex Proteomic Samples. Chromatographia 2018. [DOI: 10.1007/s10337-018-3647-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Ahsan N, Belmont J, Chen Z, Clifton JG, Salomon AR. Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction. J Proteomics 2017. [PMID: 28634120 DOI: 10.1016/j.jprot.2017.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Expanding the sequencing depth of the peptides with a statistically significant quantitative change derived from a biological stimulation is critical. Here we demonstrate that optimization of LC gradient and analytical column construction can reveal over 30,000 unique peptides and 23,000 phosphopeptides at high confidence. The quantitative reproducibility of different analytical workflows was evaluated by comparing the phosphoproteome of CD3/4 stimulated and unstimulated T-cells as a model system. A fritless, 50cm-long column packed with 1.9μm particles operated with a standard pressure HPLC significantly improved the sequencing depth 51% and decreased the selected ion chromatogram peak spreading. Most importantly, under the optimal workflow we observed an improvement of over 300% in detection of significantly changed phosphopeptides in the stimulated cells compared with the other workflows. The discovery power of the optimized column configuration was illustrated by identification of significantly altered phosphopeptides harboring novel sites from proteins previously established as important in T cell signaling including A-Raf, B-Raf, c-Myc, CARMA1, Fyn, ITK, LAT, NFAT1/2/3, PKCα, PLCγ1/2, RAF1, and SOS1. Taken together, our results reveal the analytical power of optimized chromatography using sub 2μm particles for the analysis of the T cell phosphoproteome to reveal a vast landscape of significantly altered phosphorylation changes in response to T cell receptor stimulation.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Brown University, Providence, RI 02903, USA; Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
| | - Judson Belmont
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Zhuo Chen
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - James G Clifton
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown, University, Providence, RI 02912, USA
| | - Arthur R Salomon
- Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Department of Chemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Hetzel T, Loeker D, Teutenberg T, Schmidt TC. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis. J Sep Sci 2016; 39:3889-3897. [DOI: 10.1002/jssc.201600775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Terence Hetzel
- Institut für Energie- und Umwelttechnik e. V; IUTA (Institute of Energy and Environmental Technology); Bliersheimer Straße 58-60 Duisburg Germany
- Instrumental Analytical Chemistry; University of Duisburg-Essen; Universitätsstr. 5 Essen Germany
| | - Denise Loeker
- Institut für Energie- und Umwelttechnik e. V; IUTA (Institute of Energy and Environmental Technology); Bliersheimer Straße 58-60 Duisburg Germany
| | - Thorsten Teutenberg
- Institut für Energie- und Umwelttechnik e. V; IUTA (Institute of Energy and Environmental Technology); Bliersheimer Straße 58-60 Duisburg Germany
| | - Torsten C. Schmidt
- Instrumental Analytical Chemistry; University of Duisburg-Essen; Universitätsstr. 5 Essen Germany
| |
Collapse
|
8
|
Vehus T, Seterdal KE, Krauss S, Lundanes E, Wilson SR. Comparison of commercial nanoliquid chromatography columns for fast, targeted mass spectrometry-based proteomics. Future Sci OA 2016; 2:FSO119. [PMID: 28031966 PMCID: PMC5137844 DOI: 10.4155/fsoa-2016-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
AIM We compared four commonly used, commercially available reverse phase nanoLC columns for identification/determination of Wnt/β-catenin-related pathway proteins. MATERIALS & METHODS The columns were: Chromolith® (silica monolith; Merke Millipore, MA, USA), PepMap™ (porous particles; Thermo Fisher Scientific, MA, USA), Accucore™ (solid core particles; Thermo Fisher Scientific) and PepSwift™ (organic monolith; Thermo Fisher Scientific). RESULTS The peak capacity of the columns varied from 100 (Pepswift) to 190 (Accucore) (for 30 min gradients). All columns enabled identification/detection of GSK3β and β-catenin in the complex samples. However, even the columns with higher peak capacities could not enable detection of the somewhat less abundant proteins AXIN2 and TNKS2. The monoliths were more prone to retention time instability when sample complexity increased. CONCLUSION We find that commercial nanoLC columns, although featuring different morphologies and peak capacities, provided surprisingly few practical differences for relatively fast, targeted determination of proteins.
Collapse
Affiliation(s)
- Tore Vehus
- Department of Chemistry, University of Oslo, P.O. 1033 Blindern, NO‐0315 Oslo, Norway
| | | | - Stefan Krauss
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO‐0027 Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, P.O. 1033 Blindern, NO‐0315 Oslo, Norway
| | - Steven R Wilson
- Department of Chemistry, University of Oslo, P.O. 1033 Blindern, NO‐0315 Oslo, Norway
| |
Collapse
|
9
|
Tanaka N, McCalley DV. Core–Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal Chem 2015; 88:279-98. [DOI: 10.1021/acs.analchem.5b04093] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - David V. McCalley
- Centre for Research in Biosciences, University of the West of England, Frenchay, Bristol BS16 1QY, U.K
| |
Collapse
|
10
|
Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. J Chromatogr A 2015; 1421:2-17. [DOI: 10.1016/j.chroma.2015.07.090] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
|
11
|
Ali F, Cheong WJ. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography. J Sep Sci 2015; 38:3645-54. [DOI: 10.1002/jssc.201500765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Faiz Ali
- Department of Chemistry; Inha University; Namku Incheon South Korea
| | - Won Jo Cheong
- Department of Chemistry; Inha University; Namku Incheon South Korea
| |
Collapse
|
12
|
Abstract
In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?
Collapse
|
13
|
Han J, Ye L, Xu L, Zhou Z, Gao F, Xiao Z, Wang Q, Zhang B. Towards high peak capacity separations in normal pressure nanoflow liquid chromatography using meter long packed capillary columns. Anal Chim Acta 2014; 852:267-73. [DOI: 10.1016/j.aca.2014.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/31/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
|