1
|
Zhang N, Guo K, Lin W, Wang Z, Zhang F, Zhang X, Zheng D, Ma W. Yunnan baiyao exerts anti-glioma activity by inducing autophagy-dependent necroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118658. [PMID: 39103023 DOI: 10.1016/j.jep.2024.118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yunnan Baiyao (YB), a traditional herbal formulation, has been used for over a century to manage bleeding and enhance blood circulation. Its ingredients are widely recognized for their anti-cancer properties. However, its impact on glioma, the most common primary malignant tumor of the central nervous system, remains unexplored. AIM OF THE STUDY This study aims to investigate the anti-glioma activity of YB in vitro and in vivo, and to elucidate the underlying mechanism of action. METHODS U-87 MG cells were treated with YB and subjected to cell proliferation assay, colony formation assay, and flow cytometry with Annexin V/PI staining to confirm anti-glioma activity. The induction of necroptosis and autophagy was confirmed through live-cell imaging, western blotting, and immunofluorescence analysis. The role of apoptosis, necroptosis, autophagy, and AMPK was validated using specific inhibitors. The in vivo anti-glioma activity of YB was evaluated using subcutaneous and orthotopic xenograft models in nude mice and chemically induced glioma rat models. RESULTS YB induced necroptotic rather than apoptotic cell death in glioma U-87 MG cells, as evidenced by increased phosphorylated MLKL levels and plasma membrane disruptions. Rescue experiments further confirmed the role of necroptosis. Importantly, YB-triggered necroptosis was found to be dependent on autophagy induction, which relies on the AMPK signaling pathway. In line with these findings, YB demonstrated significant anti-glioma activity in vivo. CONCLUSIONS Our study reveals that YB exerts potent anti-glioma effects both in vitro and in vivo through the induction of autophagy-dependent necroptosis.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China; Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kaiqiang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Dayuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China.
| |
Collapse
|
2
|
Liu R, Wu X, Jiang Z, Liu X, Zhang Y, Zhao H, Gao J, Gao W, Hu Y, Huang L. Characterization of a Xylosyltransferase from Panax notoginseng Catalyzing Ginsenoside 2'- O Glycosylation in the Biosynthesis of Notoginsenosides. JOURNAL OF NATURAL PRODUCTS 2024; 87:2160-2169. [PMID: 39190018 DOI: 10.1021/acs.jnatprod.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Notoginsenosides are important bioactive compounds from Panax notoginseng (Burk.) F. H. Chen, most of which have xylose in their sugar chains. However, the xylosyltransferases involved in the generation of notoginsenosides remain poorly understood, posing a bottleneck for further study of the biosynthesis of notoginsenosides. In this work, a new xylosyltransferase gene, PnUGT57 (named UGT94BW1), was identified from P. notoginseng, which has a distinct sequence and could catalyze the 2'-O glycosylation of ginsenosides Rh1 and Rg1 to produce notoginsenosides R2 and R1, respectively. We first characterized the optimal conditions for the PnUGT57 activity and its enzymatic kinetic parameters, and then, molecular docking and site-directed mutagenesis were performed to elucidate the catalytic mechanism of PnUGT57. Combined with the results of site-directed mutagenesis, Glu26, Ser266, Glu267, Trp347, Ser348, and Glu352 in PnUGT57 were identified as the key residues involved in 2'-O glycosylation of C-6 O-Glc, and PnUGT57R175A and PnUGT57G237A could significantly improve the catalytic activity of PnUGT57. These findings not only provide a new xylosyltransferase gene for augmenting the plant xylosyltransferase database but also identify the pivotal sites and catalytic mechanism of the enzyme, which would provide reference for the modification and application of xylosyltransferases in the future.
Collapse
Affiliation(s)
- Rong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yifeng Zhang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Luqi Huang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Yunnan Baiyao Adjuvant Treatment for Patients with Hemoptysis: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4931284. [PMID: 35242198 PMCID: PMC8888054 DOI: 10.1155/2022/4931284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Background Yunnan Baiyao (YNBY) is a traditional Chinese medicine used to treat bleeding. We evaluated the efficacy of YNBY plus conventional pharmaceutical treatment (CPT) versus CPT alone in patients with hemoptysis. Methods A total of eight electronic databases were searched. The outcomes in the included studies were effective rate, hemoptysis volume, duration of hemoptysis and hospitalization, number of cases requiring endotracheal intubation, and adverse events (AEs). The studies were used to calculate risk ratios (RRs) or mean differences (MDs) with corresponding 95% confidence intervals. Risk of bias for included trials was assessed using the Cochrane risk of bias tool. Results Thirteen RCTs were analyzed consisting of a total of 1379 patients. Treatment with YNBY + CPT had a greater effective rate than CPT alone (RR: 1.18; 95% CI: 1.13 to 1.23; P < 0.001; I2 = 0%), a lower hemoptysis volume (MD: −107.37; 95% CI: −121.69 to −93.06; P < 0.001; I2 = 0%), a shorter duration of hemoptysis (MD: −2.70; 95% CI: −2.96 to 2.43; P < 0.001; I2 = 0%) and hospitalization (MD: −2.38; 95% CI: −2.93 to −1.83; P < 0.001; I2 = 9%), and a reduction in the incidence of AEs (RR: 0.34; 95% CI: 0.23 to 0.51; P < 0.001; I2 = 0%). YNBY + CPT treatment provided no significant difference in reducing the number of cases requiring endotracheal intubation compared to CPT alone (RR: 0.49; 95% CI: 0.15 to 1.60; P=0.24; I2 = 0%). Conclusion YNBY plus CPT showed better efficacy than CPT for patients with hemoptysis. Our study provides medical evidence for the efficacy and safety of YNBY for hemoptysis.
Collapse
|
4
|
Yao Q, Chang BT, Chen R, Wei YJ, Gong QJ, Yu D, Zhang Y, Han X, Yang HB, Tang SJ, Gao Y. Research Advances in Pharmacology, Safety, and Clinical Applications of Yunnan Baiyao, a Traditional Chinese Medicine Formula. Front Pharmacol 2021; 12:773185. [PMID: 34899330 PMCID: PMC8651550 DOI: 10.3389/fphar.2021.773185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacology relevance: Yunnan Baiyao (YNBY), a traditional Chinese medicine formulae, has some significant properties including activating blood circulation to dissipate blood stasis (Huo-Xue-Hua-Yu), eliminating swelling and alleviating pain (Xiao-Zhong-Zhi-Tong), and eliminating necrotic tissues and promoting granulation (Qu-Fu-Sheng-Ji). Aim of this study: This paper intends to provide a comprehensive and critical analysis of studies on YNBY, proposing new possible therapeutic directions of this formula. Materials and methods: Relevant data on YNBY were retrieved from available databases and a hand-search by searching the keywords such as “Yunnan Baiyao,” “pharmacology,” “toxicity,” and “clinical applications.” Results: Traditionally, YNBY has been used to cure hemorrhage, bruises, swelling, and pain caused by injuries in the Chinese folk. Modern pharmacological studies show that YNBY possesses pharmacological activities including hemostasis, invigorating the circulation of blood, wound healing, anti-inflammation, analgesia, antibiosis, infection prevention, and other effects. Toxicological studies demonstrate that YNBY has a certain toxicology, which is mainly caused by Aconitum alkaloids from Cao-wu (CW, Aconiti Kusnezoffii Radix). The developmental non-toxic reaction dose (NOAEL) of YNBY for embryos and fetuses is 0.5 g/kg in rats. In addition, the NOAEL for fertility and early embryo development toxicity is 4.0 g/kg in rats. Clinical trials have confirmed the safety of YNBY in a large number of patients, and adverse drug reactions (ADRs) such as abdominal pain, diarrhea, allergy, and others in very few people. YNBY is routinely used in clinic to cure bleeding, pain, swelling, upper digestive tract ulcer, postoperative wound, arthritis, mouth ulcers, ulcerative colitis, etc. Conclusions: Hemostasis is a conspicuous effect of YNBY. Except for this effect, analgesia and anti-infection may be new research directions of this formula. In addition, the in vitro and in vivo pharmacology and mechanisms of action of YNBY are encouraged as well as the pharmacokinetics of this formulae. Furthermore, the material basis of the pharmacological effects of YNBY also needs clear identification.
Collapse
Affiliation(s)
- Qi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of TCM, Guiyang, China
| | - Bo-Tao Chang
- Department of Graduate, Guizhou University of TCM, Guiyang, China
| | - Rong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of TCM, Guiyang, China
| | - Yi-Jing Wei
- Department of Graduate, Guizhou University of TCM, Guiyang, China
| | - Qiu-Ju Gong
- Department of Graduate, Guizhou University of TCM, Guiyang, China
| | - Dan Yu
- Department of Graduate, Guizhou University of TCM, Guiyang, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of TCM, Guiyang, China
| | - Xu Han
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of TCM, Guiyang, China
| | - Hong-Bo Yang
- GLP Center, Yunnan Institute of Materia Medica, Kunming, China
| | - Song-Jiang Tang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of TCM, Guiyang, China
| | - Ying Gao
- Department of Scientific Research, The First Affiliated Hospital of Guizhou University of TCM, Guiyang, China
| |
Collapse
|
5
|
Herb Sanqi-Derived Compound K Alleviates Oxidative Stress in Cultured Human Melanocytes and Improves Oxidative-Stress-Related Leukoderma in Guinea Pigs. Cells 2021; 10:cells10082057. [PMID: 34440826 PMCID: PMC8393903 DOI: 10.3390/cells10082057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022] Open
Abstract
Sanqi, a traditional Chinese herb, is widely used for cardiovascular diseases, and its neuroprotective effects against oxidative stress were recently discovered. The purpose of this study was to investigate whether Sanqi-derived compound K (Sanqi-CK), an active metabolite of Sanqi, could protect melanocytes from oxidative stress. Cultured human primary skin epidermal melanocytes (HEMn-MPs) were treated with hydrogen peroxide (H2O2) in the presence or absence of Sanqi-CK. Sanqi-CK exhibited protective effects against H2O2-induced cell death by reducing oxidative stress. In addition, treatment with Sanqi-CK reversed the decreased glutathione reductase activity and decreased ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) seen in H2O2-treated melanocytes. Furthermore, topical application of Sanqi-CK alleviated leukoderma in guinea pigs, a disorder characterized by melanocyte cell death resulting from rhododendrol-induced oxidative stress. Taken together, these data suggest that Sanqi-CK protects melanocytes against oxidative stress, and its protective effects are associated with modulating the redox balance between GSH and GSSG and activating glutathione reductase. Thus, Sanqi-CK may be a good candidate for preventing melanocyte loss in oxidative-stress-associated pigmentary disorders.
Collapse
|
6
|
Chen L, Jiang H, Xing G, Guan B, Yang Y, Ahmed A, Ma X. Effects of Yunanan Baiyao adjunct therapy on postoperative recovery and clinical prognosis of patients with traumatic brain injury: A randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153593. [PMID: 34182194 DOI: 10.1016/j.phymed.2021.153593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Effective therapies are needed to prevent the secondary injury and poor prognosis associated with emergency craniotomy of traumatic brain injury (TBI). HYPOTHESIS/PURPOSE The wound-healing medicine Yunnan Baiyao (YB) and Xingnaojing (XNJ) adjunct-therapy may improve the outcome of orthodox mono-therapy (OT). STUDY DESIGN Randomized controlled trial. METHODS Eighty patients with moderate-to-severe TBI received emergency craniotomy (within 12 h after TBI) at the Chinese PLA General Hospital before being randomly assigned to 4 different treatments (n = 20) for 7 days: 1) OT; 2) OT+XNJ (i.v. 20 ml/daily); 3) OT+low dose-YB (oral, 1,000 mg/day); 4) OT+high dose-YB, 2,000 mg/day). RESULTS GCS score was improved more quickly and became significantly higher in XNJ, l-YB, h-YB groups than in OT group (p<0.01). Serum S100B peaked higher but declined more slowly in OT group than in other groups (p<0.01). On postoperative Day 7, S100B was 20% below baseline in YB and XNJ groups but remained 19% above baseline in OT group which also lost 38% of superoxide dismutase (SOD) activity on Day 3 and recovered 69% of SOD on Day 7 whereas the YB and XNJ groups lost 16%∼23% of SOD activity on Day 3 and recovered 92%∼99% of SOD on Day 7 (p<0.01). Clinical prognosis (Glasgow Outcome Scale and Karnofsky Performance Scale) were significantly better (25%∼30%) in the XNJ, l-YB and h-YB groups than in OT group 3 months post-surgery and were correlated with serum S100B and SOD. CONCLUSIONS YB and XNJ adjunct therapies improved postoperative recovery and clinical prognosis in patients with moderate-to-severe TBI partly through divergent regulation of S100B and SOD pathways. (The trial was registered at Chinese Clinical Trial Registry (ChiCTR) trial registration number: ChiCTR2000030280).
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Neurosurgery, The first Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongzhen Jiang
- Department of Neurosurgery, The first Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Guoqiang Xing
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China; Lotus Biotech.com LLC, Gaithersburg, Maryland 20878, Uinted States.
| | - Bing Guan
- Department of Health Economics, The first Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Yang Yang
- Department of Neurology, The Second Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Anwar Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States.
| | - Xiaodong Ma
- Department of Neurosurgery, The first Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
7
|
Liu X, Chen H, Su G, Song P, Jiang M, Gong J. An animal research and a chemical composition analysis of a Chinese prescription for pulmonary fibrosis: Yangfei Huoxue Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112126. [PMID: 31421181 DOI: 10.1016/j.jep.2019.112126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL EVIDENCE Pulmonary fibrosis (PF) is a progressive disease characterized by the aberrant accumulation of fibrotic tissue in the lungs parenchyma, associated with significant morbidity. Few effective drugs have been developed to reverse PF or even halt the disease progression. Yangfei Huoxue Decoction (YHD), a Traditional Chinese Medicine, which consisted of Astragalus membranacus(AM), Glehnia littoralis(GL), Schisandra chinensis(SC), Salvia miltiorrhiza Bunge(SB), Reynoutria japonica(RJ), Ligusticum chuanxiong(LX), and Euonymus alatus(EA) , has been used in China for the treatment of PF for many years with remarkable efficacy. According to the clinic observation of the results, we conducted experiments on animals, the process of BLM-induced pulmonary fibrosis in rats was interfered by YHD, through the detection of pulmonary fibrosis rats' blood cells and plasma, we selected the related molecules that may exert proinflammatory(IL-1β), promote angiogenesis(vascular endothelial growth factor ,VEGF). For further explicitly research, we should know what the chemical composition the prescription (YHD) contains and what the related bioactive components have. In accordance with in-house library and evaluating the characteristic MS fragmentation patterns, the schisandra chinensis methanol, lignin, flavonol, polyphenol, tanshinone, salvianolic acid, anthraquinone, ligustrazine, etc. had a retardant and inhibitory effect on the development and formation of pulmonary fibrosis. These results will aid in the quality control of YHD, as well as provide fundamental data for further pharmaco-mechanisms studies. AIM OF THE STUDY To discover the pulmonary immune related bioactive components of YHD. MATERIALS AND METHODS Animal Experiment:144 SD rats, based on the principles of randomization divided into eight groups, Control group, bleomycin(BLM) group, BLM + dexamethasone(BLM + DXM) group, BLM + Yangfei(YF) group, BLM + Huoxue(HX) group, BLM + high-doseYHD(YHD-H) group, BLM + medium-doseYHD(YHD-M) group, and BLM + low-doseYHD(YHD-L) group, each group of 18 rats. After endotracheal administration of Bleomycin by tracheotomy, rats were sacrificed on day 7, day 14 and day 28, blood and plasma were taken at the same time. Respectively, the VEGF, an immune molecule associated with angiogenesis, and IL-1β in plasma were detected by ELISA at three time periods. Component testing: 100 g YHD were constituted of SB 15 g, LX 12 g, EA 10 g, RJ 15 g, AM 20 g, GL 20 g and SC 8 g. All herbs were obtained from Beijing Tong Ren Tang (Group) Co ltd. The voucher specimens were identified by Prof. Jiening Gong (Nanjing University of Chinese Medicine). YHD were extracted by sonication with 1 L ethanol/water (70:30, v/v) for two cycle (1 h per cycle) at room temperature. The combined extracts were filtered, condensed, and reconstituted with 50 mL methanol before analysis. Standard Cianidanol, Ferulic Acid, Polydatin, Calycosin 7-O-glucoside, Tanshinone IIA, Salvianolic acid B, Schizandrol A, and Isoimperatorin were prepared in methanol. After centrifuging at 20,000 rpm for 10 min, 4 μL supernatant was injected into the Ultra-Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight tandem mass spectrometry (UPLC/QTOF-MSE) combined with UNIFI informatics platform for analysis. CONCLUSION The experiment results revealed that the vascularized VEGF, inflammatory factor expression of IL-1β was restrained by YHD. The UPLC/QTOF-MSE method, an automatic database screening platform and the characteristic MS fragmentation patterns have efficiently facilitated the post data process, so we test for the identification of major components in YHD by this technology, more than seven or more active ingredients, the results showed that YHD contained a total of 55 components, including 11 lignans, 12 flavonoids, 7 tanshinones, 9 organic acid, 5 polyphenols, 4 anthraquinones, 5 senkyunolides and 2 others. Based on this, we can ensure the discovery and analysis of biologically active compounds in YHD, as well as provide a reference for the quality evaluation. We expect the method presented here could be applied to other multi-component TCM formula. In addition, we can conduct more in-depth research, such as mechanism research, molecular detection, gene target and so on.
Collapse
Affiliation(s)
- Xiao Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R.China.
| | - Hui Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.
| | - Guangbao Su
- Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.
| | - Ping Song
- Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.
| | - Miao Jiang
- Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.
| | - Jiening Gong
- Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.
| |
Collapse
|
8
|
Cao G, Wang N, He D, Wang X, Tian Y, Wan N, Yan W, Ye H, Hao H. Intestinal mucosal metabolites-guided detection of trace-level ginkgo biloba extract metabolome. J Chromatogr A 2019; 1608:460417. [PMID: 31416627 DOI: 10.1016/j.chroma.2019.460417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
The characterization of metabolome for poorly absorptive natural medicines is challenging. Previous identification strategy often relies on nontargeted scanning biological samples from animals administered with natural medicines in a data-dependent acquisition (DDA) mode by LC-MS/MS. Substances that displayed significant increases following drug administration are thus assigned as potential metabolites. The accurate m/z of precursors and the corresponding MS/MS fragment ions are used to match with herbal ingredients and to infer possible metabolic reactions. Nevertheless, the low concentration of these metabolites within complex biological matrices has often hampered the detection. Herein we developed a strategy termed intestinal mucosal metabolome-guided detection (IMMD) to tackle this challenge using ginkgo biloba (GBE) as an example. The rationale is that poorly absorptive natural products are usually concentrated and extensively metabolized by enterocytes before they enter the blood stream and distribute to other organs. Therefore, we firstly identified the metabolites from intestinal mucosa of GBE-treated rats, and then used the identified intestinal mucosal GBE metabolome as targeted repository for MRM analysis. The presences of these metabolites were subsequently examined in rat plasma, liver and brain. The resultant GBE metabolome showed significantly improved coverage with 39, 45 and 6 metabolites identified in plasma, liver and brain compared to 22, 16 and 0 metabolites from the corresponding regions via the DDA-based strategy. In addition, we integrated the previously reported nontargeted diagnostic ion network analysis to facilitate the characterization of GBE components, and a chemicalome-metabolome matching approach (CMMA) to assist the identity assignment of GBE metabolome with IMMD. Combinatorially, we establish a multi-faceted platform to streamline the workflow of metabolome characterization for herbal medicines of low bioavailability. The metabolome information is expected to shed light on the elucidation of metabolic pathways for natural products, and the underlying mechanisms of their biological efficacies.
Collapse
Affiliation(s)
- Guoxiu Cao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Nian Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Dandan He
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Xinmiao Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Yang Tian
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Ning Wan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Wenchao Yan
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China.
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China.
| |
Collapse
|
9
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
10
|
Yunnan Baiyao Conditioned Medium Promotes the Odonto/Osteogenic Capacity of Stem Cells from Apical Papilla via Nuclear Factor Kappa B Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9327386. [PMID: 31179335 PMCID: PMC6507233 DOI: 10.1155/2019/9327386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Yunnan Baiyao is a traditional Chinese herbal remedy that has long been used for its characteristics of wound healing, bone regeneration, and anti-inflammation. However, the effects of Yunnan Baiyao on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) and the potential mechanisms remain unclear. The aim of this study was to investigate the odonto/osteogenic differentiation effects of Yunnan Baiyao on SCAPs and the underlying mechanisms involved. SCAPs were isolated and cocultured with Yunnan Baiyao conditioned media. The proliferation ability was determined by cell counting kit 8 and flow cytometry. The differentiation capacity and the involvement of NF-κB pathway were investigated by alkaline phosphatase assay, alizarin red staining, immunofluorescence assay, real-time RT-PCR, and western blot analyses. Yunnan Baiyao conditioned medium at the concentration of 50 μg/mL upregulated alkaline phosphatase activity, induced more mineralized nodules, and increased the expression of odonto/osteogenic genes/proteins (e.g., OCN/OCN, OPN/OPN, OSX/OSX, RUNX2/RUNX2, ALP/ALP, COL-I/COL-I, DMP1, DSP/DSPP) of SCAPs. In addition, the expression of cytoplasmic phos-IκBα, phos-P65, and nuclear P65 was significantly increased in Yunnan Baiyao conditioned medium treated SCAPs in a time-dependent manner. Conversely, the differentiation of Yunnan Baiyao conditioned medium treated SCAPs was obviously inhibited when these stem cells were cocultured with the specific NF-κB inhibitor BMS345541. Yunnan Baiyao can promote the odonto/osteogenic differentiation of SCAPs via the NF-κB signaling pathway.
Collapse
|
11
|
Hu Z, Zhang DY, Lu ST, Li PW, Li SD. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar Drugs 2018; 16:E273. [PMID: 30081571 PMCID: PMC6117657 DOI: 10.3390/md16080273] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Effective hemostasis is vital to reduce the pain and mortality of patients, and the research and development of hemostatic materials are prerequisite for effective hemostasis. Chitosan (CS), with good biodegradability, biocompatibility and non-toxicity, has been widely applied in bio-medicine, the chemical industry, the food industry and cosmetics. The excellent hemostatic properties of CS have been extensively studied. As a result, chitosan-based composite hemostatic materials have been emerging. In this review, the hemostatic mechanism of chitosan is briefly discussed, and then the progress of research on chitosan-based composite hemostatic materials with multiple forms such as films, sponges, hydrogels, particles and fibers are introduced. Finally, future perspectives of chitosan-based composite hemostatic materials are given. The objective of this review is to provide a reference for further research and development of effective hemostatic materials.
Collapse
Affiliation(s)
- Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Dong-Ying Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Si-Tong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Pu-Wang Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Si-Dong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| |
Collapse
|
12
|
Wang GJ, Fu HX, Xiao JC, Ye W, Rao T, Shao YH, Kang D, Xie L, Liang Y. Appropriate choice of collision-induced dissociation energy for qualitative analysis of notoginsenosides based on liquid chromatography hybrid ion trap time-of-flight mass spectrometry. Chin J Nat Med 2016; 14:278-285. [PMID: 27114315 DOI: 10.1016/s1875-5364(16)30028-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 11/25/2022]
Abstract
Liquid chromatography hybrid ion trap/time-of-flight mass spectrometry possessesd both the MS(n) ability of ion trap and the excellent resolution of a time-of-flight, and has been widely used to identify drug metabolites and determine trace multi-components for in natural products. Collision energy, one of the most important factors in acquiring MS(n) information, could be set freely in the range of 10%-400%. Herein, notoginsenosides were chosen as model compounds to build a novel methodology for the collision energy optimization. Firstly, the fragmental patterns of the representatives for the authentic standards of protopanaxadiol-type and protopanaxatriol-type notoginsenosides authentic standards were obtained based on accurate MS(2) and MS(3) measurements via liquid chromatography hybrid ion trap/time-of-flight mass spectrometry. Then the extracted ion chromatograms of characteristic product ions of notoginsenosides in Panax Notoginseng Extract, which were produced under a series of collision energies and, were compared to screen out the optimum collision energies values for MS(2) and MS(3). The results demonstrated that the qualitative capability of liquid chromatography hybrid ion trap/time-of-flight mass spectrometry was greatly influenced by collision energies, and 50% of MS(2) collision energy was found to produce the highest collision-induced dissociation efficiency for notoginsenosides. BesidesAddtionally, the highest collision-induced dissociation efficiency appeared when the collision energy was set at 75% in the MS(3) stage.
Collapse
Affiliation(s)
- Guang-Ji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Han-Xu Fu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Cheng Xiao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Ye
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tai Rao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Hao Shao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dian Kang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Xing R, Zhou L, Xie L, Hao K, Rao T, Wang Q, Ye W, Fu H, Wang X, Wang G, Liang Y. Development of a systematic approach to rapid classification and identification of notoginsenosides and metabolites in rat feces based on liquid chromatography coupled triple time-of-flight mass spectrometry. Anal Chim Acta 2015; 867:56-66. [DOI: 10.1016/j.aca.2015.02.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/16/2023]
|
14
|
Qiao CF, Liu XM, Cui XM, Hu DJ, Chen YW, Zhao J, Li SP. High-performance anion-exchange chromatography coupled with diode array detection for the determination of dencichine in Panax notoginseng
and related species. J Sep Sci 2013; 36:2401-6. [DOI: 10.1002/jssc.201300334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/29/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Chun-Feng Qiao
- State Key Laboratory for Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao SAR China
| | - Xiao-Mei Liu
- State Key Laboratory for Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao SAR China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - De-Jun Hu
- State Key Laboratory for Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao SAR China
| | - Yi-Wen Chen
- State Key Laboratory for Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao SAR China
| | - Jing Zhao
- State Key Laboratory for Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao SAR China
| | - Shao-Ping Li
- State Key Laboratory for Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao SAR China
| |
Collapse
|