1
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Kubiak A, Stachowiak M, Cegłowski M. Unveiling the Latest Developments in Molecularly Imprinted Photocatalysts: A State-of-the-Art Review. Polymers (Basel) 2023; 15:4152. [PMID: 37896395 PMCID: PMC10611036 DOI: 10.3390/polym15204152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Responding to the growing concerns about environmental pollutants, scientists are increasingly turning to innovative solutions rooted in the field of environmental science. One such promising avenue combines the robustness of traditional photocatalysis with the precision of molecular imprinting, leading to the proposition of molecularly imprinted photocatalysts (MIPCs). These MIPCs hold the potential to specifically target and eliminate environmental pollutants, marking them as a promising tool in modern environmental remediation. As researchers delve deeper into this field, the design and optimization of MIPCs have become hotbeds for scientific inquiry. This comprehensive overview delves into the multifaceted approaches to MIPC design, elucidating on aspects like the selection of appropriate photocatalytic bases, the pivotal role of templates, the choice of monomeric building blocks, and the integration of effective cross-linking agents. However, as with all burgeoning technologies, the development of MIPCs is not without its challenges. These potential impediments to the successful innovation and implementation of MIPCs are also explored.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL-61614 Poznan, Poland; (A.K.); (M.S.)
| |
Collapse
|
4
|
Kour A, Panda HS, Singh IR, Kumar A, Panda JJ. Peptide-metal nanohybrids (PMN): Promising entities for combating neurological maladies. Adv Colloid Interface Sci 2023; 318:102954. [PMID: 37487364 DOI: 10.1016/j.cis.2023.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Nanotherapeutics are gaining traction in the modern scenario because of their unique and distinct properties which separate them from macro materials. Among the nanoparticles, metal NPs (MNPs) have gained importance due to their distinct physicochemical and biological characteristics. Peptides also exhibit several important functions in humans. Different peptides have received approval as pharmaceuticals, and clinical trials have been commenced for several peptides. Peptides are also used as targeting ligands. Considering all the advantages offered by these two entities, the conjugation of MNPs with peptides has emerged as a potential strategy for achieving successful targeting, diagnosis, and therapy of various neurological pathologies.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India
| | | | | | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
5
|
Arzani FA, Dos Santos JHZ. Biocides and techniques for their encapsulation: a review. SOFT MATTER 2022; 18:5340-5358. [PMID: 35820409 DOI: 10.1039/d1sm01114f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biocides are compounds that are broadly used to protect products and equipment against microbiological damage. Encapsulation can effectively increase physicochemical stability and allow for controlled release of encapsulated biocides. We categorized microencapsulation into coacervation, sol-gel, and self-assembly methods. The former comprises internal phase separation, interfacial polymerization, and multiple emulsions, and the latter include polymersomes and layer-by-layer techniques. The focus of this review is the description of these categories based on their microencapsulation methods and mechanisms. We discuss the key features and potential applications of each method according to the characteristics of the biocide to be encapsulated, relating the solubility of biocides to the capsule-forming materials, the reactivity between them and the desired release rate. The role of encapsulation in the safety and toxicity of biocide applications is also discussed. Furthermore, future perspectives for biocide applications and encapsulation techniques are presented.
Collapse
Affiliation(s)
- Fernanda A Arzani
- Chemical Engineering Department, Universidade Federal do Rio Grande do Sul, Rua Eng. Luiz Englert s/n, Porto Alegre, 90040-040, Brazil.
| | - João H Z Dos Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91500-000, Brazil.
| |
Collapse
|
6
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
7
|
Plewka J, Silva GL, Tscheließnig R, Rennhofer H, Dias‐Cabral C, Jungbauer A, Lichtenegger HC. Antibody adsorption in protein-A affinity chromatography - in situ measurement of nanoscale structure by small-angle X-ray scattering. J Sep Sci 2018; 41:4122-4132. [PMID: 30240534 PMCID: PMC6282589 DOI: 10.1002/jssc.201800776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/02/2023]
Abstract
Protein-A chromatography is the most widely used chromatography step in downstream processing of antibodies. A deeper understanding of the influence of the surface topology on a molecular/nanoscale level on adsorption is essential for further improvement. It is not clear if the binding is homogenous throughout the entire bead network. We followed the protein absorption process and observed the formation of a protein layer on fibers of chromatography resin in a time-resolved manner in nanoscale. To characterize the changes in the antibody-protein-A ligand complex, small angle X-ray scattering was employed using a miniaturized X-ray-transparent chromatography column packed with a MabSelect SuRe resin. Antibody-free MabSelect SuRe resin fiber had an average radius of 12 nm and the protein layer thickness resulting from antibody adsorption was 5.5 and 10.4 nm for fiber and junctions, respectively under applied native conditions. We hypothesize that an average of 1.2 antibodies were adsorbed per protein-A ligand tetramer bound to the outermost units. In contrast to previous studies, it was therefore possible for the first time to directly correlate the nanostructure changes inside the column, which is otherwise a black box, with the adsorption and elution process.
Collapse
Affiliation(s)
- Jacek Plewka
- Department of Material Science and Process EngineeringUniversity of Natural Resources and LifeSciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Gonçalo L. Silva
- Austrian Centre of Industrial BiotechnologyViennaAustria
- CICS‐UBI – Health Sciences Research CentreUniversity of Beira Interior
CovilhãPortugal
- Department of ChemistryUniversity of Beira InteriorCovilhãPortugal
| | - Rupert Tscheließnig
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences
ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Harald Rennhofer
- Department of Material Science and Process EngineeringUniversity of Natural Resources and LifeSciencesViennaAustria
| | - Cristina Dias‐Cabral
- CICS‐UBI – Health Sciences Research CentreUniversity of Beira Interior
CovilhãPortugal
- Department of ChemistryUniversity of Beira InteriorCovilhãPortugal
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences
ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Helga C. Lichtenegger
- Department of Material Science and Process EngineeringUniversity of Natural Resources and LifeSciencesViennaAustria
| |
Collapse
|
8
|
Molecularly imprinted TiO2 photocatalysts for degradation of diclofenac in water. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ikegami T, Tanaka N. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:317-342. [PMID: 27306311 DOI: 10.1146/annurev-anchem-071114-040102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
Collapse
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan;
| | | |
Collapse
|
10
|
de Escobar CC, Lansarin MA, Zimnoch Dos Santos JH. Synthesis of molecularly imprinted photocatalysts containing low TiO2 loading: Evaluation for the degradation of pharmaceuticals. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:359-366. [PMID: 26800507 DOI: 10.1016/j.jhazmat.2015.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
A molecularly imprinted (MI) photocatalyst containing a low TiO2 loading (7.00-16.60mgL(-1) of TiO2) was prepared via an acid-catalyzed sol-gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing Diclofenac as the template.
Collapse
Affiliation(s)
- Cícero Coelho de Escobar
- Departamento de Engenharia Química-Universidade Federal do Rio Grande do Sul, Rua Eng. Luis Englert s/n, 90040-040 Porto Alegre, RS, Brazil
| | - Marla Azário Lansarin
- Departamento de Engenharia Química-Universidade Federal do Rio Grande do Sul, Rua Eng. Luis Englert s/n, 90040-040 Porto Alegre, RS, Brazil
| | | |
Collapse
|
11
|
de Escobar CC, Dallegrave A, Lasarin MA, Zimnoch dos Santos JH. The sol–gel route effect on the preparation of molecularly imprinted silica-based materials for selective and competitive photocatalysis. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Wu ZL, Liu Q, Chen XQ, Yu JG. Preconcentration and analysis of Rhodamine B in water and red wine samples by using magnesium hydroxide/carbon nanotube composites as a solid-phase extractant. J Sep Sci 2015; 38:3404-11. [DOI: 10.1002/jssc.201500246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/13/2015] [Accepted: 07/08/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi-Liang Wu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
| | - Qi Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
- Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization; Changsha Hunan China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
| |
Collapse
|
13
|
Ghai M, Narula P, Kaur V, Singh R. Imprinted silica nanoparticles coated with N-propylsilylmorpholine-4-carboxamide for the determination of m-cresol in synthetic and real samples. J Sep Sci 2015. [PMID: 26223215 DOI: 10.1002/jssc.201500475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
m-Cresol-imprinted silica nanoparticles coated with N-propylsilylmorpholine-4-carboxamide have been developed that contain specific pockets for the selective uptake of m-cresol. Silica nanoparticles were synthesized by a sol-gel process followed by functionalization of their surface with N-propylsilylmorpholine-4-carboxamide. The formation of m-cresol-imprinted silica nanoparticles was confirmed by UV-Vis spectrophotometry, infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. Electron microscopic studies revealed the formation of monodispersed imprinted silica nanoparticles with spherical shape and an average size of 83 nm. The developed nanoparticles were filled in a syringe and used for the extraction of m-cresol from aqueous samples followed by quantification using high-performance liquid chromatography with diode array detection. Various adsorption experiments showed that developed m-cresol-imprinted silica nanoparticles exhibited a high adsorption capacity and selectivity and offered a fast kinetics for rebinding m-cresol. The chromatographic quantification was achieved using mobile phase consisting of acetonitrile/water (70:30 v/v) at an isocratic flow rate of 1.0 mL/min using a reversed-phase C18 column and detection at λmax = 275 nm. The limits of detection and quantification were 1.86 and 22.32 ng/mL, respectively, for the developed method. The percent recoveries ranged from 96.66-103.33% in the spiked samples. This combination of this nanotechnique with molecular imprinting was proved as a reliable, sensitive and selective method for determining the target from synthetic and real samples.
Collapse
Affiliation(s)
- Manisha Ghai
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Priyanka Narula
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
14
|
de Escobar CC, Fisch A, dos Santos JHZ. Effect of a Sol–Gel Route on the Preparation of Silica-Based Sorbent Materials Synthesized by Molecular Imprinting for the Adsorption of Dyes. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503993d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cícero Coelho de Escobar
- Departamento
de Engenharia Química, Universidade Federal do Rio Grande do Sul Rua Eng. Luis Englert s/n, Porto Alegre, CEP 90040-040, Brazil
| | - Adriano Fisch
- Departamento
de Engenharia Química, Universidade Luterana do Brasil Avenida
Farroupilha, 8001, Canoas, CEP 96501-595, Brazil
| | - João Henrique Zimnoch dos Santos
- Instituto
de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto
Alegre, CEP 91500-000, Brazil
| |
Collapse
|