1
|
Haider W, Pan W, Wang D, Niaz W, Zaman MK, Ullah R, Ullah S, Rafiq M, Yu B, Cong H. Maackiain: A comprehensive review of its pharmacology, synthesis, pharmacokinetics and toxicity. Chem Biol Interact 2024; 405:111294. [PMID: 39477181 DOI: 10.1016/j.cbi.2024.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Maackiain is an important component of some herbs in traditional Chinese medicine (TCM), such as Sophora flavescens Aiton, Spatholobus suberectus Dunn and Paeonia lactiflora Pall. Maackiain belongs to the second largest group of isoflavonoids the pterocarpans that is widespread in several plant genera, for example Maackia, Sophora, Caragana, Trifolium and Millettia. Recently, maackiain has attracting more attention because of its numerous pharmacological properties. This review offers the first extensive overview of maackiain natural isolation sources, pharmacological activities, synthesis, toxicity, and pharmacokinetic properties. The literature search published between 1962 and 2023 were reported by collecting the data from Google Scholar, Science Direct, SpringerLink, Web of Science, PubMed, Wiley Online, China National Knowledge Infrastructure, Scopus and structure search in SciFinder. Finding reveals the broad range of pharmacological activities of maackiain, such as anti-inflammatory, sepsis prevention, anti-cancer, anti-allergic, anti-osteolytic, anti-obesity, nephroprotective, antifungal, neuroprotective, anti-leukemic, antimalarial and inflammasome activation. Based on findings of pharmacokinetic studies, it is observed that maackiain possesses a low level of bioavailability and absorption and a rapid rate of elimination, but maackiain absorption rates in the extract were comparatively much higher than pure forms because of higher solubility and may reduce the metabolism by other ingredients present in the extract. Toxicity investigations revealed that maackiain is non-toxic to the majority of cells and selectively cytotoxic. After witnessing the beneficial pharmacological properties of maackiain, it is believed to be an emerging drug candidate for the treatment of inflammation, allergic, nephroprotection in T2D, depression, or Alzheimer's disease and obesity. However, future research topics should likely to include that elucidates its mechanism of toxicity and in vivo proper tracking of its conducts in drug delivery system. Integrating toxicity and efficiency, as well as structure modification, are critical approaches to enhancing its pharmacological properties and oral bioavailability.
Collapse
Affiliation(s)
- Waqas Haider
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei Pan
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Waqas Niaz
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Kashif Zaman
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Raza Ullah
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shakir Ullah
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles. Qingdao University, Qingdao, 266000, Shandong, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
2
|
Lack of Correlation between In Vitro and In Vivo Studies on the Inhibitory Effects of (‒)-Sophoranone on CYP2C9 is Attributable to Low Oral Absorption and Extensive Plasma Protein Binding of (‒)-Sophoranone. Pharmaceutics 2020; 12:pharmaceutics12040328. [PMID: 32272615 PMCID: PMC7238241 DOI: 10.3390/pharmaceutics12040328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 02/02/2023] Open
Abstract
(‒)-Sophoranone (SPN) is a bioactive component of Sophora tonkinensis with various pharmacological activities. This study aims to evaluate its in vitro and in vivo inhibitory potential against the nine major CYP enzymes. Of the nine tested CYPs, it exerted the strongest inhibitory effect on CYP2C9-mediated tolbutamide 4-hydroxylation with the lowest IC50 (Ki) value of 0.966 ± 0.149 μM (0.503 ± 0.0383 μM), in a competitive manner. Additionally, it strongly inhibited other CYP2C9-catalyzed diclofenac 4′-hydroxylation and losartan oxidation activities. Upon 30 min pre-incubation of human liver microsomes with SPN in the presence of NADPH, no obvious shift in IC50 was observed, suggesting that SPN is not a time-dependent inactivator of the nine CYPs. However, oral co-administration of SPN had no significant effect on the pharmacokinetics of diclofenac and 4′-hydroxydiclofenac in rats. Overall, SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo. The very low permeability of SPN in Caco-2 cells (Papp value of 0.115 × 10−6 cm/s), which suggests poor absorption in vivo, and its high degree of plasma protein binding (>99.9%) may lead to the lack of in vitro–in vivo correlation. These findings will be helpful for the safe and effective clinical use of SPN.
Collapse
|
3
|
Preparative Purification of Total Flavonoids from Sophora tonkinensis Gagnep. by Macroporous Resin Column Chromatography and Comparative Analysis of Flavonoid Profiles by HPLC-PAD. Molecules 2019; 24:molecules24173200. [PMID: 31484401 PMCID: PMC6749409 DOI: 10.3390/molecules24173200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 11/25/2022] Open
Abstract
For the full development and utilization of Sophora tonkinensis Gagnep., this study was primarily intended to established a simple and efficient approach for the preparative purification of total flavonoids from S. tonkinensis by macroporous resin column chromatography (MRCC). The adsorption and desorption characteristics of the total flavonoids on ten macroporous resins were first studied, and AB-8 resin was chosen as the most suitable, and the adsorption data were best fitted to the pseudo-second-order kinetics model and Langmuir isotherm model. Furthermore, the technological parameters for the purification of the total flavonoids were optimized using column chromatography. After a sample one-step purification procedure, the content of the total flavonoids increased by about 4.76-fold from 12.14% to 57.82%, with a recovery yield of 84.93%. In addition, the comparative analysis of the flavonoid extracts before and after purification was performed by high-performance liquid chromatography coupled with photodiode-array detection (HPLC-PAD). The results showed that the contents of six major flavonoids in the purified product were all higher than before the purification. Therefore, the AB-8 MRCC established in this work was a promising method for the industrial-scale purification of the total flavonoids from S. tonkinensis.
Collapse
|
4
|
Yoo H, Kang M, Pyo S, Chae HS, Ryu KH, Kim J, Chin YW. SKI3301, a purified herbal extract from Sophora tonkinensis, inhibited airway inflammation and bronchospasm in allergic asthma animal models in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:298-305. [PMID: 28506902 DOI: 10.1016/j.jep.2017.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/30/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora tonkinensis (Leguminosae, ST) is a traditional herbal plant in Korea and China. Its roots and rhizomes have been used to dissipate heat, to clear toxic material and to treat acute pharyngolaryngeal infections and sore throats. AIM OF STUDY In this study, we tried to investigate the anti-inflammatory and anti-asthmatic effects of a purified extract (SKI3301) from Sophora tonkinensis using in vitro enzyme assay models and ovalbumin (OVA)-induced asthma animal models. MATERIALS AND METHODS The effect of SKI3301 on pro-inflammatory enzymes such as 5-lipoxygenase, phosphodiesterase 3 & 4, and thromboxane synthase was assayed in vitro. BALB/c mice were sensitized with OVA/Alum ip injection and nebulized with OVA to induce airway inflammation. Bronchoalveolar lavage (BAL) fluid was collected and analyzed for leukocytes infiltration and IL-5 production along with lung histopathology. Guinea pigs passively sensitized with anti-OVA antiserum were used to investigate the effect of SKI3301 on bronchospasm in vitro and in vivo. RESULTS SKI3301 potently inhibited the activities of 5-lipoxygenase, phosphodiesterase 3 & 4, and thromboxane synthase. Orally administered SKI3301 attenuated the total leukocytes and eosinophil infiltration and IL-5 level in BAL fluids. Histopathological changes associated with lung inflammation were also reduced by SKI3301. SKI3301 inhibited OVA-induced contraction of isolated trachea from sensitized guinea pigs. SKI3301 also protected OVA-induced bronchoconstriction in the sensitized guinea pigs. Maackiain, one of 3 major components of SKI3301, was effective in inhibiting 5-lipoxygenase and OVA-induced airway inflammation. CONCLUSION In this study, SKI3301 potently inhibited pro-inflammatory enzymes and attenuated OVA-induced bronchospasm in animal model of allergic asthma. These results suggest that SKI3301 may have therapeutic potential for allergic asthma.
Collapse
Affiliation(s)
- Hunseung Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08862, Republic of Korea; New Drug Preclinical & Analytical Team, Life Science R&D Center, SK Chemicals, 310 Pangyo-ro, 463-400 Republic of Korea
| | - Minseok Kang
- New Drug Preclinical & Analytical Team, Life Science R&D Center, SK Chemicals, 310 Pangyo-ro, 463-400 Republic of Korea
| | - Sungsoo Pyo
- New Drug Preclinical & Analytical Team, Life Science R&D Center, SK Chemicals, 310 Pangyo-ro, 463-400 Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Keun Ho Ryu
- New Drug Preclinical & Analytical Team, Life Science R&D Center, SK Chemicals, 310 Pangyo-ro, 463-400 Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08862, Republic of Korea.
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
6
|
Jang SM, Bae SH, Choi WK, Park JB, Kim D, Min JS, Yoo H, Kang M, Ryu KH, Bae SK. Pharmacokinetic properties of trifolirhizin, (-)-maackiain, (-)-sophoranone and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran after intravenous and oral administration of Sophora tonkinensis extract in rats. Xenobiotica 2015; 45:1092-104. [PMID: 26068519 DOI: 10.3109/00498254.2015.1041181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. SKI3301, a standardized dried 50% ethanolic extracts of Sophora tonkinensis, contains four marker compounds (trifolirhizin, TF; (-)-maackiain, Maack; (-)-sophoranone, SPN, and (2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran, ABF), is being developed as an herbal medicine for the treatment of asthma in Korea. This study investigates the pharmacokinetic properties of SKI3301 extract in rats. 2. The dose-proportional AUCs suggest linear pharmacokinetics of TF, Maack, SPN and ABF in the SKI3301 extract intravenous dose range of 5-20 mg/kg. After the oral administration of 200-1000 mg/kg of the extract, TF and Maack exhibited non-linearity due to the saturation of gastrointestinal absorption. However, linear pharmacokinetics of SPN and ABF were observed. 3. The absorptions of TF, Maack, SPN and ABF in the extract were increased relative to those of the respective pure forms due to the increased solubility and/or the decreased metabolism by other components in the SKI3301 extract. 4. No accumulation was observed after multiple dosing, and the steady-state pharmacokinetics of TF, Maack, SPN and ABF were not significantly different from those after a single oral administration of the extract. 5. The pharmacokinetics of TF, SPN and ABF were not significantly different between male and female rats after oral administration of the extract, but a significant gender difference in the pharmacokinetics of Maack in rats was observed. 6. Our findings may help to comprehensively elucidate the pharmacokinetic characteristics of TF, Maack, SPN and ABF and provide useful information for the clinical application of SKI3301 extract.
Collapse
Affiliation(s)
- Soo Min Jang
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Soo Hyeon Bae
- b Department of Pharmacology , College of Medicine, The Catholic University of Korea , Seoul , Republic of Korea
| | - Woong-Kee Choi
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Jung Bae Park
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Doyun Kim
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Jee Sun Min
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Hunseung Yoo
- c College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul , Republic of Korea .,d New Drug Preclinical & Analytical Team , and
| | | | - Keun Ho Ryu
- e New Drug Team 1, Life Science R&D Center, SK Chemicals , Sungnam , Republic of Korea
| | - Soo Kyung Bae
- a College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea , Bucheon , Republic of Korea
| |
Collapse
|