1
|
Lu L, Li J, Zhang L, Zhang Y, Li Z, Lan J, Zeng R, Fang S, Zhang T, Ding Y. A rapid quantitative UPLC-MS/MS method for analysis of key regulatory oxysterols in biological samples for liver cancer. J Steroid Biochem Mol Biol 2024; 243:106577. [PMID: 38971336 DOI: 10.1016/j.jsbmb.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
An UPLC-APCI-MS/MS method was developed for the simultaneous determination of cholesterol, 7-dehydrocholesterol (7DHC) and eight oxysterols including 27-hydroxycholesterol (27OHC), 7α-hydroxycholesterol (7αOHC), 7β-hydroxycholesterol (7βOHC), 24S-hydroxycholesterol (24SOHC), 25-hydroxycholesterol (25OHC), 7α,24S-dihydroxycholesterol (7α,24SdiOHC), 7α,25-dihydroxycholesterol (7α,25diOHC), and 7α,27-dihydroxycholesterol (7α,27diOHC). It has been used for quantitative analysis of cholesterol, 7DHC and eight oxysterols in hepatocellular carcinoma (HCC) cells, plasma and tumor tissue samples. And the above compounds were extracted from the biological matrix (plasma and tissue) using liquid-liquid extraction with hexane/isopropanol after saponification to cleave the steroids from their esterified forms without further derivatization. Then cholesterol, 7DHC and oxysterols were separated on a reversed phase column (Agilent Zorbax Eclipse plus, C18) within 8 min using a gradient elution with 0.1 % formic acid in H2O and methanol and detected by an APCI triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) of the cholesterol, 7DHC and oxysterols ranged from 3.9 ng/mL to 31.25 ng/mL, and the recoveries ranged from 83.0 % to 113.9 %. Cholesterol, 7DHC and several oxysterols including 27OHC, 7αOHC and 7βOHC were successfully quantified in HCC cells, plasma, tissues and urine of HCC mice. Results showed that 27OHC was at high levels in three kind of HCC cells and tumor tissues as well as plasma samples from both HepG2 and Huh7 bearing mice model,and the high levels of 27OHC in tumors were associated with HCC development. Moreover, the levels of cholesterol in HCC cells and tumor issues varied in different HCC cells and mice model. Oxysterols profiling in biological samples might provide complementary information in cancer diagnosis.
Collapse
Affiliation(s)
- Lu Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijuan Zhang
- National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyuan Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Menteşe Babayiğit T, Gümüş-Akay G, Uytun MÇ, Doğan Ö, Serdar MA, Efendi GY, Erman AG, Yürümez E, Öztop DB. Investigation of Liver X Receptor Gene Variants and Oxysterol Dysregulation in Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2024; 11:551. [PMID: 38790546 PMCID: PMC11120122 DOI: 10.3390/children11050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The NR1H2 gene produces the Liver X Receptor Beta (LXRB) protein, which is crucial for brain cholesterol metabolism and neuronal development. However, its involvement in autism spectrum disorder (ASD) remains largely unexplored, aside from animal studies. This study is the first to explore the potential link between autism and rs2695121/rs17373080 single nucleotide polymorphisms (SNPs) in the regulatory regions of NR1H2, known for their association with neuropsychiatric functions. Additionally, we assessed levels of oxysterols (24-Hydroxycholesterol, 25-Hydroxycholesterol, 27-Hydroxycholesterol), crucial ligands of LXR, and lipid profiles. Our cohort comprised 107 children with ASD and 103 healthy children aged 2-18 years. Clinical assessment tools included the Childhood Autism Rating Scale, Autistic Behavior Checklist, and Repetitive Behavior Scale-Revised. Genotyping for SNPs was conducted using PCR-RFLP. Lipid profiles were analyzed with Beckman Coulter kits, while oxysterol levels were determined through liquid chromatography-tandem mass spectrometry. Significantly higher total cholesterol (p = 0.003), LDL (p = 0.008), and triglyceride (p < 0.001) levels were observed in the ASD group. 27-Hydroxycholesterol levels were markedly lower in the ASD group (p ≤ 0.001). ROC analysis indicated the potential of 27-Hydroxycholesterol to discriminate ASD diagnosis. The SNP genotype and allele frequencies were similar in both groups (p > 0.05). Our findings suggest that disturbances in oxysterol metabolism, previously linked to neurodegeneration, may constitute a risk factor for ASD and contribute to its heterogeneous phenotype.
Collapse
Affiliation(s)
- Tuğba Menteşe Babayiğit
- Department of Child and Adolescent Psychiatry, Aksaray University School of Medicine Training and Research Hospital, Aksaray 68100, Turkey
| | - Güvem Gümüş-Akay
- Department of Physiology, Ankara University School of Medicine, Ankara 06100, Turkey;
- Brain Research Center (AUBAUM), Ankara University, Ankara 06340, Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara University, Ankara 06560, Turkey
| | - Merve Çikili Uytun
- Department of Child and Adolescent Psychiatry, Ankara University School of Medicine, Ankara 06100, Turkey; (M.Ç.U.); (E.Y.); (D.B.Ö.)
| | - Özlem Doğan
- Department of Biochemistry, Ankara University School of Medicine, Ankara 06100, Turkey;
| | - Muhittin A. Serdar
- Department of Medical Biochemistry, Acıbadem University School of Medicine, Ankara 06460, Turkey;
| | - Gökçe Yağmur Efendi
- Department of Child and Adolescent Psychiatry, Kocaeli University School of Medicine, Kocaeli 41001, Turkey;
| | - Ayşe Gökçe Erman
- Department of Basic Biotechnology, Ankara University Institute of Biotechnology, Ankara 06135, Turkey;
| | - Esra Yürümez
- Department of Child and Adolescent Psychiatry, Ankara University School of Medicine, Ankara 06100, Turkey; (M.Ç.U.); (E.Y.); (D.B.Ö.)
| | - Didem Behice Öztop
- Department of Child and Adolescent Psychiatry, Ankara University School of Medicine, Ankara 06100, Turkey; (M.Ç.U.); (E.Y.); (D.B.Ö.)
| |
Collapse
|
3
|
Taya Y, Mizunaga M, Nakao S, Jutanom M, Shimizu N, Nomura Y, Nakagawa K. Clinical Evaluation Based on a New Approach to Improve the Accuracy of 4β-Hydroxycholesterol Measurement as a Biomarker of CYP3A4 Activity. Molecules 2023; 28:molecules28041576. [PMID: 36838563 PMCID: PMC9967035 DOI: 10.3390/molecules28041576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
This study examines 4β-Hydroxycholesterol (4β-HC), which is considered to be a potential marker for the CYP3A4 induction of new chemical entities (NCEs) in drug development. To ensure the use of 4β-HC as a practical biomarker, it is necessary to accurately measure 4β-HC and demonstrate that CYP3A4 induction can be appropriately assessed, even for weak inducers. In clinical trials of NCEs, plasma is often collected with various anticoagulants, in some cases, the plasma is acidified, then stored for an extended period. In this study, we examined the effects of these manipulations on the measurement of 4β-HC, and based on the results, we optimized the plasma collection and storage protocols. We also found that a cholesterol oxidation product is formed when plasma is stored, and by monitoring the compound, we were able to identify when plasma was stored inappropriately. After evaluating the above, clinical drug-drug interaction (DDI) studies were conducted using two NCEs (novel retinoid-related orphan receptor γ antagonists). The weak CYP3A4 induction by the NCEs (which were determined based on a slight decline in the systemic exposure of a probe substrate (midazolam)), was detected by the significant increase in 4β-HC levels (more specifically, 4β-HC/total cholesterol ratios). Our new approach, based on monitoring a cholesterol oxidation product to identify plasma that is stored inappropriately, allowed for the accurate measurement of 4β-HC, and thus, it enabled the evaluation of weak CYP3A4 inducers in clinical studies without using a probe substrate.
Collapse
Affiliation(s)
- Yuki Taya
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Osaka, Japan
| | - Mari Mizunaga
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Osaka, Japan
| | - Shunsuke Nakao
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Osaka, Japan
| | - Mirinthorn Jutanom
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
| | - Yukihiro Nomura
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Osaka, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Miyagi, Japan
- Correspondence: ; Fax: +81-22-757-4417
| |
Collapse
|
4
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci Rep 2020; 10:17081. [PMID: 33051477 PMCID: PMC7553946 DOI: 10.1038/s41598-020-74036-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that converts cholesterol into 24S-hydroxycholesterol, the primary mechanism of cholesterol catabolism in the brain. The therapeutic potential of CH24H activation has been extensively investigated, whereas the effects of CH24H inhibition remain poorly characterized. In this study, the therapeutic potential of CH24H inhibition was investigated using a newly identified small molecule, soticlestat (TAK-935/OV935). The biodistribution and target engagement of soticlestat was assessed in mice. CH24H-knockout mice showed a substantially lower level of soticlestat distribution in the brain than wild-type controls. Furthermore, brain-slice autoradiography studies demonstrated the absence of [3H]soticlestat staining in CH24H-knockout mice compared with wild-type mice, indicating a specificity of soticlestat binding to CH24H. The pharmacodynamic effects of soticlestat were characterized in a transgenic mouse model carrying mutated human amyloid precursor protein and presenilin 1 (APP/PS1-Tg). These mice, with excitatory/inhibitory imbalance and short life-span, yielded a remarkable survival benefit when bred with CH24H-knockout animals. Soticlestat lowered brain 24S-hydroxycholesterol in a dose-dependent manner and substantially reduced premature deaths of APP/PS1-Tg mice at a dose lowering brain 24S-hydroxycholesterol by approximately 50%. Furthermore, microdialysis experiments showed that soticlestat can suppress potassium-evoked extracellular glutamate elevations in the hippocampus. Taken together, these data suggest that soticlestat-mediated inhibition of CH24H may have therapeutic potential for diseases associated with neural hyperexcitation.
Collapse
|
6
|
Separation and Determination of Some of the Main Cholesterol-Related Compounds in Blood by Gas Chromatography-Mass Spectrometry (Selected Ion Monitoring Mode). SEPARATIONS 2018. [DOI: 10.3390/separations5010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Determination of total plasma oxysterols by enzymatic hydrolysis, solid phase extraction and liquid chromatography coupled to mass-spectrometry. J Pharm Biomed Anal 2018; 150:396-405. [DOI: 10.1016/j.jpba.2017.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/04/2023]
|
8
|
Sugimoto H, Iguchi M, Jinno F. Bioanalysis of farnesyl pyrophosphate in human plasma by high-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry and hybrid quadrupole Orbitrap high-resolution mass spectrometry. Anal Bioanal Chem 2017; 409:3551-3560. [PMID: 28343347 DOI: 10.1007/s00216-017-0293-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 01/18/2023]
Abstract
The isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are pivotal intermediates for cholesterol homeostasis and cell signaling in the mevalonate pathway. We developed a sensitive and selective high-performance liquid chromatography tandem triple quadrupole mass spectrometry (LC-QQQ-MS) method for FPP in human plasma without the need for a derivatization process. We optimized the sample preparation procedure to extract FPP and 13C5-FPP (as internal standard) from sample fluids using methanol. Phosphate-buffered saline was used as the surrogate matrix for the preparation of calibration curves and quality control samples. Using an XBridge C18 column (3.5 μm, 2.1 × 100-mm ID) with gradient elution composed of 10 mmol/L ammonium carbonate/ammonium hydroxide (1000:5, v/v) and acetonitrile/ammonium hydroxide (1000:5, v/v) provided the sharp peaks of FPP and 13C5-FPP in human plasma. The calibration curve ranged from 0.2 to 20 ng/mL in human plasma with acceptable intra-day and inter-day precision and accuracy. The sensitivity of this bioanalytical method was sufficient for clinical analysis. The endogenous FPP plasma concentrations in 40 human healthy volunteers ascertained by LC-QQQ-MS and high-performance liquid chromatography tandem hybrid quadrupole Orbitrap high-resolution mass spectrometry (LC-Q-Orbi-MS) were comparable. Furthermore, the endogenous GGPP in human plasma was selectively detected for the first time by LC-Q-Orbi-MS. In conclusion, a sensitive bioanalytical method for FPP in human plasma by means of LC-QQQ-MS and LC-Q-Orbi-MS was developed in this study. Taking into account the versatility of LC-Q-Orbi-MS, the simultaneous detection of FPP and GGPP may be feasible in clinical practice.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Mie Iguchi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Fumihiro Jinno
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|