1
|
Wu Z, Chen Y, Xue H, Yang S, Pan C, Zhang D, Xie Y. Dual-stimuli-responsive carboxymethyl chitosan/sodium lignosulfonate microcapsules from oppositely charged biopolymers for smart pesticide release. Int J Biol Macromol 2025; 299:140102. [PMID: 39842597 DOI: 10.1016/j.ijbiomac.2025.140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
In this study, we constructed a pH/laccase dual responsive drug delivery system, denoted as IMI@(CMCS+SL)n, capable of modulating wall thickness and drug release via the layer-by-layer deposition of carboxymethyl chitosan (CMCS) and sodium lignosulfonate (SL). The IMI@(CMCS+SL)n microcapsules was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), (energy-dispersive X-ray spectroscopy) EDS, X-ray photoelectron spectroscopy (XPS), and dynamic light scattering techniques (DLS) analysis. IMI@(CMCS+SL)n demonstrated not only a high loading capacity (exceeding 90 %) but also exhibited exceptional performance in sustained release and anti-termite activity of IMI. Significantly, IMI@(CMCS+SL)n was responsive to both laccase and pH variations. These results suggest that the distinctive laccase activity and weakly alkaline conditions within the termite gut may serve as triggering factors for the release of IMI by IMI@(CMCS+SL)n. Overall, the pesticide carrier system designed in this research ensures precise pesticide application and enhances the value of natural biomass resources.
Collapse
Affiliation(s)
- Ziwei Wu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yiyang Chen
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Haozhe Xue
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Shimeng Yang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Chengyuan Pan
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Dayu Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yongjian Xie
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
2
|
Shokri M, Miralinaghi M, Moniri E, Jafariazar Z. Synthesis and application of polyethyleneimine and polyethylene glycol grafted on
CoFe
2
O
4
/single‐walled carbon nanotubes as a delivery platform for silibinin: Loading experiments, modeling, and in‐vitro release studies. J Appl Polym Sci 2023. [DOI: 10.1002/app.53849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Mohanna Shokri
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences Islamic Azad University Tehran Iran
| | - Mahsasadat Miralinaghi
- Department of Chemistry, Faculty of Science, Varamin ‐ Pishva Branch Islamic Azad University Varamin Iran
| | - Elham Moniri
- Department of Chemistry, Faculty of Science, Varamin ‐ Pishva Branch Islamic Azad University Varamin Iran
| | - Zahra Jafariazar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences Islamic Azad University Tehran Iran
| |
Collapse
|
3
|
Hassani F, Heydarinasab A, Ahmad Panahi H, Moniri E. Surface modification of tungsten disulfide nanosheets with pH/Thermosensitive polymer and polyethylenimine dendrimer for near-infrared triggered drug delivery of letrozole. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Hamrang R, Moniri E, Heydarinasab A, Safaeijavan R. In vitro evaluation of copper sulfide nanoparticles decorated with folic acid/chitosan as a novel pH-sensitive nanocarrier for the efficient controlled targeted delivery of cytarabine as an anticancer drug. Biotechnol Appl Biochem 2023; 70:330-343. [PMID: 35561253 DOI: 10.1002/bab.2355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/21/2022] [Indexed: 12/07/2022]
Abstract
Nanoparticles (NPs) have gained more attention as drug delivery systems. Folic acid (FA)-chitosan (CS) conjugates, because of their biodegradability, low toxicity, and better stability, offer a pharmaceutical drug delivery tool. The aim of this work was to fabricate CuS NPs modified by CS followed by grafting FA as a nanocarrier for the delivery of cytarabine (CYT) as an anticancer drug. In this work, CuS NPs modified by CS and FA were successfully synthesized. The structural properties of the nanocarrier were characterized by using scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, and Brunauer-Emmett-Teller. The adsorption mechanism of CYT by adsorption isotherms, kinetics, and thermodynamics was deliberated and modeled. The in vitro CYT release behavior for the nanocarrier was 99% and 61% at pH 5.6 and 7.4, respectively. The adsorption behavior of CYT by CuS NPs -CS-FA was well explored by pseudo-second-order kinetic and Langmuir isotherm models by the coefficient of determination (R2 > 0.99). Thermodynamic results showed that the uptake of CYT by CuS NPs-CS-FA was endothermic and spontaneous. The experimental results showed that CYT/CuS NPs -CS-FA can be proposed as an efficient nanocarrier for the targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Roya Hamrang
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elham Moniri
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Amir Heydarinasab
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Safaeijavan
- Department of Biochemistry and Biophysics, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
5
|
Synthesis and Characterization of Magnetic Nanoparticles-Grafted-Hyaluronic Acid/β-Cyclodextrin as a Novel pH-Sensetive Nanocarrier for Targeted Delivery of Doxorubicin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
A novel pH-and temperature sensitive polymer based on MoS2 modified poly (N-Isopropyl Acrylamide)/ allyl acetoacetate for doxorubicin delivery: synthesis, characterization, in-vitro release and cytotoxicity studies. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
7
|
Biopolymer-imidazolium based dicationic ionic liquid modified clay bionanocomposite coating for solid-phase microextraction of phthalate esters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Parimi DS, Gupta Y, Marpu S, Bhatt CS, Bollu TK, Suresh AK. Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics: Underlying risks and the emergence of ultrasmall nanomagnets. J Pharm Anal 2021; 12:365-379. [PMID: 35811618 PMCID: PMC9257447 DOI: 10.1016/j.jpha.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer therapy is a fast-emerging biomedical paradigm that elevates the diagnostic and therapeutic potential of a nanovector for identification, monitoring, targeting, and post-treatment response analysis. Nanovectors of superparamagnetic iron oxide nanoparticles (SPION) are of tremendous significance in cancer therapy because of their inherited high surface area, high reactivity, biocompatibility, superior contrast, and magnetic and photo-inducibility properties. In addition to a brief introduction, we summarize various progressive aspects of nanomagnets pertaining to their production with an emphasis on sustainable biomimetic approaches. Post-synthesis particulate and surface alterations in terms of pharmaco-affinity, liquid accessibility, and biocompatibility to facilitate cancer therapy are highlighted. SPION parameters including particle contrast, core-fusions, surface area, reactivity, photosensitivity, photodynamics, and photothermal properties, which facilitate diverse cancer diagnostics, are discussed. We also elaborate on the concept of magnetism to selectively focus chemotherapeutics on tumors, cell sorting, purification of bioentities, and elimination of toxins. Finally, while addressing the toxicity of nanomaterials, the advent of ultrasmall nanomagnets as a healthier alternative with superior properties and compatible cellular interactions is reviewed. In summary, these discussions spotlight the versatility and integration of multi-tasking nanomagnets and ultrasmall nanomagnets for diverse cancer theragnostics. SPION synthesis with ascribed prominence on sustainable procedures. Particulate species, composition, and surface alteration-enabled theragnostics are highlighted. Inherent properties of SPIONs facilitating cancer diagnostics are elaborated. Magnetism-based “chemotherapeutics,” cell-sorting, and bioentity purification are emphasized. Emergence of ultrasmall SPIONs as a healthier option is summarized.
Collapse
|
9
|
Tailoring a new hyperbranched PEGylated dendrimer nano-polymer as a super-adsorbent for magnetic solid-phase extraction and determination of letrozole in biological and pharmaceutical samples. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
11
|
Ramezani AM, Yamini Y. Electrodeposition of poly-ethylenedioxythiophene-graphene oxide nanocomposite in a stainless steel tube for solid-phase microextraction of letrozole in plasma samples. J Sep Sci 2020; 43:4338-4346. [PMID: 32997397 DOI: 10.1002/jssc.202000838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/04/2023]
Abstract
Coated stainless steel was used as an in-tube solid-phase microextraction for the extraction of letrozole from plasma samples. The coating process on the inner surface of the stainless steel was conducted by a simple electrodeposition process. The coated composite was prepared from 3,4-ethylenedioxythiophene and graphene oxide. In this composite, graphene oxide acts as an anion dopant and sorbent. The coated nanostructured polymer was characterized using different techniques. The operational factors affecting the extraction process, including pH, adsorption, and desorption time, the recycling flow rate of the sample solution, sample volume, desorption solvent type and its volume, and ionic strength were optimized to achieve the best extraction efficiency of the analyte. The total extraction time including adsorption and desorption steps was about 15.0 min. The developed method demonstrated a linear range of 5.0-1500.0 μg/L with a limit of detection of 1.0 μg/L. The repeatability of the developed extraction approach in terms of intraday, interday, and fiber to fiber was attained in the range of 4.9-8.3%. After finding the optimal conditions, the potential of the described approach for letrozole quantitation was investigated in plasma samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Amir M Ramezani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Pacheco-Fernández I, Allgaier-Díaz DW, Mastellone G, Cagliero C, Díaz DD, Pino V. Biopolymers in sorbent-based microextraction methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Wang S, Niu R, Yang Y, Zhou X, Luo S, Zhang C, Wang Y. Aptamer-functionalized chitosan magnetic nanoparticles as a novel adsorbent for selective extraction of ochratoxin A. Int J Biol Macromol 2020; 153:583-590. [PMID: 32151722 DOI: 10.1016/j.ijbiomac.2020.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/19/2023]
Abstract
The preparation and application of aptamer-functionalized chitosan magnetic nanoparticles (Fe3O4@CTS@Apt nanoparticles) for selective extraction and determination ochratoxin A (OTA) were described in this study. Magnetic nanoparticle was synthesized by the coprecipitation method followed by coating with chitosan to improve its stability and biocompatibility. Further characterization was performed by scan electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and magnetic property measurement, and the results clearly indicated that the obtained magnetic chitosan nanoparticle was composed of magnetic core and chitosan coating layer. Aptamers specific to OTA were coupled onto the magnetic chitosan nanoparticles, and an extraction procedure was developed by optimization. When challenged with food samples fortified with OTA at 5 and 10 μg/kg, recoveries ranging from 91.3% to 99.1% with relative standard deviation (RSD) ≤ 4.2% were achieved by aptamer-functionalized magnetic extraction, which is very close to the results obtained by immunoaffinity chromatography extraction, indicating that this magnetic adsorbent could be hopefully used to achieve a fast and efficient extraction and detection of OTA in food samples.
Collapse
Affiliation(s)
- Shuwen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Niu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yamei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shilong Luo
- Sinograin Zhenjiang Grain & Oil Quality Testing Center Co., Ltd., Zhenjiang 212006, China
| | - Chen Zhang
- Sinograin Zhenjiang Grain & Oil Quality Testing Center Co., Ltd., Zhenjiang 212006, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Ren X, Luo Q, Zhou D, Zhang K, Gao D, Fu Q, Liu J, Xia Z, Wang L. Thermoresponsive chiral stationary phase functionalized with the copolymer of β-cyclodextrin and N-isopropylacrylamide for high performance liquid chromatography. J Chromatogr A 2020; 1618:460904. [PMID: 31992472 DOI: 10.1016/j.chroma.2020.460904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
Abstract
A novel chiral stationary phase (CSP) was prepared through the reaction of surface-initiated atom transfer radical polymerization (ATRP) by the copolymerization of thermoresponsive N-isopropylacrylamide (NIPAM) and β-cyclodextrin (β-CD) on the silica beads for high performance liquid chromatography (HPLC). X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were applied to characterize the surface property of modified silica. Thermoresponsive modulation for the effect on enantioselectivity were investigated with chiral reagents including 1-phenyl-1-propanol, styrene oxide, 2-phenylpropionic acid and commercial chiral drugs comprising ibuprofen and labetalol hydrochloride. The column efficiency was evaluated by chromatographic parameters including retention factor (k), selective factor (α), resolution (Rs), plate number (N) and peak tailing factor (Tf). The results showed that five chiral solutes could be separated on the prepared smart column. And the selectivity of these compounds could be modulated by regulating the column temperature. It was contributed to the thermoresponsive NIPAM assisting β-CD to separate these chiral compounds. These results indicated that the thermoresponsive CSP would be a potential tool for separation of hydrophilic and hydrophobic chiral drugs and this paper provided a novel method for chiral separation in the future.
Collapse
Affiliation(s)
- Xiujun Ren
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qiurong Luo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Di Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhining Xia
- School of Pharmacy, Chongqing University, Chongqing, 401331, China.
| | - Lujun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
15
|
Yassemi A, Kashanian S, Zhaleh H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol 2020; 25:397-407. [DOI: 10.1080/10837450.2019.1703739] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Institute of Health, Kermanshah University of medical science, Kermanshah, Iran
| |
Collapse
|
16
|
Karimidost S, Moniri E, Miralinaghi M. Thermodynamic and kinetic studies sorption of 5-fluorouracil onto single walled carbon nanotubes modified by chitosan. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0292-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Baimani N, Aberoomand Azar P, Waqif Husain S, Ahmad Panahi H, Mehramizi A. Ultrasensitive separation of methylprednisolone acetate using a photoresponsive molecularly imprinted polymer incorporated polyester dendrimer based on magnetic nanoparticles. J Sep Sci 2019; 42:1468-1476. [PMID: 30689289 DOI: 10.1002/jssc.201801093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high-yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water-soluble azobenzene involving 5-[(4, 3-(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross-linker. Through the evaluation of a series of features of spectroscopic and nano-structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo-responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.
Collapse
Affiliation(s)
- Nasim Baimani
- Department of Analytical Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Analytical Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Syed Waqif Husain
- Department of Analytical Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
18
|
Padash Hooshyar S, Mehrabian RZ, Ahmad Panahi H, Habibi Jouybari M, Jalilian H. Synthesis and characterization of PEGylated dendrimers based on magnetic nanoparticles for letrozole extraction and determination in body fluids and pharmaceutical samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Fresco-Cala B, Cárdenas S. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Anal Chim Acta 2018; 1031:15-27. [DOI: 10.1016/j.aca.2018.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022]
|
20
|
Jauregui R, Srinivasan S, Vojtech LN, Gammill HS, Chiu DT, Hladik F, Stayton PS, Lai JJ. Temperature-Responsive Magnetic Nanoparticles for Enabling Affinity Separation of Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33847-33856. [PMID: 30152229 PMCID: PMC6538933 DOI: 10.1021/acsami.8b09751] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Small magnetic nanoparticles that have surfaces decorated with stimuli-responsive polymers can be reversibly aggregated via a stimulus, such as temperature, to enable efficient and rapid biomarker separation. To fully realize the potential of these particles, the synthesis needs to be highly reproducible and scalable to large quantity. We have developed a new synthesis for temperature-responsive magnetic nanoparticles via an in situ co-precipitation process of Fe2+/Fe3+ salts at room temperature with poly(acrylic acid)- block-poly( N-isopropylacrylamide) diblock co-polymer template, synthesized via the reversible addition-fragmentation chain-transfer polymerization method. These particles were 56% polymer by weight with a 6.5:1 Fe/COOH ratio and demonstrated remarkable stability over a 2 month period. The hydrodynamic diameter remained constant at ∼28 nm with a consistent transition temperature of 34 °C, and the magnetic particle separation efficiency at 40 °C was ≥95% over the 2 month span. These properties were maintained for all large-scale synthesis batches. To demonstrate the practical utility of the stimuli-responsive magnetic nanoparticles, the particles were incorporated into a temperature-responsive binary reagent system and efficiently separated a model protein biomarker (mouse IgG) as well as purified extracellular vesicles derived from a human biofluid, seminal plasma. The ease of using these particles will prove beneficial for various biomedical applications.
Collapse
Affiliation(s)
- Ramon Jauregui
- Department of Bioengineering, Seattle, Washington 98195, United States
| | - Selvi Srinivasan
- Department of Bioengineering, Seattle, Washington 98195, United States
| | - Lucia N. Vojtech
- Department of Obstetrics and Gynecology, Seattle, Washington 98195, United States
| | - Hilary S. Gammill
- Department of Obstetrics and Gynecology, Seattle, Washington 98195, United States
| | - Daniel T. Chiu
- Department of Obstetrics and Gynecology, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology, Seattle, Washington 98195, United States
| | | | - James J. Lai
- Department of Bioengineering, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Lenart WR, Hore MJ. Structure–property relationships of polymer-grafted nanospheres for designing advanced nanocomposites. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2017.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Badawy MEI, Marei AESM, El-Nouby MAM. Preparation and characterization of chitosan-siloxane magnetic nanoparticles for the extraction of pesticides from water and determination by HPLC. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamed E. I. Badawy
- Department of Pesticide Chemistry and Technology; Faculty of Agriculture; Alexandria University; Alexandria Egypt
| | - Abd El-Salam M. Marei
- Department of Pesticide Chemistry and Technology; Faculty of Agriculture; Alexandria University; Alexandria Egypt
| | - Mahmoud A. M. El-Nouby
- Department of Pesticide Chemistry and Technology; Faculty of Agriculture; Alexandria University; Alexandria Egypt
| |
Collapse
|
23
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
24
|
Mohammadi Nodeh MK, Rahemi Haghighi M, Soltani S, Rashidi Nodeh H. Release and extraction of letrozole in blood plasma using resorcinol functionalized multi-walled carbon nanotube coupled with high-performance liquid chromatography. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1436069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - Sara Soltani
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Hamid Rashidi Nodeh
- Department of Food science & Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| |
Collapse
|
25
|
Shamekhi R, Ahmad Panahi H, Alaei HS, Moniri E. Functionalized superparamagnetic nanoparticles with a polymer containing β-cyclodextrin for the extraction of sertraline hydrochloride in biological samples. J Sep Sci 2017; 40:3690-3695. [DOI: 10.1002/jssc.201700454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/24/2017] [Accepted: 06/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Rahele Shamekhi
- Department of Chemistry, Central Tehran Branch; Islamic Azad University; Tehran Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch; Islamic Azad University; Tehran Iran
| | - Haniyeh Sadat Alaei
- Department of Chemistry, Central Tehran Branch; Islamic Azad University; Tehran Iran
| | - Elham Moniri
- Department of Chemistry, Varamin (Pishva) Branch; Islamic Azad University; Varamin Iran
| |
Collapse
|