1
|
Lee J, Gyu Nam T, Choi HK, Won Jang H. Determination of toxic α-dicarbonyl compounds in sesame oils using dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry. Food Chem X 2024; 22:101302. [PMID: 38559443 PMCID: PMC10978481 DOI: 10.1016/j.fochx.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Glyoxal, methylglyoxal, and diacetyl are toxic α-dicarbonyl compounds found in heat-processed foods, including edible oils. Dispersive liquid-liquid microextraction was combined with gas chromatography mass spectrometry to determine the glyoxal, methylglyoxal, and diacetyl contents in sesame oil. Chloroform and methanol were selected as the optimal extraction and dispersive solvents, respectively. The maximum derivatization efficiency was obtained using 500 µg of the derivatization agent, o-phenylenediamine. The derivatization of glyoxal was completed in 1 h, whereas those of methylglyoxal and diacetyl were completed immediately. The optimized method was validated, and was found to exhibit a good linearity, recovery, intraday repeatability, and interday reproducibility. The α-dicarbonyl compound concentrations in the oils were dependent on the roasting temperature. The sesame oil concentrates contained 0-175.4, 0-990.5, and 0-220.9 ng g-1 of glyoxal, methylglyoxal, and diacetyl, respectively. For the perilla oils, the respective concentrations were 0-96.4, 0-410.8, and 0-197.5 ng g-1.
Collapse
Affiliation(s)
- Jangho Lee
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hae Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, 55, 76 ga-gil, Dobong-ro, Gangbuk-gu, Seoul 01133, Republic of Korea
| |
Collapse
|
2
|
Yan K, Ding Y, Liu X, Liu J, Zhang J. Portable self-powered electrochemical aptasensing platform for ratiometric detection of mycotoxins based on multichannel photofuel cell. Anal Chim Acta 2024; 1299:342442. [PMID: 38499422 DOI: 10.1016/j.aca.2024.342442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Self-powered electrochemical sensors based on photofuel cells have attracted considerable research interest because their unique advantage of not requiring an external electric source, but their application in portable and multiplexed targets assay is limited by the inherent mechanism. In this work, a portable self-powered sensor constructed with multichannel photofuel cells was developed for the ratiometric detection of mycotoxins, namely ochratoxin A (OTA) and patulin (PAT). The spatially resolved CdS/Bi2S3-modified photoanodes and a shared Prussian Blue cathode were integrated on an etched indium-tin oxide slide to fabricate the multichannel photofuel cell. The aptamers of OTA and PAT were covalently bonded to individual photoanode regions to build sensitive interfaces, and the specific recognition of analytes impaired the output performance of constructed PFC. Accordingly, ratiometric sensing of OTA and PAT was achieved by utilizing the output performance of a control PFC as a reference signal. This approach effectively eliminates the impact of light intensity on the accuracy of the detection. Under the optimal conditions, the proposed sensing chip exhibited linear ranges of 2.0-1000 nM and 5.0-500 nM for OTA and PAT, respectively. The detection limits (3 S/N) were determined to be 0.25 nM for OTA and 0.27 nM for PAT. The developed ratiometric sensing method demonstrated good selectivity and stability in the simultaneous detection of OTA and PAT. It was successfully utilized for the analysis of OTA and PAT real samples. This work provides a new perspective for construction of portable and ratiometric self-powered sensing platform.
Collapse
Affiliation(s)
- Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China; Guangdong HUST Industrial Technology Research Institute, Dongguan, 523808, China
| | - Yifan Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Xuqiao Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jianqiao Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| |
Collapse
|
3
|
Dasí-Navarro N, Lozano M, Llop S, Esplugues A, Cimbalo A, Font G, Manyes L, Mañes J, Vila-Donat P. Development and Validation of LC-Q-TOF-MS Methodology to Determine Mycotoxin Biomarkers in Human Urine. Toxins (Basel) 2022; 14:651. [PMID: 36287920 PMCID: PMC9612178 DOI: 10.3390/toxins14100651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin contamination of foodstuffs is a health concern worldwide and monitoring human exposure to mycotoxins is a key concern. Most mycotoxins and their metabolites are excreted in urine, but a reliable detection method is required, considering the low levels present in this biological sample. The aim of this work is to validate a sensitive methodology capable of simultaneously determining ten targeted mycotoxins as well as detecting untargeted ones by using Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry (LC-Q-TOF-MS). The targeted mycotoxins were: enniatin A, B, A1, and B1, beauvericine, aflatoxin B1, B2, G1 and G2, and ochratoxin A. Several extraction procedures such as liquid-liquid extraction, dilute and shoot, and QuEChERS were assessed. Finally, a modified simple QuEChERS extraction method was selected. Creatinine adjustment and matrix-matched calibration curves are required. The limit of detection and limit of quantification values ranged from 0.1 to 1.5 and from 0.3 to 5 ng/mL, respectively. Recoveries achieved were higher than 65% for all mycotoxins. Later, the method was applied to 100 samples of women's urine to confirm the applicability and determine their internal exposure. The untargeted mycotoxins most found were trichothecenes, zearalenones, and ochratoxins.
Collapse
Affiliation(s)
- Nuria Dasí-Navarro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Karsauliya K, Yahavi C, Pandey A, Bhateria M, Sonker AK, Pandey H, Sharma M, Singh SP. Co-occurrence of mycotoxins: A review on bioanalytical methods for simultaneous analysis in human biological samples, mixture toxicity and risk assessment strategies. Toxicon 2022; 218:25-39. [PMID: 36049662 DOI: 10.1016/j.toxicon.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Mycotoxins are the toxic chemical substances that are produced by various fungal species and some of these are harmful to humans. Mycotoxins are ubiquitous in nature and humans could be exposed to multiple mycotoxins simultaneously. Unfortunately, exposure to mixed mycotoxins is not very well studied. Various studies have demonstrated the capacity of mycotoxins to show synergistic effect in the presence of other mycotoxins, thus, increasing the risk of toxicity. Hence, it is important to monitor mixed mycotoxins in human biological samples which would serve as a crucial information for risk assessment. Through this review paper, we aim to summarize the mixture toxicity of mycotoxins and the various bio-analytical techniques that are being used for the simultaneous analysis of mixed mycotoxins in human biological samples. Different sample preparation and clean-up techniques employed till date for eliminating the interferences from human biological samples without affecting the analyses of the mycotoxins are also discussed. Further, a brief introduction of risk assessment strategies that have been or could be adopted for multiple mycotoxin risk assessments is also mentioned. To the best of our knowledge, this is the first review that focuses solely on the occurrence of multiple mycotoxins in human biological samples as well as their risk assessment strategies.
Collapse
Affiliation(s)
- Kajal Karsauliya
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - C Yahavi
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anushka Pandey
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manisha Bhateria
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ashish Kumar Sonker
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harshita Pandey
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sheelendra Pratap Singh
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Rapid Detection of Deoxynivalenol in Dry Pasta Using a Label-Free Immunosensor. BIOSENSORS 2022; 12:bios12040240. [PMID: 35448300 PMCID: PMC9027790 DOI: 10.3390/bios12040240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
This work focused on the development and optimization of an impedimetric label-free immunosensor for detecting deoxynivalenol (DON). A monoclonal antibody for DON detection was immobilized on a modified gold electrode with a cysteamine layer and polyamidoamine (PAMAM) dendrimers. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to monitor the layer-by-layer development of the immunosensor design, while electrochemical impedance spectroscopy and differential pulse voltammetry were employed to investigate the antigen/antibody interaction. The PAMAM dendrimers, allowing to immobilize a large number of monoclonal antibodies, permitted reaching, through the DPV technique, a high sensitivity and a low limit of detection equal to 1 ppb. The evaluation of the possible reuse of the immunosensors highlighted a decrease in the analytical performances of the regenerated immunosensors. After evaluating the matrix effect, the developed immunosensor was used to quantify DON in pasta samples spiked with a known mycotoxin concentration. Taking into consideration the DON extraction procedure used for the pasta samples and the matrix effect related to the sample, the proposed immunosensor showed a limit of detection of 50 ppb, which is lower than the maximum residual limit imposed by European Regulation for DON in dry pasta (750 ppb).
Collapse
|
6
|
Stability of a calibrant as certified reference material for determination of trans-zearalenone by high performance liquid chromatography-diode array detection-triple quadrupole tandem mass spectrometry. Anal Bioanal Chem 2022; 414:3631-3641. [PMID: 35305116 DOI: 10.1007/s00216-022-04002-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
In this study, a trans-zearalenone (trans-ZEN) calibrant in acetonitrile as certified reference material (CRM) was prepared and intensively investigated the stability by high performance liquid chromatography coupled diode array detection and triple quadrupole tandem mass spectrometry (HPLC-DAD-MS/MS). The photoisomerization and degradation of main component and related impurities in trans-ZEN calibrant CRM was studied in detail under different light conditions such as UV light (254 nm), sunlight, and visible light. Trans-ZEN in acetonitrile was confirmed a significant shift toward cis-ZEN up to a 52% cis-isomerization rate after exposing to UV light (254 nm) in transparent ampule for 1 day. The unsaturated double bond photosensitive groups of trans-ZEN and cis-ZEN will further undergo photoreaction to generate more isomers and related products with the increase of UV irradiation time. The calibrant in amber ampules was relatively stable after exposing to sunlight for 28 days, with only 0.35% cis-isomer observed. The results indicated that trans-ZEN solution calibrant should be packed in amber ampules to avoid UV rays. Thermal stability test exhibited this calibrant was stable over 6 weeks even at 60 °C. Trans-ZEN was found to be more stable in acetonitrile than in methanol since an unknown impurity was observed in methanol after 6 weeks placed at 25 °C. The stability study of trans-ZEN calibrant provided a basis for the usage, storage, and transportation of the CRM. A concentration and expanded uncertainty of the trans-ZEN calibrant CRM of 11.01 ± 0.18 µg/mL was developed.
Collapse
|
7
|
Liu H, Xuan Z, Ye J, Chen J, Wang M, Freitag S, Krska R, Liu Z, Li L, Wu Y, Wang S. An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis. Toxins (Basel) 2022; 14:93. [PMID: 35202122 PMCID: PMC8879917 DOI: 10.3390/toxins14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
An immunoaffinity magnetic beads (IMBs) based automatic pretreatment method was developed for the quantitative analysis of deoxynivalenol (DON) by ultra-performance liquid chromatography and ultraviolet detector (UPLC-UV). First, N-hydroxysuccinimide-terminated magnetic beads (NHS-MBs) with good magnetic responsivity and dispersibility were synthesized and characterized by optical microscopy, scanning electron microscopy (SEM), and laser diffraction-based particle size analyzer. Then, the amino groups of anti-DON monoclonal antibody (mAb) and the NHS groups of NHS-MBs were linked by covalent bonds to prepare IMB, without any activation reagent. The essential factors affecting the binding and elution of DON were meticulously tuned. Under optimal conditions, DON could be extracted from a real sample and eluted from IMB by water, enabling environmentally friendly and green analysis. Hence, there was no need for dilution or evaporation prior to UPLC-UV analysis. DON in 20 samples could be purified and concentrated within 30 min by the mycotoxin automated purification instrument (MAPI), allowing for automated, green, high-throughput and simple clean-up. Recoveries at four distinct spiking levels in corn and wheat ranged from 92.0% to 109.5% with good relative standard deviations (RSD, 2.1-7.0%). Comparing the test results of IAC and IMB in commercial samples demonstrated the reliability and superiority of IMB for quantitatively analyzing massive samples.
Collapse
Affiliation(s)
- Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Stephan Freitag
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (S.F.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (S.F.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, UK
| | - Zehuan Liu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (H.L.); (Z.X.); (J.C.); (Z.L.); (L.L.); (Y.W.)
| |
Collapse
|
8
|
High-Throughput Determination of Major Mycotoxins with Human Health Concerns in Urine by LC-Q TOF MS and Its Application to an Exposure Study. Toxins (Basel) 2022; 14:toxins14010042. [PMID: 35051019 PMCID: PMC8780005 DOI: 10.3390/toxins14010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 01/10/2023] Open
Abstract
Human biomonitoring constitutes a suitable tool to assess exposure to toxins overcoming the disadvantages of traditional methods. Urine constitutes an accessible biological matrix in biomonitoring studies. Mycotoxins are secondary metabolites produced naturally by filamentous fungi that produce a wide range of adverse health effects. Thus, the determination of urinary mycotoxin levels is a useful tool for assessing the individual exposure to these food contaminants. In this study, a suitable methodology has been developed to evaluate the presence of aflatoxin B2 (AFB2), aflatoxin (AFG2), ochratoxin A (OTA), ochratoxin B (OTB), zearalenone (ZEA), and α-zearalenol (α-ZOL) in urine samples as exposure biomarkers. For this purpose, different extraction procedures, namely, the Solid Phase Extraction (SPE); Dispersive Liquid–Liquid Microextraction (DLLME); and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were assessed, followed by Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry with Electrospray Ionization (LC-ESI-QTOF-MS) determination. Then, the proposed methodology was applied to determine mycotoxin concentrations in 56 human urine samples from volunteers and to estimate the potential risk of exposure. The results obtained revealed that 55% of human urine samples analyzed resulted positive for at least one mycotoxin. Among all studied mycotoxins, only AFB2, AFG2, and OTB were detected with incidences of 32, 41, and 9%, respectively, and levels in the range from <LOQ to 69.42 µg/L. Risk assessment revealed a potential health risk, obtaining MoE values < 10,000. However, it should be highlighted that few samples were contaminated, and that more data about mycotoxin excretion rates and their BMDL10 values are needed for a more accurate risk assessment.
Collapse
|
9
|
Zheng B, Yu Y, Wang M, Wang J, Xu H. Qualitative-quantitative analysis of multi-mycotoxin in milk using the high-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method. J Sep Sci 2021; 45:432-440. [PMID: 34716661 DOI: 10.1002/jssc.202100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022]
Abstract
High-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method was established for the qualitative and quantitative detections of 20 mycotoxins in milk. The linear range of this method was 0.01-10 μg/L and the correlation coefficients were all greater than or equal to 0.9933. At three levels of addition, the spiked recoveries ranged from 80.00 to 112.50%, relative standard deviations were 2.67-14.97%, limits of quantitation were 0.02-4.00 μg/kg, and limits of detection were 0.007-1.300 μg/kg. This developed procedure for the identification and quantitation of mycotoxins provided prospective support for quality regulation.
Collapse
Affiliation(s)
- Baohua Zheng
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Yunhan Yu
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Meiling Wang
- China Certification and Inspection Group Hunan Co. Ltd., Changsha, P. R. China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Huilan Xu
- Xiangya School of Public Health, Central South University, Changsha, P. R. China
| |
Collapse
|
10
|
Sun J, Li W, Zhu X, Jiao S, Chang Y, Wang S, Dai S, Xu R, Dou M, Li Q, Li J. A Novel Multiplex Mycotoxin Surface-Enhanced Raman Spectroscopy Immunoassay Using Functional Gold Nanotags on a Silica Photonic Crystal Microsphere Biochip. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11494-11501. [PMID: 34530613 DOI: 10.1021/acs.jafc.1c03469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel multiplex mycotoxin surface-enhanced Raman spectroscopy (SERS) immunoassay was established for the first time on different artificial antigen-modified silica photonic crystal microspheres (SPCMs), which can be integrated into a biochip array to achieve multiplex detection using corresponding antibody-functionalized gold nanoparticles (AuNPs) as the SERS nanotag. The unique optical structure of SPCMs is helpful to find the detection spots easily, accommodate a large amount of probe molecules, and enhance the Raman signal intensity. Such enhancement was confirmed by the simulation result, showing the electric field enhancing effect in SPCMs with AuNPs being 7 times. A competitive SERS immunoassay was established using antigen-modified SPCMs and mycotoxins to compete for binding antibody-functionalized SERS nanotags, displaying broad linear detection ranges of 0.001-0.1 ng/mL for aflatoxin B1 (AFB1), 0.01-10 ng/mL for ochratoxin A (OTA), and 0.001-0.1 ng/mL for zearalenone (ZEN) and low detection limits of 0.82 pg/mL for AFB1, 1.43 pg/mL for OTA, and 1.00 pg/mL for ZEN. In the spiked cereal samples, recovery rates of the method were measured in the range of 70.35-118.04% for the three mycotoxins, which was in agreement with that of the traditional enzyme-linked immunosorbent assay method. The SERS immunoassay for mycotoxin detection also showed high specificity and good repeatability and reproducibility. The new microsphere-based SERS immunoassay biochip only requires a one-step reaction and overcomes the disadvantages of fluorescence and chemiluminescence background signals. The work paves the way for further developing SERS-based microsphere suspension arrays for new targets.
Collapse
Affiliation(s)
- Jialong Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Xuerui Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunwei Chang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Cao M, Li Q, Zhang Y, Wang J, Zhai H, Ma J, Sun L, Wan X, Tang Y. Determination of Deoxynivalenol and Its Derivative in Corn Flour and Wheat Flour Using Automated On-line Solid-Phase Extraction Combined with LC-MS/MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:248-254. [PMID: 32591852 DOI: 10.1007/s00128-020-02920-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
An automated on-line solid-phase extraction (SPE) combined with LC-MS/MS method was developed for determination of deoxynivalenol (DON), 3-acetyl-DON and 15-acetyl-DON in corn flour and wheat flour samples. The extraction solvent of the samples was injected into the automated on-line SPE system to remove matrix interference. After washing step, the targets were eluted from the SPE cartridge into liquid chromatography (LC) column. Several SPE parameters including injection volume, elution volume and eluting flow rate were assessed and optimized. Method validation was evaluated and good linearity was obtained (R2 > 99%) with the limit of detection of 0.1-0.2 μg/kg. Recoveries were evaluated in spiked corn flour and wheat flour samples at three concentrations and the values ranged from 86.5% to 99.7%. The benefit of the present method with automated on-line SPE system is the ability to inject directly pure extracts into LC-MS/MS, offering faster analyses and improving analysis efficiency.
Collapse
Affiliation(s)
- Meirong Cao
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiang Li
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Juan Wang
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Hongwen Zhai
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Junmei Ma
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Lei Sun
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China
| | - Xianghong Wan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
12
|
Assessment of Human Exposure to Deoxynivalenol, Ochratoxin A, Zearalenone and Their Metabolites Biomarker in Urine Samples Using LC-ESI-qTOF. Toxins (Basel) 2021; 13:toxins13080530. [PMID: 34437401 PMCID: PMC8402433 DOI: 10.3390/toxins13080530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Human are exposed to a wide range of mycotoxins through dietary food intake, including processed food. Even most of the mycotoxin exposure assessment studies are based on analysis of foodstuffs, and evaluation of dietary intake through food consumption patterns and human biomonitoring methods are rising as a reliable alternative to approach the individual exposures, overcoming the limitations of the indirect dietary assessment. In this study, human urine samples were analyzed, seeking the presence of deoxynivalenol (DON), ochratoxin A (OTA), zearalenone (ZEA), and their metabolites. For this purpose, 40 urine samples from female and male adult residents in the city of Valencia (Spain) were evaluated by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-ESI-qTOF) after salting-out liquid–liquid extraction. Analytical data showed that 72.5% of analyzed samples were contaminated by at least one mycotoxin at variable levels. The most prevalent mycotoxins were de-epoxy DON (DOM-1) (53%), ZEA (40%), and α-zearalenol (αZOL) (43%), while OTA was only detected in one sample. The mean concentrations in positive samples were DON (9.07 ng/mL), DOM-1 (20.28 ng/mL), ZEA (6.70 ng/mL), ZEA-14 glucoside (ZEA-14-Glc) (12.43 ng/mL), αZOL (27.44 ng/mL), αZOL-14 glucoside (αZOL-14-Glc) (12.84 ng/mL), and OTA (11.73 ng/mL). Finally, probable daily intakes (PDIs) were calculated and compared with the established tolerable daily intakes (TDIs) to estimate the potential risk of exposure to the studied mycotoxins. The calculated PDI was below the TDI value established for DON in both female and male adults, reaching a percentage up to 30%; however, this percentage increased up to 92% considering total DON (DON + DOM-1). On the other hand, the PDI obtained for ZEA and its metabolites were higher than the TDI value fixed, but the low urine excretion rate (10%) considered should be highlighted. Finally, the PDI calculated in the detected positive sample for OTA exceeded the TDI value. The findings of the present study confirm the presence of the studied mycotoxins and their metabolites as some of the most prevalent in urine.
Collapse
|
13
|
Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins (Basel) 2021; 13:toxins13070499. [PMID: 34357971 PMCID: PMC8310349 DOI: 10.3390/toxins13070499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed.
Collapse
|
14
|
Qin M, Zhang X, Zhao X, Song Y, Zhang J, Xia X, Han Q. Complementary chain competition and fluorescence quenching detection of Deoxynivalenol and analytical applications using a novel aptamer. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1886176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mingwei Qin
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaomeng Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xinyue Zhao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xueshan Xia
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
15
|
Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13:113. [PMID: 33546479 PMCID: PMC7913644 DOI: 10.3390/toxins13020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.
Collapse
Affiliation(s)
- Kristina Habschied
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Gabriella Kanižai Šarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vinko Krstanović
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Krešimir Mastanjević
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| |
Collapse
|
16
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Biomonitoring of Enniatin B1 and Its Phase I Metabolites in Human Urine: First Large-Scale Study. Toxins (Basel) 2020; 12:toxins12060415. [PMID: 32580411 PMCID: PMC7354432 DOI: 10.3390/toxins12060415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Enniatins (Enns) are mycotoxins produced by Fusarium spp. which are a fungus widely spread throughout cereals and cereal-based products. Among all the identified enniatins, Enn B1 stands as one of the most prevalent analogues in cereals in Europe. Hence, the aim of this study was to evaluate for the first time the presence of Enn B1 and its phase I metabolites in 300 human urine samples using an ultrahigh-performance liquid chromatography high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) methodology. Enn B1 was detected in 94.3% of samples ranging from 0.007 to 0.429 ng/mL (mean value: 0.065 ng/mL). In accordance with previous in vitro and in vivo analysis, hydroxylated metabolites (78.0% samples) and carbonylated metabolites (66.0% samples) were tentatively identified as the major products. Results from this biomonitoring study point to a frequent intake of Enn B1 in the studied population, suggesting that in-depth toxicological studies are needed in order to understand the potential effects in humans.
Collapse
|
18
|
Denghel H, Göen T. Determination of the UV absorber 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328) and its oxidative metabolites in human urine by dispersive liquid-liquid microextraction and GC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122071. [DOI: 10.1016/j.jchromb.2020.122071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
|
19
|
|
20
|
Tegegne WA, Mekonnen ML, Beyene AB, Su WN, Hwang BJ. Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@polydopamine substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117940. [PMID: 31884403 DOI: 10.1016/j.saa.2019.117940] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Deoxynivalenol (DON) is one of the trichothecene mycotoxin, a frequent contaminant of pig feed. Surface-enhanced Raman spectroscopy (SERS) is a fast and ultrasensitive analytical tool for point-of-need applications to identify molecular fingerprint structures at low concentrations. However, the use of SERS for analyte detection with flexible and robust structures is still challenging. Herein, we have developed core-shell silver nanocubes coated with polydopamine (Ag NCs@PDA) SERS substrate for the quantitative detection of deoxynivalenol in pig feed. The Ag NCs@PDA substrate with ultrathin (1.6 nm) PDA shell thickness enhances the absorption of DON via hydrogen bonding and π-π stacking interactions, as well as improves the stability of the substrate. The results of the SERS showed a high analytical enhancement factor (AEF) of 1.82 × 107 and a detection limit (LOD) as low as femtomolar range (0.82 fM). The LOD of the Ag NCs@PDA substrate for DON detection is 1.8 times lower than the bare Ag NCs. Furthermore, the Ag NCs@PDA substrate is stable which retains 88.24% of the original Raman intensity after storage for three months. The obtained results demonstrate that the Ag NCs@PDA substrates can realize label-free detection of deoxynivalenol mycotoxin with high sensitivity, reproducibility, and stability. Our work proposes a low-cost method for the designing of the SERS sensing device, and has great potential to be applied in food safety, biomedical sciences, and environmental monitoring.
Collapse
Affiliation(s)
- Wodaje Addis Tegegne
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Menbere Leul Mekonnen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Agaje Bedemo Beyene
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Nein Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
21
|
Vidal A, Bouzaghnane N, De Saeger S, De Boevre M. Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins (Basel) 2020; 12:E139. [PMID: 32102452 PMCID: PMC7076754 DOI: 10.3390/toxins12020139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Deoxynivalenol is one of the most ubiquitous mycotoxins in the Western diet through its presence in cereals and cereal products. A vast amount of studies indicate the worrying level of exposure to this toxin, while even high percentages of the population exceed the tolerable daily intake. To evaluate and assess dietary exposure, analysis of urinary levels of deoxynivalenol and its glucuronides has been proposed as a reliable methodology. An indirect preliminary method was used based on the cleavage of deoxynivalenol glucuronides through the use of enzymes (β-glucuronidase) and subsequent determination of "total deoxynivalenol" (sum of free and released mycotoxins by hydrolysis). Next, a direct procedure for quantification of deoxynivalenol-3-glucuronide and deoxynivalenol-15-glucuronide was developed. As deoxynivalenol glucuronides reference standards are not commercially available, the indirect method is widely applied. However, to not underestimate the total deoxynivalenol exposure in urine, the direct and indirect methodologies need to be compared. Urinary samples (n = 96) with a confirmed presence of deoxynivalenol and/or deoxynivalenol glucuronides were analysed using both approaches. The indirect method clarified that not all deoxynivalenol glucuronides were transformed to free deoxynivalenol during enzymatic treatment, causing an underestimation of total deoxynivalenol. This short communication concludes on the application of direct or indirect assessment of urinary deoxynivalenol.
Collapse
Affiliation(s)
- Arnau Vidal
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium (S.D.S.); (M.D.B.)
| | | | | | | |
Collapse
|
22
|
Slobodchikova I, Sivakumar R, Rahman MS, Vuckovic D. Characterization of Phase I and Glucuronide Phase II Metabolites of 17 Mycotoxins Using Liquid Chromatography-High-Resolution Mass Spectrometry. Toxins (Basel) 2019; 11:E433. [PMID: 31344861 PMCID: PMC6723440 DOI: 10.3390/toxins11080433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Routine mycotoxin biomonitoring methods do not include many mycotoxin phase I and phase II metabolites, which may significantly underestimate mycotoxin exposure especially for heavily metabolized mycotoxins. Additional research efforts are also needed to measure metabolites in vivo after exposure and to establish which mycotoxin metabolites should be prioritized for the inclusion during large-scale biomonitoring efforts. The objective of this study was to perform human in vitro microsomal incubations of 17 mycotoxins and systematically characterize all resulting metabolites using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The results obtained were then used to build a comprehensive LC-MS library and expand a validated 17-mycotoxin method for exposure monitoring to screening of additional 188 metabolites, including 100 metabolites reported for the first time. The final method represents one of the most comprehensive LC-HRMS methods for mycotoxin biomonitoring or metabolism/fate studies.
Collapse
Affiliation(s)
- Irina Slobodchikova
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
- Centre for Biological Applications of Mass Spectrometry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Reajean Sivakumar
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Md Samiur Rahman
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada.
- Centre for Biological Applications of Mass Spectrometry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
23
|
Towards A New Approach for the Description of Cyclo⁻2,4-Dihydroxybenzoate, A Substance Which Effectively Mimics Zearalenone in Imprinted Polymers Designed for Analyzing Selected Mycotoxins in Urine. Int J Mol Sci 2019; 20:ijms20071588. [PMID: 30934909 PMCID: PMC6479585 DOI: 10.3390/ijms20071588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
A method of purifying cyclododecyl 2,4-dihydroxybenzoate as a potential replacement template molecule for preparation of molecularly-imprinted polymers for isolation of zearalenone in urine was developed. Full physicochemical characteristics of cyclododecyl 2,4-dihydroxybenzoate for the first time included crystallographic analysis and molecular modelling, which made possible the determination of the similarity between the cyclododecyl 2,4-dihydroxybenzoate and zearalenone molecules. The obtained molecularly-imprinted polymers show very high in vitro selectivity towards zearalenone due to specific interactions (e.g., hydrogen bonding, molecular recognition interaction). The achieved extraction recovery exceeds 94% at the tested concentration levels (20–500 ng·mL−1) with a relative standard deviation below 2%. Immunosorbents were found to have lower recoveries (below 92.5%) and RSD value between 2 and 4% for higher concentrations of the studied substance (400 ng·mL−1).
Collapse
|
24
|
Lee Y, Shibamoto T, Ha S, Ha J, Lee J, Jang HW. Determination of glyoxal, methylglyoxal, and diacetyl in red ginseng products using dispersive liquid–liquid microextraction coupled with GC–MS. J Sep Sci 2019; 42:1230-1239. [DOI: 10.1002/jssc.201800841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/20/2018] [Accepted: 01/05/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Yun‐Yeol Lee
- Korea Food Research Institute Jeollabuk‐do Republic of Korea
| | - Takayuki Shibamoto
- Department of Environmental ToxicologyUniversity of California Davis CA USA
| | - Sang‐Do Ha
- School of Food Science and TechnologyChung‐Ang University Anseong‐si Gyeonggi‐do Republic of Korea
| | - Jaeho Ha
- World Institute of Kimchi Gwangju Republic of Korea
| | - Jangho Lee
- Korea Food Research Institute Jeollabuk‐do Republic of Korea
- Department of Food BiotechnologyUniversity of Science and Technology Daejeon Republic of Korea
| | - Hae Won Jang
- Korea Food Research Institute Jeollabuk‐do Republic of Korea
| |
Collapse
|
25
|
Kong D, Wu X, Li Y, Liu L, Song S, Zheng Q, Kuang H, Xu C. Ultrasensitive and eco-friendly immunoassays based monoclonal antibody for detection of deoxynivalenol in cereal and feed samples. Food Chem 2019; 270:130-137. [DOI: 10.1016/j.foodchem.2018.07.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 05/29/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
|
26
|
Li Y, Sun M, Mao X, You Y, Gao Y, Yang J, Wu Y. Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway. Toxins (Basel) 2018; 10:E481. [PMID: 30463254 PMCID: PMC6266055 DOI: 10.3390/toxins10110481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
In order to investigated current occurrence of major mycotoxins in dietary kelp in Shandong Province in Northern China, a reliable, sensitive, and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of the 7 most frequent mycotoxins, including 3-acetoxy deoxynivalenol (3AcDON), 15-acetoxy deoxynivalenol (15AcDON), Deoxynivalenol (DON), Fusarenon-X (F-X), Nivalenol (NIV), T-2 toxin (T-2), and Zearalenone (ZEA). Based on optimized pretreatment and chromatographic and mass spectrometry conditions, these target analytes could be monitored with mean recoveries from 72.59~107.34%, with intra⁻day RSD < 9.21%, inter⁻day RSD < 9.09%, LOD < 5.55 μg kg-1, and LOQ < 18.5 μg kg-1. Approximately 43 kelp samples were detected, 3AcDON/15AcDON ranged from 15.3 to 162.5 μg kg-1 with positive rate of 86% in Shandong Province in Northern China. Considering there were no related investigations about mycotoxin contamination in kelp, the high contamination rate of 3AcDON/15AcDON in kelp showed a neglected mycotoxin exposure pathway, which might lead to high dietary exposure risk to consumers.
Collapse
Affiliation(s)
- Yanshen Li
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Mingxue Sun
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Xin Mao
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yanli You
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yonglin Gao
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Jianrong Yang
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
27
|
The role of mycotoxins in the human exposome: Application of mycotoxin biomarkers in exposome-health studies. Food Chem Toxicol 2018; 121:504-518. [DOI: 10.1016/j.fct.2018.09.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
|
28
|
Waraksa E, Woźniak MK, Kłodzińska E, Wrzesień R, Bobrowska-Korczak B, Namieśnik J. A rapid and sensitive method for the quantitative analysis of ibuprofen and its metabolites in equine urine samples by gas chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:3881-3891. [DOI: 10.1002/jssc.201800614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Emilia Waraksa
- Faculty of Chemistry; Department of Analytical Chemistry; Gdańsk University of Technology; Gdańsk Poland
- Department of Analytical Chemistry and Instrumental Analysis; Institute of Sport - National Research Institute; Warsaw Poland
| | - Mateusz Kacper Woźniak
- Faculty of Chemistry; Department of Analytical Chemistry; Gdańsk University of Technology; Gdańsk Poland
| | - Ewa Kłodzińska
- Department of Analytical Chemistry and Instrumental Analysis; Institute of Sport - National Research Institute; Warsaw Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animal; Medical University of Warsaw; Warsaw Poland
| | | | - Jacek Namieśnik
- Faculty of Chemistry; Department of Analytical Chemistry; Gdańsk University of Technology; Gdańsk Poland
| |
Collapse
|
29
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Horváth Z, Levorato S, Edler L. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J 2018; 16:e05367. [PMID: 32626015 PMCID: PMC7009455 DOI: 10.2903/j.efsa.2018.5367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
4,15‐Diacetoxyscirpenol (DAS) is a mycotoxin primarily produced by Fusarium fungi and occurring predominantly in cereal grains. As requested by the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed the risk of DAS to human and animal health related to its presence in food and feed. Very limited information was available on toxicity and on toxicokinetics in experimental and farm animals. Due to the limitations in the available data set, human acute and chronic health‐based guidance values (HBGV) were established based on data obtained in clinical trials of DAS as an anticancer agent (anguidine) after intravenous administration to cancer patients. The CONTAM Panel considered these data as informative for the hazard characterisation of DAS after oral exposure. The main adverse effects after acute and repeated exposure were emesis, with a no‐observed‐adverse‐effect level (NOAEL) of 32 μg DAS/kg body weight (bw), and haematotoxicity, with a NOAEL of 65 μg DAS/kg bw, respectively. An acute reference dose (ARfD) of 3.2 μg DAS/kg bw and a tolerable daily intake (TDI) of 0.65 μg DAS/kg bw were established. Based on over 15,000 occurrence data, the highest acute and chronic dietary exposures were estimated to be 0.8 and 0.49 μg DAS/kg bw per day, respectively, and were not of health concern for humans. The limited information for poultry, pigs and dogs indicated a low risk for these animals at the estimated DAS exposure levels under current feeding practices, with the possible exception of fattening chicken. Assuming similar or lower sensitivity than for poultry, the risk was considered overall low for other farm and companion animal species for which no toxicity data were available. In consideration of the similarities of several trichothecenes and the likelihood of co‐exposure via food and feed, it could be appropriate to perform a cumulative risk assessment for this group of substances.
Collapse
|
30
|
Lee J, Lee Y, Nam TG, Jang HW. Dispersive liquid-liquid microextraction with in situ derivatization coupled with gas chromatography and mass spectrometry for the determination of 4-methylimidazole in red ginseng products containing caramel colors. J Sep Sci 2018; 41:3415-3423. [PMID: 30022588 DOI: 10.1002/jssc.201800559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 01/24/2023]
Abstract
A rapid analytical method was developed for the determination of 4-methylimidazole from red ginseng products containing caramel colors by using dispersive liquid-liquid microextraction with in situ derivatization followed by gas chromatography with mass spectrometry. Chloroform and acetonitrile were selected as the extraction and dispersive solvents, and based on the extraction efficiency, their optimum volumes were 200 and 100 μL, respectively. The optimum volumes of the derivatizing agent (isobutyl chloroformate) and catalyst (pyridine), pH, and concentration of NaCl in the sample solution were determined to be 25 and 100 μL, pH 7.6, and 0% w/v, respectively. Validation of the optimized method showed good linearity (R2 > 0.999), accuracy (≥89.86%), intra- (≤6.70%) and interday (≤4.17%) repeatability, limit of detection (0.96 μg/L), and limit of quantification (5.79 μg/L). The validated method was applied to quantify 4-methylimidazole in red ginseng juices and concentrates, 4-methylimidazole was only found in red ginseng juices containing caramel colorant (42.91-2863.4 μg/L) and detected in red ginseng concentrates containing >1% caramel colorant.
Collapse
Affiliation(s)
- Jangho Lee
- 245, Nongsaengmyeong-ro, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.,Department of Food Biotechnology, 217, Gajeong-ro, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yunyeol Lee
- 245, Nongsaengmyeong-ro, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Tae Gyu Nam
- 245, Nongsaengmyeong-ro, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hae Won Jang
- 245, Nongsaengmyeong-ro, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
31
|
Rodríguez-Carrasco Y, Izzo L, Gaspari A, Graziani G, Mañes J, Ritieni A. Urinary levels of enniatin B and its phase I metabolites: First human pilot biomonitoring study. Food Chem Toxicol 2018; 118:454-459. [PMID: 29802944 DOI: 10.1016/j.fct.2018.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 11/27/2022]
Abstract
Enniatins (Enns) are mycotoxins produced by Fusarium spp. and are widely distributed contaminants of cereals and derivate products. Among the different identified enniatins, Enn B is the most relevant analogue in cereals in Europe. Therefore, the aim of this study was to investigate for the first time the occurrence of Enn B and Enn B phase I metabolites in 300 human urine samples throughout an ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) methodology. Three different sample preparation procedures were evaluated and salting-out liquid-liquid extraction showed satisfactory validation results. Enn B was quantified in 83.7% of samples ranging from 0.006 to 0.391 ng/mL (average content: 0.016 ng/mL). In line with the in vitro observations with human liver microsomes, in the here analyzed samples the Enn B monooxygenated, N-demethylated and dioxygenated metabolites were tentatively found in 87.7%, 96.3% and 6.7% of samples. The data of this pilot biomonitoring survey indicate a frequent intake of enniatins in Italy, supporting further toxicological studies to provide better basis for understanding their potential effects in humans.
Collapse
Affiliation(s)
- Yelko Rodríguez-Carrasco
- University of Valencia, Department of Food Chemistry and Toxicology, Av/ Vicent A. Estellés, s/n 46100 Burjassot, Valencia, Spain.
| | - Luana Izzo
- Università di Napoli Federico II, Department of Pharmacy, Via D. Montesano, 49 - 80131 Napoli, Italy
| | - Anna Gaspari
- Università di Napoli Federico II, Department of Pharmacy, Via D. Montesano, 49 - 80131 Napoli, Italy
| | - Giulia Graziani
- Università di Napoli Federico II, Department of Pharmacy, Via D. Montesano, 49 - 80131 Napoli, Italy
| | - Jordi Mañes
- University of Valencia, Department of Food Chemistry and Toxicology, Av/ Vicent A. Estellés, s/n 46100 Burjassot, Valencia, Spain
| | - Alberto Ritieni
- Università di Napoli Federico II, Department of Pharmacy, Via D. Montesano, 49 - 80131 Napoli, Italy
| |
Collapse
|
32
|
Mizuno S, Lee XP, Fujishiro M, Matsuyama T, Yamada M, Sakamoto Y, Kusano M, Zaitsu K, Hasegawa C, Hasegawa I, Kumazawa T, Ishii A, Sato K. High-throughput determination of valproate in human samples by modified QuEChERS extraction and GC-MS/MS. Leg Med (Tokyo) 2018; 31:66-73. [PMID: 29413992 DOI: 10.1016/j.legalmed.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 11/25/2022]
Abstract
A new high-throughput method was developed for analysis of valproate in human plasma samples by QuEChERS extraction and gas chromatography-tandem mass spectrometry (GC-MS/MS). Plasma samples (0.2 ml) spiked with valproate and secobarbital-d5 (internal standard) were diluted with 1.3 ml of distilled water. Acetonitrile (1 ml) was added followed by 0.4 g MgSO4 and 0.1 g NaOAC. After a centrifugation step (2000 g for 10 min), 1 ml of the supernatant was transferred to a dispersive-solid phase extraction (dSPE) tube containing 150 mg MgSO4 and 50 mg C18. This mixture was vortexed and centrifuged at 3000 g for 5 min, and then the upper layer was evaporated to dryness under a stream of nitrogen. The residue was dissolved in 40 μl ethyl acetate, and a 1-μl aliquot was injected into the GC-MS/MS. The GC separation of the compounds was achieved on a fused-silica capillary column Rxi-5Sil MS (30 m × 0.25 mm i.d.; 0.25-µm film thickness) and detected by MS/MS operating in electron ionization ion source mode. The regression equations showed excellent linearity (r > 0.9997) from 50 to 5000 ng/ml for plasma, with limit of detection of 10 ng/ml. The extraction efficiency of valproate for plasma ranged between 71.2%-103.5%. The coefficient of variation was <18.5%. The method was successfully applied to actual analyses of an autopsy case. This method can be useful for simple and reliable measurements of valproate in clinical and toxicological analyses; it can be integrated in screening and simultaneous determination methods for multiple drugs and poisons in the further studies.
Collapse
Affiliation(s)
- Shun Mizuno
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Xiao-Pen Lee
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan.
| | - Masaya Fujishiro
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Takaaki Matsuyama
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Miho Yamada
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| | | | - Maiko Kusano
- Department of Legal Medicine and Bioethics, Nagoya University, Aichi 466-8550, Japan
| | - Kei Zaitsu
- Department of Legal Medicine and Bioethics, Nagoya University, Aichi 466-8550, Japan
| | - Chika Hasegawa
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan; Department of Legal Medicine, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Iwao Hasegawa
- University Center of Legal Medicine, Kanagawa Dental University, Kanagawa 238-8580, Japan
| | - Takeshi Kumazawa
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan; Seirei Christopher University School of Nursing, Shizuoka 433-8558, Japan
| | - Akira Ishii
- Department of Legal Medicine and Bioethics, Nagoya University, Aichi 466-8550, Japan
| | - Keizo Sato
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| |
Collapse
|
33
|
Escrivá L, Manyes L, Font G, Berrada H. Mycotoxin Analysis of Human Urine by LC-MS/MS: A Comparative Extraction Study. Toxins (Basel) 2017; 9:toxins9100330. [PMID: 29048356 PMCID: PMC5666377 DOI: 10.3390/toxins9100330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/26/2022] Open
Abstract
The lower mycotoxin levels detected in urine make the development of sensitive and accurate analytical methods essential. Three extraction methods, namely salting-out liquid–liquid extraction (SALLE), miniQuEChERS (quick, easy, cheap, effective, rugged, and safe), and dispersive liquid–liquid microextraction (DLLME), were evaluated and compared based on analytical parameters for the quantitative LC-MS/MS measurement of 11 mycotoxins (AFB1, AFB2, AFG1, AFG2, OTA, ZEA, BEA, EN A, EN B, EN A1 and EN B1) in human urine. DLLME was selected as the most appropriate methodology, as it produced better validation results for recovery (79–113%), reproducibility (RSDs < 12%), and repeatability (RSDs < 15%) than miniQuEChERS (71–109%, RSDs <14% and <24%, respectively) and SALLE (70–108%, RSDs < 14% and < 24%, respectively). Moreover, the lowest detection (LODS) and quantitation limits (LOQS) were achieved with DLLME (LODs: 0.005–2 μg L−1, LOQs: 0.1–4 μg L−1). DLLME methodology was used for the analysis of 10 real urine samples from healthy volunteers showing the presence of ENs B, B1 and A1 at low concentrations.
Collapse
Affiliation(s)
- Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Spain.
| | - Houda Berrada
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Spain.
| |
Collapse
|
34
|
Wei D, Liu J, Guo M, Zhu Y. Determination of betaine,l-carnitine, and choline in human urine using a self-packed column and column-switching ion chromatography with nonsuppressed conductivity detection. J Sep Sci 2017; 40:4246-4255. [DOI: 10.1002/jssc.201700545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Wei
- Department of Chemistry, Xixi Campus; Zhejiang University; Hangzhou China
| | - Junwei Liu
- Department of Chemistry, Xixi Campus; Zhejiang University; Hangzhou China
| | - Ming Guo
- Research Center of Analysis and Measurement; Zhejiang Research Institute of Chemical Industry; Hangzhou China
| | - Yan Zhu
- Department of Chemistry, Xixi Campus; Zhejiang University; Hangzhou China
| |
Collapse
|
35
|
Studies on the Presence of Mycotoxins in Biological Samples: An Overview. Toxins (Basel) 2017; 9:toxins9080251. [PMID: 28820481 PMCID: PMC5577585 DOI: 10.3390/toxins9080251] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Mycotoxins are fungal secondary metabolites with bioaccumulation levels leading to their carry-over into animal fluids, organs, and tissues. As a consequence, mycotoxin determination in biological samples from humans and animals has been reported worldwide. Since most mycotoxins show toxic effects at low concentrations and considering the extremely low levels present in biological samples, the application of reliable detection methods is required. This review summarizes the information regarding the studies involving mycotoxin determination in biological samples over the last 10 years. Relevant data on extraction methodology, detection techniques, sample size, limits of detection, and quantitation are presented herein. Briefly, liquid-liquid extraction followed by LC-MS/MS determination was the most common technique. The most analyzed mycotoxin was ochratoxin A, followed by zearalenone and deoxynivalenol—including their metabolites, enniatins, fumonisins, aflatoxins, T-2 and HT-2 toxins. Moreover, the studies were classified by their purpose, mainly focused on the development of analytical methodologies, mycotoxin biomonitoring, and exposure assessment. The study of tissue distribution, bioaccumulation, carry-over, persistence and transference of mycotoxins, as well as, toxicokinetics and ADME (absorption, distribution, metabolism and excretion) were other proposed goals for biological sample analysis. Finally, an overview of risk assessment was discussed.
Collapse
|
36
|
van Boxtel N, Wolfs K, Guillén Palacín M, Van Schepdael A, Adams E. Comprehensive headspace gas chromatographic analysis of denaturants in denatured ethanol. J Sep Sci 2017; 40:4004-4011. [PMID: 28792108 DOI: 10.1002/jssc.201700468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 11/06/2022]
Abstract
To discourage consumption, ethanol is often denatured using both volatile (e.g., methyl ethyl ketone and isopropanol) and nonvolatile (e.g., denatonium benzoate) chemical substances. As a result, the analysis of denatured ethanol samples is usually performed by multiple techniques such as gas chromatography for the volatile denaturants and liquid chromatography for the nonvolatile ones. However, the need for multiple techniques increases the cost of analysis and forms a severe obstruction for on-site product control. Using the full evaporation technique combined with gas chromatography and flame ionization detection, only one analytical methodology has to be used here to determine both volatile and nonvolatile denaturants in denatured ethanol. Denatonium benzoate is determined as benzyl chloride following an in-vial reaction. Compared to conventional techniques, the novel method performs equally well, but it is simpler to apply. At the same time, drawbacks of alternative methods are circumvented such as equilibration issues and alterations to the stationary phase when using liquid chromatography with ion pairing agents or matrix effects when applying static headspace gas chromatography. The developed method showed good linearity, repeatability, and recovery toward all analytes and was applied to the analysis of commercial denatured ethanol for disinfection and ethanol-based windscreen washer fluids.
Collapse
Affiliation(s)
- Niels van Boxtel
- Pharmaceutical Analysis Group, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Kris Wolfs
- Pharmaceutical Analysis Group, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Marta Guillén Palacín
- Pharmaceutical Analysis Group, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Pharmaceutical Analysis Group, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Erwin Adams
- Pharmaceutical Analysis Group, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|