1
|
Wang T, Huang D, Wang X, Chang D, Liu H, Zhong C, Wu Z. Microbubble-foam fractionation enabled long-term caffeic acid stability in the separation process: Self-assembly WSP as collector. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Pautova A, Burnakova N, Revelsky A. Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography-Mass Spectrometry: Current Methods and Future Perspectives. Molecules 2021; 26:3597. [PMID: 34208377 PMCID: PMC8231178 DOI: 10.3390/molecules26123597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cerebrospinal fluid is a key biological fluid for the investigation of new potential biomarkers of central nervous system diseases. Gas chromatography coupled to mass-selective detectors can be used for this investigation at the stages of metabolic profiling and method development. Different sample preparation conditions, including extraction and derivatization, can be applied for the analysis of the most of low-molecular-weight compounds of the cerebrospinal fluid, including metabolites of tryptophan, arachidonic acid, glucose; amino, polyunsaturated fatty and other organic acids; neuroactive steroids; drugs; and toxic metabolites. The literature data analysis revealed the absence of fully validated methods for cerebrospinal fluid analysis, and it presents opportunities for scientists to develop and validate analytical protocols using modern sample preparation techniques, such as microextraction by packed sorbent, dispersive liquid-liquid microextraction, and other potentially applicable techniques.
Collapse
Affiliation(s)
- Alisa Pautova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Petrovka str. 25-2, 107031 Moscow, Russia
| | - Natalia Burnakova
- Laboratory of Mass Spectrometry, Chemistry Department, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia; (N.B.); (A.R.)
| | - Alexander Revelsky
- Laboratory of Mass Spectrometry, Chemistry Department, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia; (N.B.); (A.R.)
| |
Collapse
|
3
|
WEI J, QIN M, YANG J, YANG L. [Research progress of microextraction by packed sorbent and its application in microvolume sample extraction]. Se Pu 2021; 39:219-228. [PMID: 34227304 PMCID: PMC9403807 DOI: 10.3724/sp.j.1123.2020.04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Microextraction is a rapidly developing sample preparation technology in the field of analytical chemistry, which is seeing widespread application. Accurate sample preparation can not only save time but also improve the efficiency of analysis, determination, and data quality. At present, sample pretreatment methods must be rapid, allow for miniaturization, automation, and convenient online connection with analytical instruments. To meet the requirements of green analytical methods and improve the extraction efficiency, microextraction techniques have been introduced as suitable replacements to conventional sample preparation and extraction methods. Microextraction using a packed sorbent (MEPS) is a new type of sample preparation technology. The MEPS equipment was prepared using microsyringe with a volume of 50-500 μL, including MEPS syringes and MEPS adsorption beds (barrel insert and needle, BIN), which is essentially similar to a miniaturized solid phase extraction device. The BIN contains the adsorbent and is built into the syringe needle. A typical MEPS extraction procedure involves repeatedly pumping the sample solution in two directions (up and down) through the adsorbent multiple times in the MEPS syringe. The specific operation course of MEPS includes conditioning, loading, washing, elution, and introduction into the analysis instrument. The conditioning process is adopted to infiltrate the dry sorbent and remove bubbles between the filler particles. The adsorption process is accomplished by pulling the liquid plunger of the syringe so that the sample flows through the adsorbent in both directions multiple times. The washing process involves rinsing the sorbent to remove unwanted components after the analyte is retained. The elution process involves the use of an eluent to ensure that the sample flows through the adsorbent in both directions multiple times, so that elution can be realized by the pumping-pushing action. The target analyte is eluted with the eluent, which can be directly used for chromatographic analysis. However, when processing complex biological matrix samples by MEPS, pretreatment steps such as dilution of the sample and removal of proteins are commonly required. At present, the operation modes of the MEPS equipment are classified into three types: manual, semi-automated, and fully automated. This increase in the degree of automation is highly conducive to processing extremely low or extremely high sample volumes. Critical factors affecting the MEPS performance have been investigated in this study. The conditions for MEPS optimization are the operating process parameters, including sample flow rate, sample volume, number of sample extraction cycles, type and volume of the adsorbent, and elution solvents. It is also necessary to consider the effect of the sample matrix on the performance of MEPS. The MEPS sorbent should be cleaned by a solvent to eliminate carryover and reuse. The sorbent is a core aspect of MEPS. Several types of commercial and non-commercial sorbents have been used in MEPS. Commercial sorbents include silica-based sorbents such as unmodified silica (SIL), C2, C8, and C18. Unmodified silicon-based silica is a normal phase adsorption material, which is highly polar and can be used to retain polar analytes. C18, C8, and C2 materials are suitable for reversed-phase adsorption, while SCX, SAX, APS, and M1 (C8+SCX) adsorbents are suitable for the mixed-mode and ion-exchange modes. Noncommercial sorbents include molecularly imprinted materials, restricted-access molecularly imprinted materials, graphitized carbon, conductive polymer materials, modified silicon materials, and covalent-organic framework materials. The performance of MEPS has recently been illustrated by online with LC-MS and GC-MS assays for the analysis of biological matrices, environmental samples, and food samples. Pretreatment in MEPS protocols includes dilution, protein precipitation, and centrifugation in biological fluid matrices. Because of the small sample size, fast operation, etc., MEPS is expected to be more widely used in the analysis of bio-matrix samples. MEPS devices could also play an important role in field pretreatment and analysis.
Collapse
Affiliation(s)
- Jianan WEI
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| | - Molin QIN
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| | - Junchao YANG
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| | - Liu YANG
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| |
Collapse
|
4
|
Tashakkori P, Tağaç AA, Merdivan M. Fabrication of montmorillonite/ionic liquid composite coated solid-phase microextraction fibers for determination of phenolic compounds in fruit juices by gas chromatography and liquid chromatography. J Chromatogr A 2020; 1635:461741. [PMID: 33253998 DOI: 10.1016/j.chroma.2020.461741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
Novel montmorillonite composites including ionic liquid were prepared and utilized as coating materials for solid phase microextraction fibers. Ionic liquids containing amino terminated imidazolium cations with methyl and benzyl groups and hydrophobic anions (bis(trifluoromethylsulfonyl)imide) and hydrophilic anions (bromide and tetrafluoroborate) were intercalated to KSF-montmorillonite using stainless steel wire as support by using the layer-by-layer technique. After optimization of experimental conditions, solid phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (SPME-GC/MS) after derivatization by silylation and high performance liquid chromatography/diode array detector (SPME-HPLC/DAD) were developed for the determination of 16 phenolic compounds. The developed SPME-GC/MS method had wider linearity and lower limit of detection than the developed SPME-HPLC/DAD method with similar repeatability (for 5 runs, less than 4.2 %) for a single fiber. The percentage of the variance between two different fibers was less than 6.0 % in both methods. The developed SPME methods were applied successfully to fresh fruit juices and the relative recoveries and the repeatabilities from spiked fruit juice samples were satisfactorily achieved. The results obtained with both chromatographic methods were in good agreement with each other.
Collapse
Affiliation(s)
- Paniz Tashakkori
- Dokuz Eylul University, Graduate School of Natural and Applied Science, Tınaztepe Campus, 35160, Izmir, Turkey
| | - Aylin Altınışık Tağaç
- Dokuz Eylul University, Chemistry Department, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Melek Merdivan
- Dokuz Eylul University, Chemistry Department, Tınaztepe Campus, 35390, Izmir, Turkey.
| |
Collapse
|
5
|
Pautova AK, Khesina ZB, Litvinova TN, Revelsky AI, Beloborodova NV. Metabolic profiling of aromatic compounds in cerebrospinal fluid of neurosurgical patients using microextraction by packed sorbent and liquid-liquid extraction with gas chromatography-mass spectrometry analysis. Biomed Chromatogr 2020; 35:e4969. [PMID: 32845527 DOI: 10.1002/bmc.4969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
A new approach to the quantitative analysis of aromatic metabolites in cerebrospinal fluid samples of neurosurgical patients based on microextraction by packed sorbent coupled with derivatization and GC-MS was developed. Analytical characteristics such as recoveries (40-90%), limit of detection (0.1-0.3 μm) and limit of quantitation (0.4-0.7 μm) values, accuracy (<±20%), precision (<20%) and linear correlations (R2 ≥ 0.99) over a 0.4-10 μm range of concentrations demonstrated that microextraction by packed sorbent provides results for the quantitative analysis of target compounds comparable with those for liquid-liquid extraction. Similar results were achieved using 40 μl of sample for microextraction by packed sorbent instead of 200 μl for liquid-liquid extraction. Benzoic, 3-phenylpropionic, 3-phenyllactic, 4-hydroxybenzoic, 2-(4-hydroxyphenyl)acetic, homovanillic and 3-(4-hydroxyphenyl)lactic acids were found in cerebrospinal fluid samples (n = 138) of neurosurgical patients in lower concentrations than in serum samples (n = 110) of critically ill patients. Analysis of the cerebrospinal fluid and serum samples taken at the same time from neurosurgical patients (n = 5) revealed similar results for patients without infection and multidirectional results for patients with central nervous system infection. Our preliminary results demonstrate the necessity of further evaluating the aromatic compound profile in cerebrospinal fluid for its subsequent verification for potential diagnostic markers.
Collapse
Affiliation(s)
- Alisa K Pautova
- Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Zoya B Khesina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Litvinova
- Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexander I Revelsky
- Laboratory of Mass Spectrometry, Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Beloborodova
- Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| |
Collapse
|
6
|
TASHAKKORİ P, ALTINIŞIK TAĞAÇ A, MERDİVAN M. Graphene Oxide-Ionic Liquid Used As Solid-Phase Microextraction Coating For Polyphenolic Compounds' Extraction And Determination With GC-MS After On-Fiber Derivatization In Wine. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.652794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Pirmohammadi Z, Bahrami A, Nematollahi D, Alizadeh S, Ghorbani Shahna F, Rahimpoor R. Determination of urinary methylhippuric acids using
MIL
‐53‐
NH
2
(
Al
) metal–organic framework in microextraction by packed sorbent followed by
HPLC
–
UV
analysis. Biomed Chromatogr 2019; 34:e4725. [DOI: 10.1002/bmc.4725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Zahra Pirmohammadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public HealthHamadan University of Medical Sciences Hamadan Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public HealthHamadan University of Medical Sciences Hamadan Iran
| | | | | | - Farshid Ghorbani Shahna
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public HealthHamadan University of Medical Sciences Hamadan Iran
| | - Razzagh Rahimpoor
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public HealthHamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
8
|
Pereira JAM, Gonçalves J, Porto-Figueira P, Figueira JA, Alves V, Perestrelo R, Medina S, Câmara JS. Current trends on microextraction by packed sorbent – fundamentals, application fields, innovative improvements and future applications. Analyst 2019; 144:5048-5074. [DOI: 10.1039/c8an02464b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MEPS, the acronym of microextraction by packed sorbent, is a simple, fast and user- and environmentally-friendly miniaturization of the popular solid-phase extraction technique (SPE).
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - João Gonçalves
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | | | - José A. Figueira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Vera Alves
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Sonia Medina
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
- Faculdade de Ciências Exatas e da Engenharia
| |
Collapse
|
9
|
Carry E, Zhao D, Mogno I, Faith J, Ho L, Villani T, Patel H, Pasinetti GM, Simon JE, Wu Q. Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry. J Pharm Biomed Anal 2018; 159:374-383. [PMID: 30032004 DOI: 10.1016/j.jpba.2018.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 11/30/2022]
Abstract
Grape-derived products contain a wide array of bioactive phenolic compounds which are of significant interest to consumers and researchers for their multiple health benefits. The majority of bioavailable grape polyphenols, including the most abundant flavan-3-ols, i.e. (+)-catechin and (-)-epicatechin, undergo extensive microbial metabolism in the gut, forming metabolites that can be highly bioavailable and bioactive. To gain a better understanding in microbial metabolism of grape polyphenols and to identify bioactive metabolites, advanced analytical methods are needed to accurately quantitate microbial-derived metabolites, particularly at trace levels, in addition to their precursors. This work describes the development and validation of a high-throughput, sensitive and reproducible GC-QqQ/MS method operated under MRM mode that allowed the identification and quantification of 16 phenolic acid metabolites, along with (+)-catechin and (-)-epicatechin, in flavanol-enriched broth samples anaerobically fermented with human intestinal bacteria. Excellent sensitivity was achieved with low limits of detection and low limits of quantification in the range of 0.24-6.18 ng/mL and 0.480-12.37 ng/mL, respectively. With the exception of hippuric acid, recoveries of most analytes were greater than 85%. The percent accuracies for almost all analytes were within ±23% and precision results were all below 18%. Application of the developed method to in vitro samples fermented with different human gut microbiota revealed distinct variations in the extent of flavanol catabolism, as well as production of bioactive phenolic acid metabolites. These results support that intestinal microbiota have a significant impact on the production of flavanol metabolites. The successful application of the established method demonstrates its applicability and robustness for analysis of grape flavanols and their microbial metabolites in biological samples.
Collapse
Affiliation(s)
- Eileen Carry
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Danyue Zhao
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ilaria Mogno
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jeremiah Faith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tom Villani
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Harna Patel
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Geriatric Research, Education & Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - James E Simon
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| | - Qingli Wu
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|