1
|
Zhu B, Hu D, Zhao J, Li S. Rapid identification and quantification of Pseudostellaria heterophylla with its adulterants by HPLC-CAD fingerprint combined with improved quantitative analysis of multi-components by single marker (QAMS). J Pharm Biomed Anal 2024; 247:116205. [PMID: 38843613 DOI: 10.1016/j.jpba.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 06/19/2024]
Abstract
The P. heterophylla and its adulterants were identified by HPLC-CAD fingerprint of sucrose and oligosaccharides in P. heterophylla. The improved quantitative analysis of multi-components with a single marker (iQAMS) was further established for simultaneous determinations of sucrose and oligosaccharides in P. heterophylla. The HPLC-CAD fingerprint and similarity coefficients between P. heterophylla and its adulterants showed significant differences. The relative errors (REs) between iQAMS method and external standard method (ESM) were below 3.00%, but significant difference was shown between iQAMS (different marker for whole program with gradient elution) and QAMS (one marker for whole program with gradient elution), indicating that QAMS method should be improved, especially for gradient elution which influence the response of analytes. The accuracy, precision, reproducibility, and stability of this method were validated which exhibited satisfactory results, indicating that iQAMS method could be used for quantitative analysis of sucrose and oligosaccharides in P. heterophylla instead of ESM. The iQAMS combined with HPLC-CAD fingerprint could be used to determine the content of each oligosaccharide, and it can be used for quality control of P. heterophylla.
Collapse
Affiliation(s)
- Baojie Zhu
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, 999078, Macao Special Administrative Region of China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China
| | - Dejun Hu
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, 999078, Macao Special Administrative Region of China; Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, 999078, Macao Special Administrative Region of China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China; Macao Centre for Testing of Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China; Department of Pharmaceutical sciences, Faculty of Health Sciences, University of Macau, 999078, Macao Special Administrative Region of China.
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, 999078, Macao Special Administrative Region of China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China; Macao Centre for Testing of Chinese Medicine, University of Macau, 999078, Macao Special Administrative Region of China; Department of Pharmaceutical sciences, Faculty of Health Sciences, University of Macau, 999078, Macao Special Administrative Region of China.
| |
Collapse
|
2
|
Zhao Z, Bai Y, Chen H, Wang W, Ding S, Zhang Y, Sa Y, Chen G, Ma X. Development of a pre-column derivatization ultra-high-performance liquid chromatography method for polysaccharide and monosaccharide quantification in Lycium barbarum. J Sep Sci 2024; 47:e2400507. [PMID: 39233475 DOI: 10.1002/jssc.202400507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Given the limited specificity and accuracy observed in the current official colorimetric quantification of polysaccharide in Lycium barbarum, our study aims to establish a novel, specific, accurate, and economic pre-column derivatization ultra-high-performance liquid chromatography (UHPLC) method for determining the monosaccharide and polysaccharide content in L. barbarum. The optimization of extraction, hydrolysis, and derivatization (using 1-phenyl-3-methyl-5-pyrazolone) processes for polysaccharide from L. barbarum was conducted initially, followed by separation of nine monosaccharides within 20 min using UHPLC with a C18 column. Subsequently, a novel method known as quantitative analysis of multiple components by single marker was developed, utilizing either additive 2-deoxy-D-ribose or any monosaccharide present in the sample as a single reference standard to simultaneously detect the contents of polysaccharide and nine monosaccharides in L. barbarum. To validate the accuracy of the established method, the quantitative results of our approach were compared to both external and internal standard method methods. The minimal relative errors in the quantitative determination of monosaccharides among the three methods confirmed the dependability of the method. By analyzing 20 batches of L. barbarum samples, D-galacturonic acid exhibited the highest content and the polysaccharide levels ranged from 3.02 to 13.04 mg/g. All data implied the specificity and accuracy of the method.
Collapse
Affiliation(s)
- Zhilong Zhao
- Traditional Chinese Medicine Hospital of Yinchuan, Yinchuan, China
| | - Yunfeng Bai
- Traditional Chinese Medicine Hospital of Yinchuan, Yinchuan, China
| | - Huan Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Department of Chemical Drugs Analysis, Ningxia Hui Autonomous Region Institute of Drug Control, Intersection of Ning'an Street and Feng Yue Alley, Yinchuan, China
- Ningxia Key Laboratory of Drug Creation and Generic Drugs Research, Yinchuan, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoning Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Chakraborty D, Malik S, Mann S, Agnihotri P, Joshi L, Biswas S. Chronic disease management via modulation of cellular signaling by phytoestrogen Bavachin. Mol Biol Rep 2024; 51:921. [PMID: 39158613 DOI: 10.1007/s11033-024-09849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The emergence of chronic diseases, particularly cancers, cardiovascular, and bone disorders, presents a formidable challenge, as currently available synthetic drugs often result in significant side effects and incur higher costs. Phytoestrogen Bavachin, present in the Psoralea corylifolia L. plant, represents structural and functional similarity to mammalian estrogen and has recently attracted researchers for its medicinal properties. This review spotlighted the extraction methods, bioavailability and therapeutic interventions of Bavachin against diseases. Bavachin exerted estrogenic properties, demonstrating the ability to bind to estrogen receptors (ERs), mimicking the actions of human estrogen and initiating estrogen-responsive pathways. Bavachin delivered potent therapeutic ventures in abrogating chronic diseases, including cancer, neuronal, bone, cardiovascular, skin, lung, and liver disorders via targeting signaling transductions, managing calcium signaling, immune regulation, inflammation, apoptosis, and oxidative stress. In-silico analysis, including Gene ontology and pathway enrichment analysis, retrieved molecular targets of Bavachin, majorly cytochrome c oxidase (COX), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and ER, hypothesizing Bavachin's cellular mechanism in preventing crucial health ailments. Limitations of Bavachin were also summarized, evidenced by hepatotoxicity at specific dosage levels. In conclusion, Bavachin showed promising therapeutic efficacy in suppressing chronic diseases and can be considered as an adequate replacement for hormone replacement therapy, necessitating further investigations on its effectiveness, safety, and clinical outcomes.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Malik
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Mann
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lovely Joshi
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Zhao Y, Guo J, Mu Q, Liu R, Liu H, Xu Y, Li Y. Exploring quality evaluation markers of Fructus Psoraleae based on chemometric analysis integrated with network pharmacology. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:321-335. [PMID: 37816590 DOI: 10.1002/pca.3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Fructus Psoraleae (FP) is a well-known traditional Chinese medicine for the treatment of osteoporosis. However, major quality differences were witnessed owing to its various origins, thus influencing its safety and efficacy. OBJECTIVES The study aimed to evaluate the quality of FP from different origins and predict its quality evaluation markers. METHODS Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was employed for tentative characterisation of the constituents in 10 batches of FP, followed by the utilisation of multivariate statistical analysis methods including principal component analysis and orthogonal partial least squares discriminant analysis for quality evaluation. Network pharmacology approaches were utilised to explore the underlying mechanism of the screened chemotaxonomic markers in treating osteoporosis. RESULTS Forty-one components in FP including, chalcones, coumarins, coumestans, flavonoids, iso-flavonoids, and phenolics, were characterised based on their fragmentation pathways. Ten batches of FP were basically divided into three categories, and eight chemotaxonomic markers including isopsoralen, calamenene, bakuchiol, psoralen, bavachinin, isoneobavaisoflavone, corylifol C, and neobavaisoflavone were screened. Network pharmacology revealed that the chemotaxonomic markers can act on targets such as AKT1, HSP90AA1, and EGFR and possess effects mainly through glycolysis and wnt/β-catenin signalling to alleviate osteoporosis. Molecular docking and molecular dynamic simulation confirmed the good binding affinity and stability between proteins and selected markers. So, eight chemotaxonomic markers were all preferentially recommended as quality evaluation markers. CONCLUSION The study not only provides a reference for the improvement of quality control of FP but also offers a theoretical basis for its further in-depth research in osteoporosis.
Collapse
Affiliation(s)
- Yuting Zhao
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Guo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qixuan Mu
- China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ruojin Liu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Liu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Kurpet K, Chwatko G. Development of a new chromatographic method for the determination of bakuchiol in cosmetic products. Sci Rep 2023; 13:13893. [PMID: 37620384 PMCID: PMC10449805 DOI: 10.1038/s41598-023-41076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
The aim of this study was to develop and validate a simple, fast, and universal reversed-phase high-performance liquid chromatography method with fluorescence detection for the quantitation and evaluation of the stability of bakuchiol in cosmetic products. The analyte was extracted by tetrahydrofuran and separated on a Zorbax Eclipse Plus C18 analytical column (100 × 4.6 mm, 3.5 μm particle size) by a gradient elution program with the mobile phase consisting of water and acetonitrile and a flow rate of 1.0 mL min-1. The column temperature was held at 25 °C and fluorescence detection was performed at excitation and emission wavelengths of 264 and 338 nm, respectively. The stability studies of bakuchiol in cosmetic products were conducted under various conditions, including thermal and photolytic degradation, according to International Conference on Harmonization Guidelines. The calibration curve was linear in the range of 0.5-50.0 μg g-1 with a correlation coefficient greater than 0.9999. The limits of detection and quantification of the method were 0.1 and 0.5 μg g-1, respectively. Recovery values were in the range of 93.37-106.39 μg g-1, with relative standard deviations less than 6%. The method has been successfully applied to analyze different types of cosmetic products and proved to be reliable.
Collapse
Affiliation(s)
- Katarzyna Kurpet
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland.
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Street, 90-236, Lodz, Poland.
| | - Grażyna Chwatko
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Street, 90-236, Lodz, Poland
| |
Collapse
|
6
|
Li ZY, Li XK, Yang ZL, Qiu D, Feng N, Zhang XZ, Li BQ. An accurate and reliable analytical strategy for simultaneous determination of target furanocoumarins and flavonoids in cosmetic and pharmaceutical samples by ultra-high performance supercritical fluid chromatography. J Pharm Biomed Anal 2023; 225:115221. [PMID: 36603396 DOI: 10.1016/j.jpba.2022.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Furanocoumarins and flavonoids have various important biological activities and wide application. In the present study, a rapid and reliable supercritical fluid chromatography method was proposed for the separation of 10 target components including 8 furanocoumarins and 2 flavonoids. After detailed condition optimization, the 10 target compounds can be baseline separated on a Trefoil CEL1 (3.0 mm × 150 mm, 2.5 µm) column using gradient elution. A 0.07% (v/v) trifluoroacetic acid in ethanol was determined to be the most proper mobile phase for the separation of target compounds. The column temperature, back pressure, flow rate were set at 36 ℃, 2000 psi, 1.0 mL min-1 to 1.4 mL min-1, respectively. The ten target compounds were analyzed within 24 min using the optimized conditions. Under the optimized conditions, all the target compounds showed good linearity with linear correlation coefficients higher than 0.995, and satisfactory recovery in the range of 83.52-112.92%. All these results showed that the developed ultra-high performance supercritical fluid chromatography method was reliable and effective. Finally, the application of the developed method to cosmetic, Psoraleae fructus and Angelicae dahuricae radix samples were presented. The results highlight the applicability of the ultra-high performance supercritical fluid chromatography method to the analysis of interested compounds in pharmaceutical and cosmetic samples.
Collapse
Affiliation(s)
- Ze Ying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xin Kang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Zhuo Ling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Dian Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
7
|
Mu L, Dai H, Fei C, Li W, Xue Q, Xu Y, Li L, Li W, Yin W, Yin F. Study on the processing chemistry of Fructus Psoraleae by a combination of untargeted and targeted metabolomics. J Sep Sci 2022; 45:4280-4291. [PMID: 36168848 DOI: 10.1002/jssc.202200504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022]
Abstract
Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.
Collapse
Affiliation(s)
- Liyan Mu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Dai
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wenjing Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yan Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
8
|
Liu T, Xu G, Li Y, Shi W, Ren L, Fang Z, Liang L, Wang Y, Gao Y, Zhan X, Li Q, Mou W, Lin L, Wei Z, Li Z, Dai W, Zhao J, Li H, Wang J, Zhao Y, Xiao X, Bai Z. Discovery of bakuchiol as an AIM2 inflammasome activator and cause of hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115593. [PMID: 35973629 DOI: 10.1016/j.jep.2022.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia (P. corylifolia Linn.) is a traditional Chinese medicinal plant that exhibits significant aphrodisiac, diuretic, and anti-rheumatic effects. However, it has been reported to cause hepatic injury, but the precise mechanisms remain unclear. AIM OF THE STUDY To evaluate the safety and risk of P. corylifolia and to elucidate the underlying mechanisms of drug-induced liver injury. MATERIALS AND METHODS Western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, quantitative polymerase chain reaction (Q-PCR), and flow cytometry were used to explore the effect of bakuchiol (Bak), one of the most abundant and biologically active components of P. corylifolia, on the AIM2 inflammasome activation and the underlying mechanism. Furthermore, we used the lipopolysaccharides (LPS)-induced drug-induced liver injury (DILI) susceptible mice model to study the Bak-mediated hepatotoxicity. RESULTS Bak induced the maturation of caspase-1 P20, and significantly increased the expression of IL-1β and TNF-α (P < 0.0001) compared with the control group. Moreover, compared to the Bak group, knockdown of AIM2 inhibited Bak-induced caspase-1 maturation and significantly decreased the production of IL-1β and TNF-α, but knockout of NLRP3 had no effect. Mechanistically, Bak-induced AIM2 inflammasome activation is involved in mitochondrial damage, mitochondrial DNA (mtDNA) release, and subsequent recognition of cytosolic mtDNA. Our in vivo data showed that co-exposure to LPS and non-hepatotoxic doses of Bak significantly increased the levels of ALT, AST, IL-1β, TNF-α, and IL-18, indicating that Bak can induce severe liver inflammation (P < 0.005). CONCLUSIONS The result shows that Bak activates the AIM2 inflammasome by inducing mitochondrial damage to release mtDNA, and subsequently binds to the AIM2 receptor, indicating that Bak may be a risk factor for P. corylifolia-induced hepatic injury.
Collapse
Affiliation(s)
- Tingting Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Guang Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Yurong Li
- Department of Military Patient Management, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Shi
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lutong Ren
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhie Fang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Longxin Liang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Wang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaoyan Zhan
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qiang Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenqing Mou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Li Lin
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ziying Wei
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia Zhao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Liu XW, Yang YJ, Qin Z, Li SH, Bai LX, Ge WB, Li JY. Isobavachalcone From Cullen corylifolium Presents Significant Antibacterial Activity Against Clostridium difficile Through Disruption of the Cell Membrane. Front Pharmacol 2022; 13:914188. [PMID: 35942219 PMCID: PMC9356235 DOI: 10.3389/fphar.2022.914188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background:Clostridium difficile infection (CDI) has been widely reported in human and animals around the world over the past few decades. The high relapse rate and increasing drug resistance of CDI make the discovery of new agents against C. difficile fairly urgent. This study aims to investigate the antibacterial activity against C. difficile from traditional Chinese herb medicine Cullen corylifolium and confirm its active components. Methods: Phenolic extract from the seeds of C. corylifolium was prepared routinely and the contents of relative flavonoids were determined by High Performance Liquid Chromatography (HPLC). In vitro antibacterial activities of the phenolic extract and its major components were tested. The influence of the major components on cell membrane was investigated with membrane integrity by SEM and propidium iodid uptake assay. Cytotoxicity of the extract and its active compounds on Caco-2 cell line was assessed by CCK-8 kit. The in vivo therapeutic efficacy of IBCL was evaluated on the mice model. Results: Phenolic extract was found to be active against C. difficile with minimum inhibitory concentrations (MIC) of 8 μg/mL. As the major component of the extract, IBCL was the most active compound against C. difficile. The MIC of IBCL and 4MBCL were 4 μg/ml and 4 μg/ml, respectively. Meanwhile, PFPE, IBCL, and 4MBCL showed rapid bactericidal effect against C. difficile in 1 h, which was significant compared to antibiotic vancomycin. Mechanism studies revealed that IBCL can disrupt the integrity of the cell membrane, which may lead to the death of bacteria. PFPE was low cytotoxic against Caco-2 cells, and the cytotoxicity of IBCL and 4MBCL were moderate. Symptoms of CDI were effectively alleviated by IBCL on the mice model and weight loss was reduced. From death rates, IBCL showed better efficacy compared to vancomycin at 50 mg/kg dosage. Conclusion: As the major component of phenolic extract of C. corylifolium seeds, IBCL showed significant antibacterial activity against C. difficile in vitro and rapidly killed the bacteria by disrupting the integrity of the cell membrane. IBCL can significantly prevent weight loss and reduce death caused by CDI on the mice model. Therefore, IBCL may be a promising lead compound or drug candidate for CDI.
Collapse
|
10
|
Xing N, Meng X, Wang S. Isobavachalcone: A comprehensive review of its plant sources, pharmacokinetics, toxicity, pharmacological activities and related molecular mechanisms. Phytother Res 2022; 36:3120-3142. [PMID: 35684981 DOI: 10.1002/ptr.7520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Isobavachalcone (IBC), also known as isobapsoralcone, is a natural flavonoid widely derived from many medicinal plants, including Fabaceae, Moraceae, and so forth. IBC has been paid more and more attention by researchers in recent years due to its pharmacological activity in many diseases. This review aims to describe in detail the plant sources, pharmacokinetics, toxicity, pharmacological activities, and molecular mechanisms of IBC on various diseases. We found that IBC can be obtained not only by extraction but also by chemical synthesis. Pharmacokinetic studies have shown that IBC has low bioavailability, but can penetrate the blood-brain barrier and is widely distributed in the brain. Its pharmacological activities mainly include anticancer, antibacterial, anti-inflammatory, antiviral, neuroprotective, bone protection, and other activities. In particular, IBC shows strong anti-tumor and anti-inflammatory therapeutic potential due to its anti-cancer and anti-inflammatory activities. However, due to its hepatotoxicity, there may be more drug interactions. Therefore, more and more in-depth studies are needed for its clinical application. Mechanically, IBC can induce the production of reactive oxygen species (ROS), inhibit AKT, ERK, and Wnt pathways, and promote apoptosis of cancer cells through mitochondrial or endoplasmic reticulum pathways. IBC can inhibit the NF-κB pathway and the production of multiple inflammatory mediators by activating NRF2/HO-1 pathway, thus producing anti-inflammatory effects. Moreover, we discussed the limitations of current research on IBC and put forward some new perspectives and challenges, which provide a strong basis for clinical application and new drug development of IBC in the future.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Xiong JL, Cai XY, Zhang ZJ, Li Q, Zhou Q, Wang ZT. Elucidating the estrogen-like effects and biocompatibility of the herbal components in the Qing' E formula. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114735. [PMID: 34637969 DOI: 10.1016/j.jep.2021.114735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Qing' E Formula (QEF) is a compound preparation that was originally recorded in the 'Prescriptions of the Bureau of Taiping People's Welfare Pharmacy' during the Song Dynasty (10th century CE). It consists of four Chinese medicinal herbs, Eucommiae Cortex (Eucommia ulmoides), Psoraleae Fructus (Psoralea corylifolium), Juglandis Semen (Juglans regia), and Garlic Rhizoma. According to traditional Chinese medicine (TCM), QEF has the ability to tonify the kidney and strengthen muscle and bone. According to the 'kidney governing bone' theory in TCM, QEF is also used to treat the symptoms of climacteric syndrome, especially osteoporosis caused by reduced production of estrogen during the perimenopausal period; however, the therapeutic roles of the individual components of the QEF and their compatibility within the formula has not been investigated. AIM OF THE STUDY In this study, the compatibility mechanism and estrogen-like action properties of the four herbal components in the QEF was elucidated according to the organizing principle of Chinese medicine formulas using both in vitro and in vivo models. MATERIALS AND METHODS The estrogen-like effects of QEF and its herbal components were investigated in MCF7 and HEK293 cells as well as ovariectomized (OVX) rats. The estrogen-like effects of the QEF and its components were analyzed in vitro using Cell Counting Kit-8 and Luciferase reporter gene assays. In the in vivo studies, the blood plasma levels of hormones, lipids, neurotransmitters, aromatase, superoxide dismutase (SOD), and malondialdehyde (MDA) were measured through enzyme-linked immunosorbent assays (ELISAs). The histological morphologies of the target organs after exposure to QEF were investigated by HE staining and immunohistochemical methods. The expression levels of estrogen pathway-related proteins and genes in the OVX rats were measured by Western blotting and real time quantitative PCR (RT-qPCR), respectively. RESULTS The in vitro results showed that the QEF, Eucommia (EC) and Psoralea (PF) promoted the proliferation of MCF-7 cells and upregulated the expression of ERα, ERβ and pS2 genes in the MCF-7 cells. Notably, the QEF demonstrated the most active estrogen-like effects compared to the individual ingredients. The in vivo results showed that the QEF, EC, and PF increased the uterine coefficient, upregulated the expression of both ERs (ERα and ERβ) in the uterus, and increased blood serum hormone levels. QEF and its individual components ameliorated menopausal-derived lipid metabolism dysfunction, increased neurotransmitter production by stimulating the adrenal glands, enhanced the antioxidant activity in the serum by increasing the concentration of SOD, reversed ovariectomy-derived atrophy in the uterus, and reduced the weight gain associated with estrogen reduction in the OVX rats. The QEF also antagonize the loss of appetite of OVX animals caused by feeding Psoralea alone, which could explain the compatibility mechanism of Qing' E Formula with reducing toxicity and increasing efficiency. CONCLUSIONS The estrogen-like effects of Eucommia and Psoralea were mainly mediated through activation of ERα and ERβ. The phytoestrogen components regulated hormone production and the expression of related proteins and genes, which indicated that these components exhibited estrogen-like therapeutic effects. However, the QEF showed the greatest estrogen-like effects compared to the individual components. Overall, this corroborated the therapeutic prowess of the QEF and clarified the pharmacodynamic interactions between the different components extracts in the QEF.
Collapse
Affiliation(s)
- Jing-Lin Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xin-Yin Cai
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zi-Jia Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Qi Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Qiang Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| |
Collapse
|
12
|
Wu L, Zhang S, Zhou L, Xiong H, Gong X, Zhang S, Pan J, Qu H. Establishment and validation of the quantitative analysis of multi-components by single marker for the quality control of Qishen Yiqi dripping pills by high-performance liquid chromatography with charged aerosol detection. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:942-956. [PMID: 33660329 DOI: 10.1002/pca.3037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Charged aerosol detection (CAD) has the merits of high sensitivity, high universality and response uniformity. The strategy that combines the quantitative analysis of multi-components by single marker (QAMS) with CAD has certain advantages for the quantification of multi-components. However, relevant research was limited. OBJECTIVES To comprehensively investigate the crucial factors that affect the performance of the HPLC-CAD-QAMS approach and validate the credibility and feasibility of the method. METHODOLOGY Multiple components of Qishen Yiqi dripping pills (QSYQ) were assayed using the high-performance liquid chromatography (HPLC)-CAD-QAMS approach. Some factors that affect the sensitivity and accuracy of the approach were sufficiently studied. After the method verification, principal component analysis (PCA) was applied to evaluate the quality consistency of three types of samples: normal samples, expired samples and negative samples. RESULTS A HPLC-CAD-QAMS method was successfully developed for the multi-component determination of QSYQ. First, chromatographic conditions were optimised by a definitive screening design, and the optimised ranges of operating parameters were obtained with a Monte Carlo simulation method. Next, a new method to select the internal reference standards was successfully introduced based on the heatmap of Pearson correlation coefficients of the response factors. Then, the multi-point method was selected to calculate the relative correction factors, and a robustness test was conducted with Plackett-Burman design. Finally, the PCA was proved to be effective for the quality consistency evaluation of different samples. CONCLUSION The developed HPLC-CAD-QAMS method can be a reliable and superior means for the multi-component quantitative analysis of QSYQ.
Collapse
Affiliation(s)
- Linlin Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shunnan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National and Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Lihong Zhou
- National and Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Haoshu Xiong
- National and Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sijie Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Xu X, Wang S, Wang H, Hu W, Han L, Chen B, Li X, Wang H, Li H, Gao X, Guo D, Yang W. Simultaneous quantitative assays of 15 ginsenosides from 119 batches of ginseng samples representing 12 traditional Chinese medicines by ultra-high performance liquid chromatography coupled with charged aerosol detector. J Chromatogr A 2021; 1655:462504. [PMID: 34487881 DOI: 10.1016/j.chroma.2021.462504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
Despite the extensive consumption of ginseng, precise quality control of different ginseng products is highly challenging due to the containing of ginsenosides in common for different Panax species or different parts (e.g. root, leaf, and flower) of a same species. Herein we performed a comparative investigation of diverse ginseng products by simultaneously assaying 15 saponins (notoginsenoside R1, ginsenosides Rg1, -Re, -Rf, -Ra2, -Rb1, -Rc, -Ro, -Rb2, -Rb3, -Rd, 20(R)-ginsenoside Rg3, 24(R)-pseudoginsenoside F11, chikusetsusaponins IV, and -IVa) using an ultra-high-performance liquid chromatography/charged aerosol detector (UHPLC-CAD) approach. Twelve Panax-derived ginseng products (involving P. ginseng root, P. quinquefolius root, P. notoginseng root, Red ginseng, P. ginseng leaf, P. quinquefolius leaf, P. notoginseng leaf, P. ginseng flower, P. quinquefolius flower, P. notoginseng flower, P. japonicus root, and P. japonicus var. major root) were considered. Benefiting from the condition optimization, the baseline resolution of 15 ginsenosides was achieved on a CORTECS UPLC Shield RP18 column. This method was validated as specific, precise (0.81-1.94% intra-day variation; 0.86-2.35% inter-day variation), and accurate (recovery: 90.73-107.5%), with good linearity (R2 > 0.999), high sensitivity (limit of detection: 0.02-0.21 μg; limit of quantitation: 0.04-0.42 μg) and sample stability (1.49-4.74%). Its application to 119 batches of ginseng samples unveiled vital information enabling the authentication of these different ginseng products. Detection of ginsenosides by CAD exhibited superiority over UV in sensitivity and the ability to monitor chromophore-free structures. Large-scale comparative studies by quantifying multiple markers provide methodological reference to the precise quality control of herbal medicine.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Simiao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Huimin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wandi Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Huifang Li
- Thermo Fisher Scientific, Building #6, No.27, Xinjinqiao Road, Pudong, Shanghai 201206, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Dean Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| |
Collapse
|
14
|
Cai XY, Zhang ZJ, Xiong JL, Yang M, Wang ZT. Experimental and molecular docking studies of estrogen-like and anti-osteoporosis activity of compounds in Fructus Psoraleae. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114044. [PMID: 33775805 DOI: 10.1016/j.jep.2021.114044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Psoraleae (FP), dry mature fruits of Cullen corylifolium (L.) Medik., has been used clinically to treat kidney yang deficiency-induced impotence, asthma and cold pain in waist and knee caused by kidney deficiency. A study of the source of the significant kidney-enhancing effect of FP revealed that it may be due to its strong estrogen-like activity. AIM OF THE STUDY This study aimed to investigate the estrogen-like activity of the FP extract and 13 bioactive compounds in it, as well as the mechanisms underlying their estrogen-like and anti-osteoporosis activities. MATERIALS AND METHODS The estrogen-like activities of the 75% ethanol-only FP extract, and 75% ethanol plus petroleum ether, ethyl acetate, n-butanol or water FP extracts were each measured using Cell Counting Kit-8 (CCK-8) and luciferase reporter gene assays. The compounds were identified by high-performance liquid chromatography analysis. The activation of estrogen receptor signaling by the compounds was compared with that by estradiol (E2) using the molecular docking software MOE-Dock 2008.10. The activation of the ER-Wnt-β-catenin signaling pathway was investigated using an alkaline phosphatase (ALP) assay, qPCR analysis and Western blot analysis. RESULTS The results revealed that the 75% ethanol plus ethyl acetate extract showed the highest estrogen-like activity among the four 75% ethanol extract fractions (further extracted with petroleum ether, ethyl acetate, n-butanol or water). Some compounds in FP showed strong estrogenic effect and anti-osteoporosis activity, and activated the Wnt-β-catenin pathway. The isoflavone compound was the most active. CONCLUSIONS This study demonstrated that FP has a strong estrogen-like activity and some of its component compounds have anti-osteoporosis activity by activating the ER-Wnt-β-catenin signaling pathway. Our detections provide a new insight into the mechanisms underlying the estrogen-like and anti-osteoporosis activities of FP, as well as a better understanding of structure effects.
Collapse
Affiliation(s)
- Xin-Yin Cai
- The MOE Key Laboratory for Standardization of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zi-Jia Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Jing-Lin Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Meng Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| |
Collapse
|
15
|
Hollá M, Bílková A, Jakubec P, Košková S, Kočová Vlčková H, Šatínský D, Švec F, Sklenářová H. Benefits and Pitfalls of HPLC Coupled to Diode-Array, Charged Aerosol, and Coulometric Detections: Effect of Detection on Screening of Bioactive Compounds in Apples. Molecules 2021; 26:molecules26113246. [PMID: 34071301 PMCID: PMC8199029 DOI: 10.3390/molecules26113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The new screening method for rapid evaluation of major phenolic compounds in apples has been developed. Suitability of coupling HPLC/UHPLC separation with the diode-array detection and universal charged aerosol detection with respect to the presence of interfering substances was tested. Characteristics of both detection techniques were compared and method linearity, limits of detection and quantitation, and selectivity of them determined. Student t-test based on slopes of calibration plots was applied for the detailed comparison. The diode-array detection provided the best results regarding sensitivity and selectivity of the developed method in terms of evaluation of phenolics profiles. The response of the charged aerosol detector was negatively affected by co-eluting substances during rapid-screening analyses. Coulometric detection was used for advanced characterization of extracts in terms of antioxidant content and strength to obtain more complex information concerning sample composition. This detection also allowed evaluation of unidentified compounds with antioxidant activity. HPLC/UHPLC separation using a combination of diode-array and coulometric detectors thus represented the best approach enabling quick, yet complex characterization of bioactive compounds in apples.
Collapse
Affiliation(s)
- Marcela Hollá
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
| | - Aneta Bílková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
- Research and Breeding Institute of Pomology Holovousy Ltd., 50801 Hořice, Czech Republic
| | - Pavel Jakubec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
| | - Stanislava Košková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
| | - Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
| | - Dalibor Šatínský
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
| | - Hana Sklenářová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic; (M.H.); (A.B.); (P.J.); (S.K.); (H.K.V.); (D.Š.); (F.Š.)
- Correspondence: ; Tel.: +420-495-067-453
| |
Collapse
|
16
|
Ma S, Li Q, Feng Y, Chen Y, Yu P, Ding X. Simultaneous Determination of Five Coumarins in Peucedanum Decursivum Radix by UPLC. J Chromatogr Sci 2021; 60:173-178. [PMID: 34021565 DOI: 10.1093/chromsci/bmab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To establish an ultra-high performance liquid chromatography (UPLC) method for simultaneous determination of umbelliferonel, nodakenin, psoralen, xanthotoxin and bergapten contents in Peucedanum decursivum Radix. METHODS The analysis was achieved on a Symmetry®C18 column (4.6 mm × 250 mm, 5 μm), with acetonitrile and water as the mobile phase in gradient elution mode. The column temperature was maintained at 30°C, with flow rate 1.0 mL·min-1. The injection volume of sample was 10 μL. The ultraviolet detection wavelength was set at the maximum absorption wavelength 325 nm for umbelliferonel and nodakenin, 259 nm for psoralen, xanthotoxin and bergapten, respectively. RESULTS The five kinds of coumarins in Peucedanum decursivum Radix were separated well and the linear relation was obtained (R2 ≥ 0.9998). The average recoveries were 101.31, 105.27, 90.85, 106.42 and 90.19%, respectively, with Relative standard deviation (RSD) 3.07, 3.17, 1.62, 2.53 and 4.54%, respectively. CONCLUSIONS The established method was accurate and feasible, which could be used as the basis of quality control of Peucedanum decursivum Radix.
Collapse
Affiliation(s)
- Sinan Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qian Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanmei Feng
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuying Chen
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ping Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiaoqin Ding
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
17
|
Dou Z, Dai Y, Zhou Y, Wang S. Quality evaluation of rhubarb based on qualitative analysis of the HPLC fingerprint and UFLC-Q-TOF-MS/MS combined with quantitative analysis of eight anthraquinone glycosides by QAMS. Biomed Chromatogr 2021; 35:e5074. [PMID: 33453059 DOI: 10.1002/bmc.5074] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Rhubarb is one of the most ancient and important herbal medicines, but its current quality evaluation (QE) methods have some limitations. In this study, a new method was developed for the comprehensive QE of rhubarb. First, fingerprints of 28 batches of three species of rhubarb samples were determined by HPLC, the reference fingerprint was established and the common peaks were assigned. Second, the components of common peaks in the fingerprints were identified by ultrafast liquid chromatography quadrupole time-of-flight mass spectrometry. Finally, a method for the simultaneous determination of the contents of eight anthraquinone glycosides in rhubarb using quantitative analysis of multiple components by a single marker (QAMS) was established, and the contents of these eight components in 28 batches of rhubarb determined by QAMS and the external standard method were compared. The results showed that there were 31 common peaks in the rhubarb fingerprint. The components of these 31 common peaks were identified, and 20 of them were unambiguously confirmed by reference substances, including eight anthraquinone glycosides. The contents of eight anthraquinone glycosides in the 28 batches of rhubarb determined by QAMS and the external standard method were not significantly different. In conclusion, the method established in this study can be used for the comprehensive QE of rhubarb and can also provide a reference for the QE of other herbal medicines.
Collapse
Affiliation(s)
- Zhihua Dou
- Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Ying Dai
- Nantong Third People's Hospital, Nantong University, Nantong, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunzhong Zhou
- Jinghua Pharmaceutical Group Co. Ltd, Nantong, China
| | - Shengnan Wang
- Affiliated Hospital, Nantong University, Nantong, China
| |
Collapse
|
18
|
Hou XD, Song LL, Cao YF, Wang YN, Zhou Q, Fang SQ, Wu DC, Zang SZ, Chen L, Bai Y, Ge GB, Hou J. Pancreatic lipase inhibitory constituents from Fructus Psoraleae. Chin J Nat Med 2020; 18:369-378. [PMID: 32451094 DOI: 10.1016/s1875-5364(20)30043-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Pancreatic lipase (PL), a crucial enzyme in the digestive system of mammals, has been proven as a therapeutic target to prevent and treat obesity. The purpose of this study is to evaluate and characterize the PL inhibition activities of the major constituents from Fructus Psoraleae (FP), one of the most frequently used Chinese herbs with lipid-lowering activity. To this end, a total of eleven major constituents isolated from Fructus Psoraleae have been obtained and their inhibition potentials against PL have been assayed by a fluorescence-based assay. Among all tested compounds, isobavachalcone, bavachalcone and corylifol A displayed strong inhibition on PL (IC50 < 10 μmol·L-1). Inhibition kinetic analyses demonstrated that isobavachalcone, bavachalcone and corylifol A acted as mixed inhibitors against PL-mediated 4-methylumbelliferyl oleate (4-MUO) hydrolysis, with the Ki values of 1.61, 3.77 and 10.16 μmol·L-1, respectively. Furthermore, docking simulations indicated that two chalcones (isobavachalcone and bavachalcone) could interact with the key residues located in the catalytic cavity of PL via hydrogen binding and hydrophobic interactions. Collectively, these finding provided solid evidence to support that Fructus Psoraleae contained bioactive compounds with lipid-lowering effects via targeting PL, and also suggested that the chalcones in Fructus Psoraleae could be used as ideal leading compounds to develop novel PL inhibitors.
Collapse
Affiliation(s)
- Xu-Dong Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Li-Lin Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China; Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yun-Feng Cao
- Dalian Runsheng Kangtai Medical Laboratory Co. Ltd., Dalian 116000, China
| | - Yi-Nan Wang
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Sheng-Quan Fang
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Da-Chang Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Shi-Zhu Zang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Lu Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Yue Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China
| | - Guang-Bo Ge
- Translational Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine & Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China.
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
19
|
Zhou Z, Yang L, Cheng L, Yu Y, Song L, Zhou K, Wu Y, Zhang Y. Simultaneous characterization of multiple Psoraleae Fructus bioactive compounds in rat plasma by ultra‐high‐performance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex‐related differences in pharmacokinetics. J Sep Sci 2020; 43:2804-2816. [DOI: 10.1002/jssc.202000286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Zhi‐xing Zhou
- Department of PharmacologyShenyang Pharmaceutical University Shenyang P. R. China
| | - Li Yang
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Li‐yuan Cheng
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Ying‐li Yu
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| | - Lei Song
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| | - Kun Zhou
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| | - Ying‐liang Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang P. R. China
| | - Yue Zhang
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology Tianjin P. R. China
| |
Collapse
|
20
|
Recent applications of the Charged Aerosol Detector for liquid chromatography in drug quality control. J Chromatogr A 2020; 1619:460911. [DOI: 10.1016/j.chroma.2020.460911] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023]
|
21
|
Li Y, Xu J, Xu C, Qin Z, Li S, Hu L, Yao Z, Gonzalez FJ, Yao X. Metabolism and disposition of corylifol A from Psoralea corylifolia: metabolite mapping, isozyme contribution, species differences and identification of efflux transporters for corylifol A- O-glucuronide in HeLa1A1 cells. Xenobiotica 2020; 50:997-1008. [PMID: 32116078 DOI: 10.1080/00498254.2020.1732496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Corylifol A (CA), a phenolic compound from Psoralea corylifolia, possessed several biological properties but poor bioavailability. Here we aimed to investigate the roles of cytochromes P450s (CYPs), UDP-glucuronosyltransferases (UGTs) and efflux transporters in metabolism and disposition of CA.Metabolism of CA was evaluated in HLM, expressed CYPs and UGTs. Chemical inhibitors and shRNA-mediated gene silencing of multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP) were performed to assess the roles of transporters in CA disposition.Three oxidated metabolites (M1-M3) and two glucuronides (M4-M5) were detected. The intrinsic clearances (CLint) values of M1 and M4 in HLM were 48.10 and 184.03 μL/min/mg, respectively. Additionally, CYP1A1, 2C8 and 2C19 were identified as main contributors with CLint values of 13.01-49.36 μL/min/mg, while UGT1A1, 1A7, 1A8 and 1A9 were with CLint values ranging from 85.01 to 284.07 μL/min/mg. Furthermore, activity correlation analysis proved CYP2C8, UGT1A1 and 1A9 were the main active hepatic isozymes. Besides, rats and monkeys were appropriate model animals. Moreover, dipyridamole and MK571 both could significantly inhibit M4 efflux. Gene silencing results also indicated MRP4 and BCRP were major contributors in HeLa1A1 cells.Taken together, CYPs, UGTs, MRP4 and BCRP were important determinants of CA pharmacokinetics.
Collapse
Affiliation(s)
- Yang Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunxia Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zifei Qin
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shishi Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Liufang Hu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
ZHOU QH, ZHU YD, ZHANG F, SONG YQ, JIA SN, ZHU L, FANG SQ, GE GB. Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus. Chin J Nat Med 2019; 17:858-870. [DOI: 10.1016/s1875-5364(19)30103-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/13/2022]
|
23
|
Zhang Y, Zhang Y, Li J, Chen Y, Han L, He Q, Chu J, Liu K. The role of hepatic antioxidant capacity and hepatobiliary transporter in liver injury induced by isopsoralen in zebrafish larvae. Hum Exp Toxicol 2018; 38:36-44. [DOI: 10.1177/0960327118774873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isopsoralen is the main component of the Chinese medicine psoralen, which has antitumour activity and can be used for the treatment of osteoporosis. However, the mechanism behind its hepatotoxicity has not yet been elucidated. In this study, the hepatotoxicity of isopsoralen was investigated using zebrafish. Isopsoralen treatment groups of 25, 50 and 100 μM were established. The mortality, liver morphology changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology and mRNA levels of liver injury–related genes in zebrafish larvae were measured. The results showed that isopsoralen resulted in the development of malformed zebrafish, dose-dependent increases in ALT and AST, decreased liver fluorescence and weakened fluorescence intensity. Histopathological examination showed that high-dose isopsoralen caused a large number of vacuolated structures in the larvae liver. The polymerase chain reaction results showed a significant decrease in the mRNA levels of genes related to antioxidant capacity ( lfabp, gstp2 and sod1) and drug transport ( mdr1, mrp1 and mrp2), indicating that isopsoralen significantly inhibited liver antioxidant capacity and drug efflux capacity in zebrafish larvae. Isopsoralen is hepatotoxic to zebrafish larvae via inhibition of drug transporter expression resulting in the accumulation of isopsoralen in the body and decreased antioxidant capacity, leading to liver injury.
Collapse
Affiliation(s)
- Y Zhang
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - Y Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - J Li
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
- Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Y Chen
- Shandong Normal University, Jinan, People’s Republic of China
| | - L Han
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - Q He
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - J Chu
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - K Liu
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| |
Collapse
|
24
|
Qin Z, Li S, Yao Z, Hong X, Xu J, Lin P, Zhao G, Gonzalez FJ, Yao X. Metabolic profiling of corylin in vivo and in vitro. J Pharm Biomed Anal 2018; 155:157-168. [PMID: 29631076 DOI: 10.1016/j.jpba.2018.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
Abstract
Corylin, an phenolic compound from Psoralea corylifolia, has been reported with various pharmacological properties but has poor bioavailability due to massive metabolism. In this study, twelve metabolites of corylin mainly involving in oxidation, hydration, glucuronidation and sulfation were detected in mice. Furthermore, the oxidation and hydration of corylin (M4) in human liver microsomes (HLM) and human intestine microsomes (HIM) were both efficient with high CLint (intrinsic clearance) values of 24.29 and 42.85 μL/min/mg, respectively. CYP1A1, 1B1 and 2C19 contributed most for M4 with the CLint values of 26.63, 33.09 and 132.41 μL/min/mg, respectively. Besides, M4 was strongly correlated with phenacetin-N-deacetylation (r = 0.885, p = 0.0001) and tolbutamide-4-oxidation (r = 0.727, p = 0.001) in twelve individual HLMs, respectively. In addition, corylin was efficiently glucuronidated (M7) in HLM (125.33 μL/min/mg) and in HIM (108.74 μL/min/mg). UGT1A1 contributed the most for M7 with the CLint value of 122.32 μL/min/mg. Meanwhile, M7 was significantly correlated with β-estradiol-3-O-glucuronidation (r = 0.742, p = 0.006) in twelve individual HLMs. Moreover, the metabolism of corylin showed marked species differences. Taken together, corylin was subjected to massive first-pass metabolism in liver and intestine, while CYP1A1, 1B1, 2C19 and UGT1A1 were the main contributors. Finally, the proposed metabolic pathway of corylin involed CYP and UGT isoforms were summarized, which could help to understand the metabolic fate of corylin in vivo.
Collapse
Affiliation(s)
- Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, PR China
| | - Shishi Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Xiaodan Hong
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Pei Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Guoping Zhao
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, PR China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
25
|
Dong Y, Guo Q, Liu J, Ma X. Simultaneous determination of seven phenylethanoid glycosides in Cistanches
Herba by a single marker using a new calculation of relative correction factor. J Sep Sci 2018; 41:1913-1922. [DOI: 10.1002/jssc.201701219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Yanhong Dong
- Department of Pharmaceutical analysis; School of Pharmacy; Ningxia Medical University; Yinchuan P. R. China
| | - Qi Guo
- Department of Pharmaceutical analysis; School of Pharmacy; Ningxia Medical University; Yinchuan P. R. China
| | - Jingjing Liu
- Department of Pharmaceutical analysis; School of Pharmacy; Ningxia Medical University; Yinchuan P. R. China
| | - Xueqin Ma
- Department of Pharmaceutical analysis; School of Pharmacy; Ningxia Medical University; Yinchuan P. R. China
- Key Laboratory of Hui Ethnic Medicine Modernization; Ministry of Education; Ningxia Medical University; Yinchuan P. R. China
| |
Collapse
|