1
|
Peris-Pastor G, Lara-Molina EE, Benedé JL, Chisvert A. Boosting miniaturization in clinical analysis: determination of bisphenols in human serum and urine by miniaturized stir bar sorptive dispersive microextraction. Anal Bioanal Chem 2024:10.1007/s00216-024-05634-w. [PMID: 39537970 DOI: 10.1007/s00216-024-05634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In this work, a miniaturized and sustainable method for the determination of endocrine-disrupting bisphenols in human serum and urine employing the miniaturized stir bar sorptive dispersive microextraction (mSBSDME) approach has been developed. As bisphenols are conjugated in the human body to their glucorinated and sulfated forms, an enzymolysis employing a commercial mixture of β-glucuronidase and arylsulfatase was carried out prior to the microextraction procedure to determine their total content. A magnetic covalent organic framework (COF) was employed as the sorbent to carry out the extraction of the analytes from the biological matrixes, showing good extraction performance due to its hydrophobic, π-π, and dipole-dipole interactions with the analytes. As instrumental detection, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to achieve good sensitivity and selectivity. The method was validated for both matrixes, showing good linearity at least up to 100 ng mL-1, limits of detection in the low ng mL-1 range, good precision values (relative standard deviations below 15%), and good accuracy (relative recoveries between 80 and 127%). In order to show the applicability of the developed method, five samples from female volunteers were analyzed with the final aim of offering a practical tool for monitoring the female population's exposure to these highly endocrine-disrupting compounds. This new procedure enhances the implementation of miniaturized sample preparation approaches in biological samples for clinical analysis, giving special relevance to the sustainability of the method.
Collapse
Affiliation(s)
- Guillem Peris-Pastor
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Evelin E Lara-Molina
- IVIRMA Barcelona, 08029, Barcelona, Spain
- IVI Foundation IVIRMA Global, Biomedical Research Institute La Fe, 46026, Valencia, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. SEPARATIONS 2023. [DOI: 10.3390/separations10040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics presented in a variety of everyday products that may disrupt the normal activity of hormones. Exposure to bisphenol A as EDC at trace and ultra-trace levels is associated with adverse health effects, and children are recognized as the most vulnerable group to EDCs exposure. In this review, a summary is presented of up-to-date sample preparation methods and instrumental techniques applied for the detection and quantification of bisphenol A and its structural analogues in various biological matrices. Biological matrices such as blood, cell-free blood products, urine, saliva, breast milk, cordial blood, amniotic and semen fluids, as well as sweat and hair, are very complex; therefore, the detection and later quantification of bisphenols at low levels present a real analytical challenge. The most popular analytical approaches include gas and liquid chromatography coupled with mass spectrometry, and their enhanced reliability and sensitivity finally allow the separation and detection of bisphenols in biological samples, even as ultra-traces. Liquid/liquid extraction (LLE) and solid-phase extraction (SPE) are still the most common methods for their extraction from biological matrices. However, many modern and environmentally safe microextraction techniques are currently under development. The complexity of biological matrices and low concentrations of analytes are the main issues for the limited identification, as well as understanding the adverse health effects caused by chronical and ubiquitous exposure to bisphenols and its analogues.
Collapse
|
3
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Li A, Wang F, Tao L, Ma C, Bi L, Song M, Jiang G. Rapid and simultaneous determination of multiple endocrine-disrupting chemicals and their metabolites in human serum and urine samples. Talanta 2022; 248:123639. [PMID: 35661003 DOI: 10.1016/j.talanta.2022.123639] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Bisphenols, parabens, and their metabolites are a group of chemical compounds with a wide range of polarities but similar chemical structures, which presents a challenge for the simultaneous determination of these compounds in complex biological samples. In this study, a rapid and sensitive method for simultaneous quantification of free bisphenol A (BPA), conjugated BPA, bisphenols, and parabens analogs was developed using solid-phase extraction (SPE) tandem liquid-liquid extraction (LLE). We compared the effects of different types of SPE cartridges, diluents, and LLE solvents on the analyte recovery. Utilizing the direct and indirect determination methods (enzyme hydrolysis), we confirmed the accuracy of the direct method for measuring BPA glucuronide and BPA disulfate. The method enabled the analysis of 24 endocrine-disrupting chemicals (EDCs) in one injection through UHPLC-MSMS measurements, with satisfactory recovery (mean: 91.8-98.6% for urine, 80.2%-96.8% for serum) and precision (RSD <15%). The LOD and LOQ values were 0.003 and 0.01 ng/mL for serum, and 0.002 and 0.006 ng/mL for urine samples, respectively. For real sample analysis, the median concentration of analytes in serum and urine samples ranged from 0.04 ng/mL (BPS) to 56.4 ng/mL (4-HB) and 0.11 ng/mL (BPA) to 136 ng/mL (4-HB), respectively. This method provides a new strategy to simultaneously identify compounds with a wide range of polarities from complicated biological matrices.
Collapse
Affiliation(s)
- Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Le Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Recent advances in analysis of bisphenols and their derivatives in biological matrices. Anal Bioanal Chem 2021; 414:807-846. [PMID: 34652496 DOI: 10.1007/s00216-021-03668-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Biomonitoring is a very useful tool to evaluate human exposure to endocrine-disrupting compounds (EDCs), like bisphenols (BPs), which are widely used in the manufacture of plastics. The development of reliable analytical methods is key in the field of public health surveillance to obtain biomonitoring data to determine what BPs are reaching people's bodies. This review discusses recent methods for the quantitative measurement of bisphenols and their derivatives in biological samples like urine, blood, breast milk, saliva, and hair, among others. We also discuss the different procedures commonly used for sample treatment, which includes extraction and clean-up, and instrumental techniques currently used to determine these compounds. Sample preparation techniques continue to play an important role in the analysis of complex matrices, for liquid matrices the most commonly employed is solid-phase extraction, although microextraction techniques are gaining importance in this field, and for solid samples ultrasound-assisted extraction. The main instrumental techniques used are liquid and gas chromatography coupled with mass spectrometry. Finally, we present data on the main parameters obtained in the validation of the revised methods. This review focuses on various methods developed and applied for trace analysis of bisphenols, their conjugates, halogenated derivatives, and diglycidyl ethers in biological samples to enable the required selectivity and sensitivity. For this purpose, a review is carried out of the most recent relevant publications from 2016 up to present.
Collapse
|
6
|
Maragou NC, Thomaidis NS, Theodoridis GA, Lampi EN, Koupparis MA. Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1137:121938. [PMID: 31881513 DOI: 10.1016/j.jchromb.2019.121938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
Bisphenol A (BPA), a known potential endocrine disrupting compound (EDC) is expected to be present in low quantities in canned food due to its migration from the inner surface coating of cans made of epoxy resins. A selective and confirmatory analytical method, based on microwave assisted extraction (MAE), molecularly imprinted solid phase extraction (MISPE) using a polymer prepared by a non-covalent molecular imprinting technique and liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESI/MS) was developed for the determination of BPA in canned pineapple, tuna and mushrooms. First, the effect of the loading medium of hydro- organic solutions on the binding of BPA and its deuterated analogue on the MISPE sorbent was investigated. Subsequently, the effects of the experimental conditions of the microwave assisted extraction (solvent, sample mass/solvent volume, time and temperature) on the obtained recovery of BPA from canned food were assessed and the parameters were optimized to provide maximum recovery and selectivity. It was demonstrated that the combination of MAE with MISPE permits the use of a selective extraction solvent (methanol/water, 4/6, v/v), simplifying the sample preparation steps and enhancing sample clean-up of complex food matrices. The method was validated in different food matrices, using BPA-d16 as internal standard and quantitative relative recoveries were determined. The precision (RSD %) of the method ranged from 7% to 10% and the limit of detection was at low ng/g level for all food matrices. The determined concentration of BPA in commercial canned samples ranged between 7.3 and 42.3 ng/g.
Collapse
Affiliation(s)
- Niki C Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece.
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece
| | - Georgios A Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece
| | - Eugenia N Lampi
- Laboratory of Materials in Contact with Food, General Chemistry State Laboratory, An. Tsoha 16, 115 21 Athens, Greece
| | - Michael A Koupparis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimioupolis Zografou, 157 71 Athens, Greece
| |
Collapse
|
7
|
A multi-residue method for determination of 36 endocrine disrupting chemicals in human serum with a simple extraction procedure in combination of UPLC-MS/MS analysis. Talanta 2019; 205:120144. [DOI: 10.1016/j.talanta.2019.120144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023]
|
8
|
Ikhlas S, Usman A, Ahmad M. In vitro study to evaluate the cytotoxicity of BPA analogues based on their oxidative and genotoxic potential using human peripheral blood cells. Toxicol In Vitro 2019; 60:229-236. [DOI: 10.1016/j.tiv.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/11/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
|
9
|
Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol Lett 2019; 312:222-227. [DOI: 10.1016/j.toxlet.2019.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023]
|
10
|
Rashid A, Wang Y, Li Y, Yu CP, Sun Q. Simultaneous analysis of multiclass contaminants of emerging concern in sediments by liquid chromatography with tandem quadrupole mass spectrometry. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1409-1422. [PMID: 31017690 DOI: 10.1002/etc.4450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
A quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based extraction and simultaneous dispersive solid-phase extraction (dSPE) clean-up method was developed for contaminants of emerging concern (CECs) in sediment samples. Hydration with a phosphate buffer (pH 2.0) and salting out with NaCl and MgSO4 facilitated the extraction and liquid-liquid portioning of the aqueous and organic phases. Cleanup of the extracts was achieved by florisil and C18 (1:1) sorbents in dSPE with minimal compromise of the analytes. The extracts were clean enough for determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The procedure was validated for preservatives, blood lipid regulators, analgesics and anti-inflammatory drugs, plasticizers, and other classes of CECs in sediment matrix spiked at 6 levels between 1- and 40-fold concentrations for CECs of varying analytical sensitivities. The recovery values were generally between approximately 27 and 120% and the relative standard deviation (%RSD) values were below 20% at 10- , 20- , and 40-fold spiking levels, albeit the recoveries for some analytes dropped at low spike concentrations. The method showed high sensitivity where the method detection limits (MDLs) were at low ppb levels for the majority of the analytes that ranged between 0.002 and 1.93 µg/kg. The method performance was also compared with well-established US Environmental Protection Agency (USEPA) Method 1694 by analyzing sediment samples collected from Yundang Lagoon (Xiamen, China) with field-incurred CEC residues. The sediment samples were detected with residues of parabens, gemfibrozil, ketoprofen, naproxen, fenoprofen, diclofenac, miconazole, carbamazepine, benzophenon-3, glibenclamide, sildinafil citrate, and some bisphenol analogues. Environ Toxicol Chem 2019;38:1409-1422. © 2019 SETAC.
Collapse
Affiliation(s)
- Azhar Rashid
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Yuwen Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Ping Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Qian Sun
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
11
|
Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Song S, Duan Y, Zhang T, Zhang B, Zhao Z, Bai X, Xie L, He Y, Ouyang JP, Huang X, Sun H. Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China: Associations with fasting blood glucose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:822-828. [PMID: 30597781 DOI: 10.1016/j.ecoenv.2018.11.101] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 05/12/2023]
Abstract
In the present study, concentrations of bisphenol A (BPA) and its six alternatives were quantified in serum samples collected from elder population living around an e-waste recycling facilities as well as an reference area in China. BPA, bisphenol AF (BPAF), and bisphenol F (BPF) were frequently detected (detection rates: > 65%) in serum samples collected from residents living near e-waste dismantling facilities, with geometric mean (GM) concentrations of 3.2, 0.0074, and 0.062 ng/mL, respectively. The detection frequencies of other four bisphenols (BPs) in serum samples were lower than 25%, regardless of the sampling areas. Significant difference (Mann-Whitney U-test, p < 0.05) was observed in the serum concentration of BPA, but not BPAF and BPF, between the e-waste recycling and reference areas. This finding indicated e-waste dismantling activities are correlated with human BPA exposure. Significant higher (p < 0.05) detection rates of donors who had abnormal fasting blood glucose (FBG) levels were found in e-waste recycling areas (45%) than those found in reference area. Our results suggested BPA and BPAF exposure might associated with abnormal FBG in participants living in e-waste sites. To our knowledge, this study is first determination of BPs in serum samples and assessment of health risk of elderly people from BPs exposure in e-waste dismantling area.
Collapse
Affiliation(s)
- Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Yishuang Duan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji-Ping Ouyang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|