1
|
Jorbenadze S, Khatiashvili T, Chelidze A, Lo Faro AF, Farkas T, Tini A, Sprega G, Berardinelli D, Busardò FP, Chankvetadze B. Development of a novel enantioselective high-performance liquid chromatography-mass spectrometry method for the differentiation of dextro- and levo-methorphan and their O-demethylated metabolites in human blood and its application to post-mortem samples. J Pharm Biomed Anal 2024; 237:115769. [PMID: 37864951 DOI: 10.1016/j.jpba.2023.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Recently we proposed an isocratic enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the separation and quantitative determination of dextro- (DXM) and levo-methorphan (LVM) and their pharmacologically relevant metabolites, dextrorphan and levorphanol, respectively, in human blood samples. This method was based on the polysaccharide-based chiral column Lux AMP, a specialty column characterized with high stability in mobile phases of pH 11.0 and above. The use of a single-source column is a limitation for any analytical method. Therefore, the major goal of the present study was to develop an enantioselective method for the differentiation of dextro- and levo-methorphan, as well as their metabolites dextrorphan and levorphanol, using Lux Cellulose-3 as alternative chiral column with methanol containing 0.1 % diethylamine mobile phase. A newly developed method uses a chiral selector part of HPLC columns available from multiple manufacturers and a fairly common mobile phase. The method was validated and applied to post-mortem blood samples. Out of 50 analyzed new samples, dextromethorphan (DXM) was detected in 17 samples. Of these 17 cases DXM was accompanied with LVM in 7 samples. The proposed analytical method is relatively simple, accurate and fast and can be adopted for routine use in forensic and clinical toxicology laboratories.
Collapse
Affiliation(s)
- Saba Jorbenadze
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi 0179, Georgia
| | - Tamar Khatiashvili
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi 0179, Georgia; Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Aluda Chelidze
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi 0179, Georgia
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, CA 90501, USA
| | - Anastasio Tini
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Diletta Berardinelli
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy.
| | - Bezhan Chankvetadze
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi 0179, Georgia.
| |
Collapse
|
2
|
Ali I, Perrucci M, Ciriolo L, D'Ovidio C, de Grazia U, Ulusoy HI, Kabir A, Savini F, Locatelli M. Applications of electrophoresis for small enantiomeric drugs in real-world samples: Recent trends and future perspectives. Electrophoresis 2024; 45:55-68. [PMID: 37495859 DOI: 10.1002/elps.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Miryam Perrucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Luigi Ciriolo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Fabio Savini
- Pharmatoxicology Laboratory-Hospital "Santo Spirito", Pescara, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| |
Collapse
|
3
|
Chiarentin L, Gonçalves C, Augusto C, Miranda M, Cardoso C, Vitorino C. Drilling into "Quality by Design" Approach for Analytical Methods. Crit Rev Anal Chem 2023:1-42. [PMID: 37665603 DOI: 10.1080/10408347.2023.2253321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The need for consistency in analytical method development reinforces the dependence of pharmaceutical product development and manufacturing on robust analytical data. The Analytical Quality by Design (AQbD), akin to the product Quality by Design (QbD) endows a high degree of confidence to the method quality developed. AQbD involves the definition of the analytical target profile as starting point, followed by the identification of critical method variables and critical analytical attributes, supported on risk assessment and design of experiment tools for the establishment of a method operable design region and control strategy of the method. This systematic approach moves away from reactive troubleshooting to proactive failure reduction. The objective of this review is to highlight the elements of the AQbD framework and provide an overview of their implementation status in various analytical methods used in the pharmaceutical field. These methodologies include but are not limited to, high-performance liquid chromatography, UV-Vis spectrophotometry, capillary electrophoresis, supercritical fluid chromatography, and high-performance thin-layer chromatography. Finally, a critical appraisal is provided to highlight how regulators have encouraged AQbD principles application to boost the prevention of method failures and a better understanding of the method operable design region (MODR) and control strategy, ultimately resulting in cost-effectiveness and regulatory flexibility.
Collapse
Affiliation(s)
- Lucas Chiarentin
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Laboratórios Basi Indústria Farmacêutica S.A, Parque Industrial Manuel Lourenço Ferreira, Mortágua, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Carla Gonçalves
- Laboratórios Basi Indústria Farmacêutica S.A, Parque Industrial Manuel Lourenço Ferreira, Mortágua, Portugal
| | - Cátia Augusto
- Laboratórios Basi Indústria Farmacêutica S.A, Parque Industrial Manuel Lourenço Ferreira, Mortágua, Portugal
| | - Margarida Miranda
- Laboratórios Basi Indústria Farmacêutica S.A, Parque Industrial Manuel Lourenço Ferreira, Mortágua, Portugal
- Egas Moniz School of Health and Science, Egas Moniz Center of Interdisciplinary Research (CiiEM), Caparica, Portugal
| | - Catarina Cardoso
- Laboratórios Basi Indústria Farmacêutica S.A, Parque Industrial Manuel Lourenço Ferreira, Mortágua, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Lo Faro AF, Berardinelli D, Sprega G, Tini A, Carlier J, Farkas T, Busardò FP, Chankvetadze B. Development of an enantioselective high-performance liquid chromatography-tandem mass spectrometry method for the quantitative determination of methorphan and its O-demethylated metabolite in human blood and its application to post-mortem samples. J Pharm Biomed Anal 2023; 230:115384. [PMID: 37044005 DOI: 10.1016/j.jpba.2023.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
In the present work an isocratic enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the separation and quantitative determination of dextro - and levo -methorphan and their pharmacologically relevant metabolites, dextrorphan and levorphanol, respectively, in human blood samples. The separation of enantiomers of methorphan and metabolites was performed on the polysaccharide-based chiral column Lux AMP in combination with acetonitrile and 5 mM aqueous ammonium bicarbonate pH 11 in the ratio 50:50 (%, v/v) as mobile phase with the flow rate 1 mL/min. The mass spectrometer was operated in scheduled multiple reaction monitoring (MRM) mode, with four transitions for each dextromethorpan, levomethorphan, dextrorphan and dextromethorphan-d3 and two transitions for each levorphanol, levorphanol-d3 and dextrorphan-d3. Application of this method to human post-mortem blood samples confirmed cases of severe overdosing with dextromethorphan, levomethorphan, and less commonly with both.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Diletta Berardinelli
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Anastasio Tini
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Jeremy Carlier
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, 90501 CA, USA
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | - Bezhan Chankvetadze
- Tbilisi State University, Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, 0179 Tbilisi, Georgia
| |
Collapse
|
5
|
Adel Ahmed M, Quirino JP. pH-assisted in-line pseudophase microextraction and separation with tridodecylmethylammonium chloride admicelles in open-tubular capillary-based separations. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Orlandini S, Hancu G, Szabó ZI, Modroiu A, Papp LA, Gotti R, Furlanetto S. New Trends in the Quality Control of Enantiomeric Drugs: Quality by Design-Compliant Development of Chiral Capillary Electrophoresis Methods. Molecules 2022; 27:7058. [PMID: 36296650 PMCID: PMC9607418 DOI: 10.3390/molecules27207058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Capillary electrophoresis (CE) is a potent method for analyzing chiral substances and is commonly used in the enantioseparation and chiral purity control of pharmaceuticals from different matrices. The adoption of Quality by Design (QbD) concepts in analytical method development, optimization and validation is a widespread trend observed in various analytical approaches including chiral CE. The application of Analytical QbD (AQbD) leads to the development of analytical methods based on sound science combined with risk management, and to a well understood process clarifying the influence of method parameters on the analytical output. The Design of Experiments (DoE) method employing chemometric tools is an essential part of QbD-based method development, allowing for the simultaneous evaluation of experimental parameters as well as their interaction. In 2022 the International Council for Harmonization (ICH) released two draft guidelines (ICH Q14 and ICH Q2(R2)) that are intended to encourage more robust analytical procedures. The ICH Q14 guideline intends to harmonize the scientific approaches for analytical procedures' development, while the Q2(R2) document covers the validation principles for the use of analytical procedures including the recent applications that require multivariate statistical analyses. The aim of this review is to provide an overview of the new prospects for chiral CE method development applied for the enantiomeric purity control of pharmaceuticals using AQbD principles. The review also provides an overview of recent research (2012-2022) on the applicability of CE methods in chiral drug impurity profiling.
Collapse
Affiliation(s)
- Serena Orlandini
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Adriana Modroiu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Lajos-Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| |
Collapse
|
7
|
Wu X, Li Z, Lin J, Huang Z, Chen F. Engineered Cyclohexylamine Oxidase with Improved Activity and Stereoselectivity for Asymmetric Synthesis of a Bulky Dextromethorphan Precursor and Its Analogues. ChemCatChem 2022. [DOI: 10.1002/cctc.202101970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofan Wu
- Fudan University Department of Chemistry CHINA
| | - Zhining Li
- Fudan University Department of Chemistry CHINA
| | - Juan Lin
- Fuzhou University College of Chemical Engineering CHINA
| | - Zedu Huang
- Fudan University Chemistry Department 220 Handan Road 200433 Shanghai CHINA
| | - Fener Chen
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
8
|
Sefid-Sefidehkhan Y, Khoshkam M, Amiri M. Chemometrics-assisted electrochemical determination of dextromethorphan hydrobromide and phenylephrine hydrochloride by carbon paste electrode. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Application of Experimental Design Methodologies in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: A Review. Molecules 2021; 26:molecules26154681. [PMID: 34361834 PMCID: PMC8348688 DOI: 10.3390/molecules26154681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chirality is one of the major issues in pharmaceutical research and industry. Capillary electrophoresis (CE) is an interesting alternative to the more frequently used chromatographic techniques in the enantioseparation of pharmaceuticals, and is used for the determination of enantiomeric ratio, enantiomeric purity, and in pharmacokinetic studies. Traditionally, optimization of CE methods is performed using a univariate one factor at a time (OFAT) approach; however, this strategy does not allow for the evaluation of interactions between experimental factors, which may result in ineffective method development and optimization. In the last two decades, Design of Experiments (DoE) has been frequently employed to better understand the multidimensional effects and interactions of the input factors on the output responses of analytical CE methods. DoE can be divided into two types: screening and optimization designs. Furthermore, using Quality by Design (QbD) methodology to develop CE-based enantioselective techniques is becoming increasingly popular. The review presents the current use of DoE methodologies in CE-based enantioresolution method development and provides an overview of DoE applications in the optimization and validation of CE enantioselective procedures in the last 25 years. Moreover, a critical perspective on how different DoE strategies can aid in the optimization of enantioseparation procedures is presented.
Collapse
|
10
|
Fanali C, D'Orazio G, Gentili A, Fanali S. Potentiality of miniaturized techniques for the analysis of drugs of abuse. Electrophoresis 2021; 43:190-200. [PMID: 34148240 DOI: 10.1002/elps.202100150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022]
Abstract
Capillary electromigration (CE) and liquid chromatographic techniques (CLC/nano-LC) are miniaturized techniques offering distinct advantages over conventional ones in the field of separation science. Among these, high efficiency, high chromatographic resolution, and use of minute volumes of both mobile phase and sample volumes are the most important. CE and CLC/nano-LC have been applied to the analysis of many compounds including peptides, proteins, drugs, enantiomers, ions, etc. Over the years, the methods described here have also been used for the analysis of compounds of clinical, forensic, and toxicological interest. In this review article, the main features of the mentioned techniques are summarized. Their potentiality for the analysis of drugs of abuse are discussed. Some selected applications in this field in the period of 2015-present are also reported.
Collapse
Affiliation(s)
- Chiara Fanali
- Faculty of Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Giovanni D'Orazio
- Institute for the Biological Systems, National Research Council, Monterotondo, Italy
| | | | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Hancu G, Papp LA, Tóth G, Kelemen H. The Use of Dual Cyclodextrin Chiral Selector Systems in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: An Overview. Molecules 2021; 26:2261. [PMID: 33919692 PMCID: PMC8069766 DOI: 10.3390/molecules26082261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrin (CD) derivatives are the most efficient and frequently used chiral selectors (CSs) in capillary electrophoresis (CE). There are situations when the use of a single CD as CS is not enough to obtain efficient chiral discrimination of the enantiomers; in these cases, sometimes this problem can be resolved using a dual CD system. The use of dual CD systems can often dramatically enhance enantioseparation selectivity and can be applied for the separation of many analytes of pharmaceutical interest for which enantioseparation by CE with another CS systems can be problematic. Usually in a dual CD system an anionic CD is used together with a neutral one, but there are situations when the use of a cationic CD with a neutral one or the use of two neutral CDs or even two ionized CDs can be an efficient solution. In the current review we present general aspects of the use of dual CD systems in the analysis of pharmaceutical substances. Several examples of applications of the use of dual CD systems in the analysis of pharmaceuticals are selected and discussed. Theoretical aspects regarding the separation of enantiomers through simultaneous interaction with the two CSs are also explained. Finally, advantages, disadvantages, potential and new direction in this chiral analysis field are highlighted.
Collapse
Affiliation(s)
- Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.H.); (H.K.)
| | - Lajos Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.H.); (H.K.)
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092 Budapest, Hungary;
| | - Hajnal Kelemen
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.H.); (H.K.)
| |
Collapse
|
12
|
Perovani IS, Serpellone CO, de Oliveira ARM. An appraisal of experimental designs: Application to enantioselective capillary electromigration techniques. Electrophoresis 2021; 42:1726-1743. [PMID: 33544902 DOI: 10.1002/elps.202000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Enantioresolution processes are vital tools for investigating the enantioselectivities of chiral compounds. An analyst resolves to optimize enantioresolution conditions once they are determined. Generally, optimization is conducted by a one-factor-at-a-time (OFAT) approach. Although this approach may determine an adequate condition for the method, it does not often allow the estimation of the real optimum condition. Experimental designs are conducive for the optimization of enantioresolution methods via capillary electromigration techniques (CETs). They can efficiently extract information from the behavior of a method and enable the estimation of the real optimum condition. Furthermore, the application of the analytical quality by design (AQbD) approach to the development of CET-based enantioselective methods is a trend. This article (i) offers an overview of the application of experimental designs to the development of enantioselective methods from 2015 to mid-2020, (ii) reveals the experimental designs that are presently employed in CET-based enantioresolutions, and (iii) offers a critical point of view on how the different experimental designs can aid the optimization of enantioresolution processes by considering the method parameters.
Collapse
Affiliation(s)
- Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil
| | - Carolina Oliveira Serpellone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, Araraquara, Sao Paulo, 14800-900, Brazil
| |
Collapse
|
13
|
Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017-2020). Electrophoresis 2021; 42:1709-1725. [PMID: 33433919 DOI: 10.1002/elps.202000359] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Capillary electrophoresis is a powerful technique for the analysis of polar chiral compounds and has been widely accepted for analytical enantioseparations of drug compounds in pharmaceuticals and biological media. In addition, many mechanistic studies have been conducted in an attempt to rationalize enantioseparations in combination with spectroscopic and computational techniques. The present review will focus on recent examples of mechanistic aspects and summarize recent applications of stereoselective pharmaceutical and biomedical analysis published between January 2017 and November 2020. Various separation modes including electrokinetic chromatography in combination with several detection modes including laser-induced fluorescence, mass spectrometry and contactless conductivity detection will be discussed. A general trend also observed in other analytical techniques is the application of quality by design principles in method development and optimization.
Collapse
Affiliation(s)
- Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Mari-Luiza Konjaria
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydr Polym 2020; 256:117517. [PMID: 33483038 DOI: 10.1016/j.carbpol.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The negatively charged cyclodextrins (CDs) play an important role in chiral analysis due to the additional electrostatic effect beyond the host-guest inclusion, especially in enantioanalysis of positively charged and electrically neutral analytes. This review presents recent advances in application of anionic CDs for enantioanalysis during the past five years. Firstly, the synthesis approaches of random substitution and single isomers of anionic CDs are briefly discussed. The main part focuses on the chiral analysis using anionic CDs in various analytical techniques, including capillary electrophoresis, high-performance liquid chromatography, capillary electrochromatography, counter current chromatography, nuclear magnetic resonance, etc. Particular attention is given to the capillary electrophoresis application since charged CDs could be used as a carrier of enantiomers by virtue of their self-mobility and offer an easy adjustment of the enantiomer migration order. Finally, future opportunities are also discussed in the conclusion of this review.
Collapse
|
15
|
Řemínek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis 2020; 42:19-37. [PMID: 32901975 DOI: 10.1002/elps.202000185] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis represents a promising technique in the field of pharmaceutical analysis. The presented review provides a summary of capillary electrophoretic methods suitable for routine quality control analyses of small molecule drugs published since 2015. In total, more than 80 discussed methods are sorted into three main sections according to the applied electroseparation modes (capillary zone electrophoresis, electrokinetic chromatography, and micellar, microemulsion, and liposome-electrokinetic chromatography) and further subsections according to the applied detection techniques (UV, capacitively coupled contactless conductivity detection, and mass spectrometry). Key parameters of the procedures are summarized in four concise tables. The presented applications cover analyses of active pharmaceutical ingredients and their related substances such as degradation products or enantiomeric impurities. The contribution of reported results to the current knowledge of separation science and general aspects of the practical applications of capillary electrophoretic methods are also discussed.
Collapse
Affiliation(s)
- Roman Řemínek
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
16
|
Xu Z, Guan J, Shao H, Fan S, Li X, Shi S, Yan F. Combined Use of Cu(II)-L-Histidine Complex and β-Cyclodextrin for the Enantioseparation of Three Amino Acids by CE and a Study of the Synergistic Effect. J Chromatogr Sci 2020; 58:969-975. [DOI: 10.1093/chromsci/bmaa058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/13/2022]
Abstract
Abstract
A new capillary electrophoresis method was applied to chiral separation of three amino acids, including D,L-tryptophan, D,L-tyrosine and D,L-phenylalanine. The chiral resolution was attained in an untreated fused-sillica capillary using a dual chiral selector, which was made up of Cu(II)-L-histidine complex and β-cyclodextrin (CD). The cardinal factors influencing its separation efficiency, such as chiral selectors, buffer pH and applied voltage, were optimized. Best results were acquired by using a buffer consisting of 10 mmol/L Cu(II), 13 mmol/L L-histidine, 8 mmol/L β-CD, 5 mmol/L phosphate adjusted to pH 5.0 and 15 kV applied voltage. All enantiomers were entirely resolved within 20 min with high resolutions of 3.6~6.1. The analysis method was verified through the determination of D,L-tryptophan in terms of linearity, precision and accuracy. And the robustness of this method was proved. The Limit of Detection and Limit of Quantification for both enantiomers were 2.5 and 5 μg/mL, respectively. The method was perfectly applied to the determination of the enantiomeric purity of L-tryptophan. Furthermore, the interaction between Cu(II)-L-histidine complex and β-CD was also studied using Ultraviolet-visible and 1H NMR spectroscopy to explain the synergistic effect involved. The results illustrated that Cu(II)-L-histidine complex and β-CD played a synergistic role in the enantiomeric separation of chiral drugs, with good prospects for application.
Collapse
Affiliation(s)
- Zifu Xu
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| | - Jin Guan
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| | - Huili Shao
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| | - Shitong Fan
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| | - Xiaoyu Li
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| | - Shuang Shi
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| | - Feng Yan
- School of Applied Chemistry, Shenyang University of Chemical Technology, 11 ST. Economic and Technological Development Zone, Shenyang 110142, P.R. China
| |
Collapse
|
17
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Ren S, Xue S, Sun X, Rui M, Wang L, Zhang Q. Investigation of the synergistic effect of chiral ionic liquids as additives in non-aqueous capillary electrophoresis for enantioseparation. J Chromatogr A 2020; 1609:460519. [DOI: 10.1016/j.chroma.2019.460519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
|
19
|
Casado N, Valimaña-Traverso J, García MÁ, Marina ML. Enantiomeric Determination of Drugs in Pharmaceutical Formulations and Biological Samples by Electrokinetic Chromatography. Crit Rev Anal Chem 2019; 50:554-584. [PMID: 31569950 DOI: 10.1080/10408347.2019.1670043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is a relevant issue in the pharmaceutical field due to the different biological activity that enantiomers of a chiral drug can show. In fact, the desired biological or pharmaceutical activity might be present in only one of the enantiomers, while the other enantiomer(s) may have different biological activity, be inactive or even toxic. This has motivated in recent years the development of drugs marketed as pure enantiomers to avoid exposing the organism to the action of enantiomers that may not be active or even harmful to health. Thus, it is of high interest to develop enantioselective analytical methodologies to control the presence of enantiomeric impurities and to understand the enantioselective metabolism of chiral drugs. This review gives an overview about the analytical strategies developed by electrokinetic chromatography (EKC) from 2010 to June 2019 for the enantiomeric determination of drugs in both pharmaceutical formulations and biological samples. The types of chiral selectors used, the migration order of enantiomers, their resolution, the detection technique employed and the sensitivity achieved are revised and compared. Also, applications to assess the enantiomeric purity control of pharmaceutical formulations and to determine chiral drugs in biological samples to study their metabolism are included. Advantages and limitations of the chiral methods developed by EKC are also discussed.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - Jesús Valimaña-Traverso
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - María Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Ma X, Du Y, Sun X, Liu J, Huang Z. Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis. J Chromatogr A 2019; 1601:340-349. [DOI: 10.1016/j.chroma.2019.04.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
|
21
|
Kahle J, Stein M, Wätzig H. Design of experiments as a valuable tool for biopharmaceutical analysis with (imaged) capillary isoelectric focusing. Electrophoresis 2019; 40:2382-2389. [DOI: 10.1002/elps.201900162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Julia Kahle
- Technische Universität BraunschweigInstitute of Medicinal and Pharmaceutical Chemistry Braunschweig Germany
| | - Matthias Stein
- Technische Universität BraunschweigInstitute of Medicinal and Pharmaceutical Chemistry Braunschweig Germany
| | - Hermann Wätzig
- Technische Universität BraunschweigInstitute of Medicinal and Pharmaceutical Chemistry Braunschweig Germany
| |
Collapse
|
22
|
Harnisch H, Scriba GKE. Capillary electrophoresis method for the determination of (R)-dapoxetine, (3S)-3-(dimethylamino)-3-phenyl-1-propanol, (S)-3-amino-3-phenyl-1-propanol and 1-naphthol as impurities of dapoxetine hydrochloride. J Pharm Biomed Anal 2018; 162:257-263. [PMID: 30273816 DOI: 10.1016/j.jpba.2018.09.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
A capillary electrophoresis method was developed and validated for the determination of the purity of dapoxetine with regard to the related substances (3S)-3-amino-3-phenylpropan-1-ol, (3S)-3-(dimethylamino)-3-phenylpropan-1-ol, 1-naphthol and the enantiomer (R)-dapoxetine. The separation was based on a dual selector system, which was optimized by a fractional factorial resolution V + design followed by a central composite face centered design with star distance 1 and Monte Carlo simulations for defining the design space. The optimized background electrolyte consisted of a 50 mM sodium phosphate buffer, pH 6.3, containing 45 mg/mL sulfated γ-cyclodextrin and 40.2 mg/mL 2,6-dimethyl-β-cyclodextrin. Separations were carried out in a 23.5/32 cm, 50 μm fused-silica capillary employing a separation voltage of 9 kV at 15 °C. Following robustness testing using a Plackett-Burman design the method was validated according to the International Council on Harmonization guideline Q2(R1) in the range of 0.05-1.0% relative to the dapoxetine concentration. The method was applied to the analysis of drug substance and a commercial tablet. Data regarding the enantiomeric purity of dapoxetine obtained by the capillary electrophoresis assay were comparable to the data obtained by an enantioselective HPLC method.
Collapse
Affiliation(s)
- Henrik Harnisch
- Department of Pharmaceutical and Medicinal Chemistry, School of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical and Medicinal Chemistry, School of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|