1
|
Chen T, Jia J, Zou D, Shen C, Wang S, Gao X, Yun Z, Ma J, Zhao J, Wang H, Li Y. Nuclear magnetic resonance-based solvent system selection for counter-current chromatography separation of compounds present in the same high-performance liquid chromatography peak: Flavonoids in barley seedlings as an example. J Sep Sci 2023; 46:e2300406. [PMID: 37488999 DOI: 10.1002/jssc.202300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Partition coefficient is a key parameter for counter-current chromatography separation. High-performance liquid chromatography (HPLC) is the most commonly used tool for the screening of partition coefficients. However, HPLC technology is not applicable to the compounds present in the same chromatographic peak. Nuclear magnetic resonance (NMR) technology could easily distinguish compounds according to their characteristic absorption even if they exist in the same HPLC peak. In this study, two flavonoids present in the same HPLC peak were successfully purified by counter-current chromatography with a solvent system screened by NMR to show the great potential of NMR technology in the screening of the partition coefficient of co-efflux compounds. Through NMR screening, an optimized ethyl acetate/n-buthanol/water (7:3:10, v/v/v) system was applied in this study. As a result, two flavonoids, including 4.8 mg of 3'-methoxyl-6'''-O-feruloylsaponarin and 9.8 mg of 6'''-O-feruloylsaponarin were separated from 15 mg of the mixture. There is only one methoxy group difference between the two flavonoids. This study provides a new strategy for the screening of counter-current chromatography solvent systems and broadens the application scope of counter-current chromatography.
Collapse
Affiliation(s)
- Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
- Characteristic Biology Resources Research Center, University of the Chinese Academy of Sciences, Beijing, P.R. China
| | - Jing Jia
- Characteristic Biology Resources Research Center, Dongying Center for Industrial Products Inspection and Metrological Verification, Dongying, P. R. China
| | - Denglang Zou
- Characteristic Biology Resources Research Center, Qinghai Normal University, Xining, P. R. China
| | - Cheng Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Shuo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Xiuzhen Gao
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Zhongxiang Yun
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Jialin Ma
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Jing Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Huan Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P.R. China
| |
Collapse
|
2
|
Liu R, Han X, Gao J, Luo M, Guo D, Wang G. Metabolite Chemical Composition of the Bletilla striata (Thunb.) Reichb. f. Endophyte Penicillium oxalicum. MYCOBIOLOGY 2023; 51:148-156. [PMID: 37359957 PMCID: PMC10288904 DOI: 10.1080/12298093.2023.2216944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Penicillium oxalicum strain can be isolated from the Bletilla striata (Thunb.) Reichb. f. tubers. Its solid-state fermentation products are concentrated by percolation extraction. Separation and purification have been conducted to the ethyl acetate extracts by preparative HPLC. Based on the use of spectrometry, we have determined 17 known compounds, 12,13-dihydroxy-fumitremorgin C (1), pseurotin A (2), tyrosol (3), cyclo-(L-Pro-L-Val) (4), cis-4-hydroxy-8-O-methylmellein (5), uracil (6), cyclo-(L-Pro-L-Ala) (7), 1,2,3,4-tetrahydro-4-hydroxy-4-quinolin carboxylic acid (8), cyclo-(Gly-L-Pro) (9), 2'-deoxyuridine (10), 1-(β-D-ribofuranosyl)thymine (11), cyclo-(L-Val-Gly) (12), 2'-deoxythymidine (13), cyclo-(Gly-D-Phe) (14), cyclo-L-(4-hydroxyprolinyl)-D-leucine (15), cyclo-(L)-4-hydroxy-Pro-(L)-Phe (16), uridine (17). Here, we report compounds 1-3, 5, 7-8, 11-12, 14-17 are first found and isolated from this endophyte.
Collapse
Affiliation(s)
- Ran Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuehua Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Pidu District Maternal and Child Health Care Hospital, Chengdu, China
| | - Min Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dale Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangzhi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Stelmasiewicz M, Świątek Ł, Ludwiczuk A. Chemical and Biological Studies of Endophytes Isolated from Marchantia polymorpha. Molecules 2023; 28:2202. [PMID: 36903448 PMCID: PMC10004590 DOI: 10.3390/molecules28052202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Natural bioresources, predominantly plants, have always been regarded as the richest source of drugs for diseases threatening humanity. Additionally, microorganism-originating metabolites have been extensively explored as weapons against bacterial, fungal, and viral infections. However, the biological potential of metabolites produced by plant endophytes still remains understudied, despite significant efforts reflected in recently published papers. Thus, our goal was to evaluate the metabolites produced by endophytes isolated from Marchantia polymorpha and to study their biological properties, namely anticancer and antiviral potential. The cytotoxicity and anticancer potential were assessed using the microculture tetrazolium technique (MTT) against non-cancerous VERO cells and cancer cells-namely the HeLa, RKO, and FaDu cell lines. The antiviral potential was tested against the human herpesvirus type-1 replicating in VERO cells by observing the influence of the extract on the virus-infected cells and measuring the viral infectious titer and viral load. The most characteristic metabolites identified in the ethyl acetate extract and fractions obtained by use of centrifugal partition chromatography (CPC) were volatile cyclic dipeptides, cyclo(l-phenylalanyl-l-prolyl), cyclo(l-leucyl-l-prolyl), and their stereoisomers. In addition to the diketopiperazine derivatives, this liverwort endophyte also produced arylethylamides and fatty acids amides. The presence of N-phenethylacetamide and oleic acid amide was confirmed. The endophyte extract and isolated fractions showed a potential selective anticancer influence on all tested cancer cell lines. Moreover, the extract and the first separated fraction noticeably diminished the formation of the HHV-1-induced cytopathic effect and reduced the virus infectious titer by 0.61-1.16 log and the viral load by 0.93-1.03 log. Endophytic organisms produced metabolites with potential anticancer and antiviral activity; thus, future studies should aim to isolate pure compounds and evaluate their biological activities.
Collapse
Affiliation(s)
- Mateusz Stelmasiewicz
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Zhao S, Li J, Liu J, Xiao S, Yang S, Mei J, Ren M, Wu S, Zhang H, Yang X. Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Front Microbiol 2023; 13:1085666. [PMID: 36687635 PMCID: PMC9852848 DOI: 10.3389/fmicb.2022.1085666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Fungi are considered to be one of the wealthiest sources of bio-metabolites that can be employed for yielding novel biomedical agents. Alternaria, including parasitic, saprophytic, and endophytic species, is a kind of dark fungi that can produce a broad array of secondary metabolites (SMs) widely distributed in many ecosystems. These are categorized into polyketides, nitrogen-containing compounds, quinones, terpenes, and others based on the unique structural features of the metabolites. New natural products derived from Alternaria exhibit excellent bioactivities characterized by antibacterial, antitumor, antioxidative, phytotoxic, and enzyme inhibitory properties. Thus, the bio-metabolites of Alternaria species are significantly meaningful for pharmaceutical, industrial, biotechnological, and medicinal applications. To update the catalog of secondary metabolites synthesized by Alternaria fungi, 216 newly described metabolites isolated from Alternaria fungi were summarized with their diverse chemical structures, pharmacological activity, and possible biosynthetic pathway. In addition, possible insights, avenues, and challenges for future research and development of Alternaria are discussed.
Collapse
Affiliation(s)
- Shiqin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shaoyujia Xiao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sumei Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiahui Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mengyao Ren
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuzhe Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hongyuan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiliang Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Xiliang Yang
| |
Collapse
|
5
|
Xiao X, Tong Z, Zhang Y, Zhou H, Luo M, Hu T, Hu P, Kong L, Liu Z, Yu C, Huang Z, Hu L. Novel Prenylated Indole Alkaloids with Neuroprotection on SH-SY5Y Cells against Oxidative Stress Targeting Keap1–Nrf2. Mar Drugs 2022; 20:md20030191. [PMID: 35323490 PMCID: PMC8952805 DOI: 10.3390/md20030191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been implicated in the etiology of Parkinson’s disease (PD). Molecules non-covalently binding to the Keap1–Nrf2 complex could be a promising therapeutic approach for PD. Herein, two novel prenylated indole alkaloids asperpenazine (1), and asperpendoline (2) with a scarce skeleton of pyrimido[1,6-a]indole were discovered from the co-cultivated fungi of Aspergillus ochraceus MCCC 3A00521 and Penicillium sp. HUBU 0120. Compound 2 exhibited potential neuroprotective activity on SH-SY5Y cells against oxidative stress. Molecular mechanism research demonstrated that 2 inhibited Keap1 expression, resulting in the translocation of Nrf2 from the cytoplasm to the nucleus, activating the downstream genes expression of HO-1 and NQO1, leading to the reduction in reactive oxygen species (ROS) and the augment of glutathione. Molecular docking and dynamic simulation analyses manifested that 2 interacted with Keap1 (PDB ID: 1X2R) via forming typical hydrogen and hydrophobic bonds with residues and presented less fluctuation of RMSD and RMSF during a natural physiological condition.
Collapse
Affiliation(s)
- Xueyang Xiao
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Zhou Tong
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Hui Zhou
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Mengying Luo
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Tianhui Hu
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Ping Hu
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Luqi Kong
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Zeqin Liu
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Chan Yu
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Correspondence: (Z.H.); (L.H.); Tel.: +86-22-84861931 (Z.H.); +86-27-88661237-8023 (L.H.)
| | - Linzhen Hu
- National & Local Joint Engineering Research Centre of High-Throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.X.); (Z.T.); (H.Z.); (M.L.); (T.H.); (P.H.); (L.K.); (Z.L.); (C.Y.)
- Correspondence: (Z.H.); (L.H.); Tel.: +86-22-84861931 (Z.H.); +86-27-88661237-8023 (L.H.)
| |
Collapse
|
6
|
Chen T, Wang S, Li H, Shen C, Yan S, Wei Y, Song Z, Li P, Li Y. Efficient One-Step Separation of Five Flavonoids from the Crude Extract of the Waste Pomace of Sea Buckthorn Berries through Counter-Current Chromatography. J Chromatogr Sci 2021; 60:578-583. [PMID: 34343279 DOI: 10.1093/chromsci/bmab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 11/12/2022]
Abstract
The pomace of sea buckthorn berries is usually discarded when transforming into nonalcoholic or alcoholic beverages, jellies, jams, juices, candies and dairy products. Here, we established a promising approach for one step separation of five flavonoids from the waste pomace of sea buckthorn berries through counter-current chromatography. The crude extract of waste pomace of sea buckthorn berries after juicing was injected into counter-current chromatography with hexane/ethyl acetate/ethanol/water (v/v/v/v, 5:7:5:7) as the solvent system. As a result, five flavonoids, including quercetin, laricitrin, isorhamnetin-7-O-rhamnoside, kaempferol and isorhamnetin, were obtained in a single step separation. Our finding showed that ethanol is a good substitute for methanol to regulate the partition coefficient in hexane/ethyl acetate/ methanol/water system. This study provided a significant measure to utilize the waste pomace of Sea buckthorn berries.
Collapse
Affiliation(s)
- Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Hongmei Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuping Yan
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yangfei Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhibo Song
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peipei Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| |
Collapse
|
7
|
Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar Drugs 2021; 19:md19080403. [PMID: 34436242 PMCID: PMC8398661 DOI: 10.3390/md19080403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.
Collapse
|
8
|
Mei Z, Zhang R, Zhao Z, Zheng G, Xu X, Yang D. Extraction process and method validation for bioactive compounds from Citrus reticulata cv. Chachiensis: Application of response surface methodology and HPLC–DAD. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2020.00789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractCitrus reticulata cv. Chachiensis, a traditional Chinese herb, has extensive medicinal and edible effects. 3′,4′,5,6,7,8-Hexamethoxyflavone (HM) and 5,6,7,8,4′-pentamethoxyflavone (PM) are main bioactive compounds in Chachiensis, which have been reported to possess various biological properties. In this study, supercritical CO2 extraction (SCE) and high-speed countercurrent chromatography (HSCCC) were utilized to prepare HM and PM from Chachiensis. The contents of target compounds were determined by a high-performance liquid chromatography method with diode-array detection (HPLC-DAD), which was validated using the following parameters: linearity, sensitivity, repeatability, stability, precision and accuracy. The SCE conditions were optimized using response surface methodology with central composite design. Obtained optimum conditions were temperature of 37.9 °C, pressure of 26.3 MPa, and modifier volume of 81.0 mL. Under above conditions, the recoveries of target compounds were 92.52 ± 0.83 and 96.36 ± 0.43%, respectively. The most appropriate solvent system for HSCCC was selected as n-hexane/ethyl acetate/methanol/water (1:0.8:1:1.2, v/v). The HSCCC fractions were detected by HPLC-DAD, liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). The results indicated that this method was successfully applied to obtain HM and PM with high purities and high recoveries from Chachiensis.
Collapse
Affiliation(s)
- Zhenying Mei
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongfei Zhang
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhimin Zhao
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| | - Guodong Zheng
- 3School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinjun Xu
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| | - Depo Yang
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
9
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Wang X, Zhao S, Wang C, Du W, Sun H, Sun W, Jin Y, Zuo G, Tong S. Orthogonality in the selection of biphasic solvent systems for off-line two-dimensional countercurrent chromatography from Polygonum cuspidatum Sieb. et Zucc. J Chromatogr A 2020; 1634:461666. [PMID: 33197846 DOI: 10.1016/j.chroma.2020.461666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Off-line two-dimensional countercurrent chromatography has been widely applied to the isolation of complex samples, but little research on the investigation of orthogonality in the selection of biphasic solvent systems is available. In the present work, the orthogonality in the selection of a biphasic solvent system for liquid-liquid chromatographic separation of aqueous extract and ether extract from the traditional Chinese medicinal plant Polygonum cuspidatum Sieb. et Zucc was evaluated by the correlation coefficient and space occupancy rate. In total, 25 different biphasic solvent systems were tested, and 313 system combinations were analysed. A convex hull methodology was used to determine the separation space and to optimize separation conditions. The correlation coefficient matrix was transformed into dendrograms and a colour map to visualize the dissimilarity between, and orthogonality for, all solvent systems. The aqueous extracts from Polygonum cuspidatum were separated using selected biphasic solvent systems with high orthogonality: ethyl acetate-ethanol-water (70:1:70, v/v) and petroleum ether-ethyl acetate-water (1:5:5, v/v). The ether extracts from Polygonum cuspidatum were also separated using selected biphasic solvent systems with high orthogonality: petroleum-ethyl acetate-methanol-aqueous 0.25 M NH3•H2O (5:5:5:5, v/v) and petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v). Thirteen compounds were successfully obtained. The experimental results demonstrated that the evaluation of orthogonality provided an alternative strategy to select an applicable solvent system for the separation of complex samples using off-line two-dimensional countercurrent chromatography.
Collapse
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaoyue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hengmian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenyu Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yang Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Ma Y, Yang X, Chen J, Zhao J, Yang L, Yan S, Li H, Shen C, Wei Y, Wang S, Chen T, Chen Z, Li Y. Separation of five flavonoids with similar polarity from
Caragana korshinskii
Kom. by preparative high speed counter‐current chromatography with recycling and heart cut mode. J Sep Sci 2020; 43:3748-3755. [DOI: 10.1002/jssc.202000535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Yumei Ma
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
- Qinghai Institute of Health Science Xining P. R. China
| | - Xue Yang
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Jilin Chen
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Jingyang Zhao
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Li Yang
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Shuping Yan
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Hongmei Li
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Cheng Shen
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Yangfei Wei
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Shuo Wang
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Tao Chen
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| | - Zhi Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai‐Tibetan Plateau Qinghai Normal University Xining P. R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology Chinese Academy of Science Xining P. R. China
| |
Collapse
|