1
|
Afsordeh A, Arbabsadeghi A, Javanmardi H, Bagheri H. Incorporation of Cu-TATAB metal-organic framework within polyurethane nanocomposite for enhanced thin film microextraction of some chlorinated pesticides. J Chromatogr A 2024; 1730:465061. [PMID: 38909520 DOI: 10.1016/j.chroma.2024.465061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
In this research, electrospun nanofibers based on copper-based metal organic framework (MOF)/polyurethane (PU) were prepared in order to achieve an applicable and superior extractive phase. The incorporation of MOF, in the synthesized nanocomposite contributed to the enhanced sorption efficiency. The prepared sorbent was implemented for the thin film microextraction (TFME) of target compounds with subsequent quantification using gas chromatography-mass spectrometry (GC-MS). To obtain the maximum efficiency of the synthesized sorbent, the influential parameters on extraction and desorption steps, including the MOF percentage in nanocomposite, desorption solvent type and its volume, desorption time, solution ionic strength and extraction time were optimized. After method development, the linear dynamic range (0.02-700 μg L-1), limits of detection (LODs) (0.005-0.1 μg L-1) and limits of quantification (LOQs))0.02-0.33 μg L-1(were calculated. The relative standard deviations values for intra-day and inter-day analysis were found to be in the range of 4.3-5.3 % and 6.2-8.1 %, respectively. The developed method was validated for the TFME of model organochlorine (OC) pesticide residues in fish, soil and water samples. the recovery values for the spiked samples at two concentration levels of 5 and 100 µg l-1 were found in the range of 72-110 %.
Collapse
Affiliation(s)
- Amirhosein Afsordeh
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Amirreza Arbabsadeghi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Hasan Javanmardi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran; Department of Chemistry, University of Waterloo, Ontario N2L 3G1 Waterloo, Canada
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
2
|
Pinheiro KMP, Sako AVF, Rodrigues MF, Vaz BG, Medeiros Junior I, Carvalho RM, Coltro WKT. Analysis of naphthenic acids in produced water samples by capillary electrophoresis-mass spectrometry. J Sep Sci 2023; 46:e2300442. [PMID: 37582647 DOI: 10.1002/jssc.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A capillary electrophoresis-mass spectrometry method was used to analyze naphthenic acids in produced water samples. It was possible to detect cyclopentanecarboxylic, benzoic, cyclohexanebutyric, 1-naphthoic, decanoic, 3,5-dimethyladamantane-1-carboxylic, 9-anthracenecarboxylic, and pentadecanoic acids within ca. 13 min using a buffer composed of 40 mmol/L ammonium hydroxide, 32 mmol/L acetic acid and 20% v/v isopropyl alcohol, pH 8.6. The proposed method showed good repeatability, with relative standard deviation (RSD) values of 6.6% for the sum of the peak areas and less than 2% for the analysis time. In the interday analysis, the RSD values for the sum of the peak areas and migration time were 10.3% and 10%, respectively. The developed method demonstrated linear behavior in the concentration range between 5 and 50 mg/L for benzoic, decanoic, 3,5-dimethyladamantane-1-carboxylic and 9-anthracenecarboxylic acids, and between 10 and 50 mg/L for cyclopentanecarboxylic, cyclohexanebutyric, 1- naphthoic, and pentadecanoic acids. The detection limits values ranged from 0.31 to 1.64 mg/L. Six produced water samples were analyzed and it was possible to identify and quantify cyclopentanecarboxylic, benzoic, cyclohexanebutyric, and decanoic acids. The concentrations varied between 4.8 and 98.9 mg/L, proving effective in the application of complex samples.
Collapse
Affiliation(s)
| | - Alysson V F Sako
- Instituto de Química, Universidade Federal da Santa Catarina, Florianópolis, Brazil
| | | | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Iris Medeiros Junior
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, Brazil
| | - Rogerio M Carvalho
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
3
|
Hosseini FS, Kharazmi F, Davarani SSH, Ebrahimzadeh H. Development of electrospun nanofibers based on Poly (vinyl alcohol) for thin film solid-phase microextraction of antidepressant drugs in biological samples. J Chromatogr A 2023; 1697:463984. [PMID: 37084693 DOI: 10.1016/j.chroma.2023.463984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Today, antidepressants are widely used and it is important to determine their trace amounts due to harmful consequences. Here, a new nano sorbent was reported for the simultaneous extraction and determination of three types of antidepressant drugs (Clomipramine (CLO), Clozapine (CLZ), and Trimipramine (TRP) by the thin-film solid-phase micro-extraction (TFME-μSPE) method followed by the Gas Chromatography-flame ionization detector (GC-FID) analysis. So, the compound poly (vinyl alcohol) (PVA)/citric acid(CA)/β-cyclodextrin/Bi2S3@g-C3N4 nano sorbent was constructed by electrospinning technique. Then, nano sorbent was studied to optimize the many parameters impacting the extraction performance. Electrospun nanofiber has a large surface area, high porosity, and homogeneous morphology with a uniform bead-free structure. In optimal conditions, the limits of detection and quantification were calculated to be 0.15-0.03 ng mL-1 and 0.5-0.1 ng mL-1, respectively. The dynamic linear range (DLR) was in the range of 0.1 to 1000 ng mL-1 for CLO and CLZ, and 0.5 to 1000 ng mL-1 for TRP with correlation coefficients (R2) of 0.999. The relative standard deviations (RSDs) were achieved in the range of 4.9-6.8% (intra-day, n = 4) and 5.4-7.9% (inter-day, n = 3) in the period of 3 days. Finally, the capability of the method was evaluated to simultaneously measure trace amounts of antidepressants aqueous sample with desirable extraction efficiency (78 to 95%).
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Farbod Kharazmi
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Saied Saeed Hosseiny Davarani
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Crucello J, Sampaio NM, Junior IM, Carvalho RM, Gionfriddo E, Marriott PJ, Hantao LW. Automated method using direct-immersion solid-phase microextraction and on-fiber derivatization coupled with comprehensive two-dimensional gas chromatography high-resolution mass spectrometry for profiling naphthenic acids in produced water. J Chromatogr A 2023; 1692:463844. [PMID: 36758493 DOI: 10.1016/j.chroma.2023.463844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Naphthenic acids (NAs) are naturally occurring organic acids in petroleum and are found in waste waters generated during oil production (produced water, PW). Profiling this class of compounds is important due to flow assurance during oil exploration. Compositional analysis of PW is also relevant for waste treatment to reduce negative impacts on the environment. Here, comprehensive two-dimensional gas chromatography coupled with high-resolution mass spectrometry (GC×GC-HRMS) was applied as an ideal platform for qualitative analysis of NAs by combining the high peak capacity of the composite system with automated scripts for group-type identification based on accurate mass measurements and fragmentation patterns. To achieve high-throughput profiling of NAs in PW samples, direct-immersion solid phase microextraction (DI-SPME) was selected for extraction, derivatization and preconcentration. A fully automated DI-SPME method was developed to combine extraction, fiber rinsing and drying, and on-fiber derivatization with N-methyl-N‑tert-butyldimethylsilyltrifluoroacetamide (MTBSTFA). Data processing was based on filtering scripts using the Computer Language for Identifying Chemicals (CLIC). The method successfully identified up to 94 NAs comprising carbon numbers between 6 and 18 and hydrogen deficiency values ranging from 0 to -4. The proposed method demonstrated wider extraction coverage compared to traditional liquid-liquid extraction (LLE) - a critical factor for petroleomic investigations. The method developed also enabled quantitative analysis, exhibiting detection limits of 0.5 ng L-1 and relative standard deviation (RSD) at a concentration of NAs of 30 µg L-1 ranging from 4.5 to 25.0%.
Collapse
Affiliation(s)
- Juliana Crucello
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, SP 13083-862, Brazil
| | - Naiara Mfm Sampaio
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, SP 13083-862, Brazil
| | - Iris Medeiros Junior
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Rio de Janeiro, RJ 20031-912, Brazil
| | - Rogerio Mesquita Carvalho
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Rio de Janeiro, RJ 20031-912, Brazil
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH 43606, United States; School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, United States; Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH 43606, United States
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, SP 13083-862, Brazil.
| |
Collapse
|
5
|
Workman J. The 2023 Lifetime Achievement and Emerging Leader in Chromatography Awards. LCGC NORTH AMERICA 2023. [DOI: 10.56530/lcgc.na.pe3372w9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Peter Schoenmakers and Emanuela Gionfriddo are the winners of the 16th annual LCGC Lifetime Achievement and Emerging Leader in Chromatography Awards, respectively. The LCGC Awards honor the work of leading separation scientists for lifetime achievement and emerging potential. The award winners will be honored in an oral symposium at the Pittcon 2023 conference in March 2023 in Philadelphia, Pennsylvania, USA.
Collapse
|
6
|
Marín-San Román S, Carot JM, Sáenz de Urturi I, Rubio-Bretón P, Pérez-Álvarez EP, Garde-Cerdán T. Optimization of thin film-microextraction (TF-SPME) method in order to determine musts volatile compounds. Anal Chim Acta 2022; 1226:340254. [DOI: 10.1016/j.aca.2022.340254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
|
7
|
Emmons RV, Shyam Sunder GS, Liden T, Schug KA, Asfaha TY, Lawrence JG, Kirchhoff JR, Gionfriddo E. Unraveling the Complex Composition of Produced Water by Specialized Extraction Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2334-2344. [PMID: 35080868 DOI: 10.1021/acs.est.1c05826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Produced water (PW), a waste byproduct of oil and gas extraction, is a complex mixture containing numerous organic solubles and elemental species; these constituents range from polycyclic aromatic hydrocarbons to naturally occurring radioactive materials. Identification of these compounds is critical in developing reuse and disposal protocols to minimize environmental contamination and health risks. In this study, versatile extraction methodologies were investigated for the untargeted analysis of PW. Thin-film solid-phase microextraction with hydrophilic-lipophilic balance particles was utilized for the extraction of organic solubles from eight PW samples from the Permian Basin and Eagle Ford formation in Texas. Gas chromatography-mass spectrometry analysis found a total of 266 different organic constituents including 1,4-dioxane, atrazine, pyridine, and PAHs. The elemental composition of PW was evaluated using dispersive solid-phase extraction followed by inductively coupled plasma-mass spectrometry, utilizing a new coordinating sorbent, poly(pyrrole-1-carboxylic acid). This confirmed the presence of 29 elements including rare earth elements, as well as hazardous metals such as Cr, Cd, Pb, and U. Utilizing chemometric analysis, both approaches facilitated the discrimination of each PW sample based on their geochemical origin with a prediction accuracy above 90% using partial least-squares-discriminant analysis, paving the way for PW origin tracing in the environment.
Collapse
Affiliation(s)
- Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
| | - Govind Sharma Shyam Sunder
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
- Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Timnit Yosef Asfaha
- Center for Materials and Sensor Characterization, College of Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph G Lawrence
- Center for Materials and Sensor Characterization, College of Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Jon R Kirchhoff
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
8
|
Hejabri Kandeh S, Amini S, Ebrahimzadeh H. Development of poly(vinyl alcohol)/chitosan/aloe vera gel electrospun composite nanofibers as a novel sorbent for thin-film micro-extraction of pesticides in water and food samples followed by HPLC-UV analysis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05634d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schematic presentation of applying PVA/CA/CS/AV composite nanofibers as the extraction phase in thin-film micro-extraction (TFME) of six pesticide compounds prior to HPLC-UV analysis.
Collapse
Affiliation(s)
- Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Vasseghian Y, Hosseinzadeh S, Khataee A, Dragoi EN. The concentration of persistent organic pollutants in water resources: A global systematic review, meta-analysis and probabilistic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149000. [PMID: 34273825 DOI: 10.1016/j.scitotenv.2021.149000] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 05/27/2023]
Abstract
The persistent organic pollutants (POPs) are environmentally stable and highly toxic chemicals that accumulate in living adipose tissue and have a very destructive effect on aquatic ecosystems. To analyze the evolution of the concentration and prevalence of POPs such as α-HCH, β-HCH, γ-HCH, ∑-HCH, Heptachlor, Aldrin, p,p'-DDE, p,p'-DDT, ∑-DDT, and ∑-OCP in water resources, a search between January 01, 1970, to February 10, 2020, was followed using a systematic review and meta-analysis prevalence. Among the 2306 explored articles in the reconnaissance step, 311 articles with 5315 exemplars, 56 countries, and 4 types of water were included in the meta-analysis study. Among all studied POPs, the concentration of p,p'-DDT in water resources was the highest, especially in drinking water resources. The overall rank order based on the concentration and prevalence of POPs were surface water > drinking water > seawater > groundwater. To identify POPs-contaminated areas, the distance from the mean relative to their distribution was considered. The most to the least polluted areas included: South Africa, India, Turkey, Pakistan, Canada, Hong Kong, and China. The highest carcinogenic risk was observed for β-HCH (Turkey and China), followed by α-HCH (Mexico). The highest non-carcinogenic risk was identified for Aldrin (all analyzed countries), followed by Dieldrin (Turkey) and γ-HCH (Mexico). The Monte Carlo analysis (under the assumption that γ-HCH has a normal distribution), the mean obtained was 8.22E-07 for children and 3.83E-07 for adults. This is in accordance with the standard risk assessment approach. In terms of percentiles, the Monte-Carlo approach indicates that 75% of child population is under the 1.07E-06 risk and 95% of adults under 7.35E-06.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sevda Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| |
Collapse
|
10
|
Porto NDA, Crucello J, Facanali R, Junior IM, Carvalho RM, Hantao LW. Profiling naphthenic acids in produced water using hollow fiber liquid-phase microextraction combined with gas chromatography coupled to Fourier transform Orbitrap mass spectrometry. J Chromatogr A 2021; 1655:462485. [PMID: 34474190 DOI: 10.1016/j.chroma.2021.462485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
In this study, we describe the development of an analytical method to profile naphthenic acids (NAs) from produced water (PW). The NAs were isolated by hollow fiber liquid-phase microextraction (HF-LPME). A microwave-assisted methylation method was used to convert the free acids into its corresponding naphthenic methyl esters (NAMEs). The best reaction conditions were ascertained using central composite design. The optimized sample preparation method exhibited an improved analytical eco-scale value (80 vs. 61) compared to conventional liquid-liquid extraction. Although the primary goal was qualitative analysis of NAMEs (e.g., group-type separation) in produced water, the quantitative performance was also evaluated for future investigations. The instrumental detection and quantification limits were 0.10 ng mL-1 and 0.16 ng mL-1, respectively, using full spectrum data acquisition. The accuracy and precision of the proposed method ranged from 90.4 to 96.6 % and 3.3 to 13.1 %, respectively, using matrix-matched working solutions (0.1, 0.5, and 1.0 µg mL-1). The monoisotopic masses of the adduct ions ([M+H]+) and its corresponding fine isotopic patterns were used to determine the elemental composition of the NAMEs in the PW samples. Qualitative analysis indicated the O2 class as the predominant class in all samples with carbon numbers ranging from C5 to C19 and double bond equivalent (DBE) values of 1 to 8. Additional classes of polar compounds, i.e., O3, O4 and nitrogen-containing classes, are reported for the first time by gas chromatography coupled to Fourier transform Orbitrap mass spectrometry and chemical ionization.
Collapse
Affiliation(s)
- Nathália de Aguiar Porto
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, São Paulo 13083-862 Brazil
| | - Juliana Crucello
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, São Paulo 13083-862 Brazil
| | - Roselaine Facanali
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, São Paulo 13083-862 Brazil
| | - Iris Medeiros Junior
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Rio de Janeiro 20031-912 Brazil
| | - Rogerio Mesquita Carvalho
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Rio de Janeiro 20031-912 Brazil
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, São Paulo 13083-862 Brazil.
| |
Collapse
|
11
|
Shyam Sunder GS, Rohanifar A, Alipourasiabi N, Lawrence JG, Kirchhoff JR. Synthesis and Characterization of Poly(pyrrole-1-carboxylic acid) for Preconcentration and Determination of Rare Earth Elements and Heavy Metals in Water Matrices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34782-34792. [PMID: 34254511 DOI: 10.1021/acsami.1c05061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pyrrole was N-functionalized with solid carbon dioxide followed by chemical polymerization to create a new air-stable, granular, and water-insoluble sorbent, poly(pyrrole-1-carboxylic acid) (PPy-CO2). PPy-CO2 exhibited enhanced affinity for the sorption of metal ions compared to unfunctionalized PPy due to the incorporation of carboxylate functional groups directly onto the polymer backbone. As a freestanding sorbent material, immobilization to an additional solid support is not needed. Sorption, and therefore preconcentration, occurs simultaneously to achieve efficient removal and recovery of metal ions by a pH-dependent sorption-desorption mechanism. PPy-CO2 was evaluated on the analytical scale for the solid-phase extraction of a range of metal ions and found to efficiently preconcentrate rare earth elements (REEs), Th, and heavy metals (Cr, Fe, Cd, and Pb), which allowed quantitation by inductively coupled plasma mass spectrometry (ICP-MS). The impact of sorption parameters, such as solution pH, amount of sorbent, and sorption time, and the effect of desorption flow rate for recovery were investigated and optimized using ultrasound-assisted dispersive solid-phase extraction (UAD-SPE) with ICP-MS analysis. Maximum efficiency for sorption and recovery of most metal ions was achieved at a solution pH of 6.0, 10 mg of sorbent, a sorption time of 5 min, and desorption conditions of 1 mL of 2 M nitric acid applied at a flow rate of 0.25 mL min-1. Detection limits for REEs and Th ranged from 0.2-3.4 ng L-1 for REEs and Th and 0.9-5.7 ng L-1 for heavy metals. Linear ranges from 0.1-1000 μg L-1 for REEs and 0.1-500 μg L-1 for heavy metals and Th were also observed. PPy-CO2 successfully preconcentrated and facilitated the determination of the targeted metal ions in water matrices of varying complexity, including tap water, well water, river water, and produced water samples. These results indicate the potential application of PPy-CO2 for larger-scale recovery and removal of valuable or hazardous metal ions.
Collapse
|
12
|
Olomukoro AA, Emmons RV, Godage NH, Cudjoe E, Gionfriddo E. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples. J Chromatogr A 2021; 1651:462335. [PMID: 34174636 DOI: 10.1016/j.chroma.2021.462335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are toxic and bioaccumulative compounds that are persistent in the environment due to their water and heat resistant properties. These compounds have been demonstrated to be ubiquitous in the environment, being found in water, soil, air and various biological matrices. The determination of PFAS at ultra-trace levels is thus critical to assess the extent of contamination in a particular matrix. In this work, solid phase microextraction (SPME) was evaluated as a pre-concentration technique to aid the quantitation of this class of pollutants below the EPA established advisory limits in drinking water at parts-per-trillion levels. Four model PFAS with varying physicochemical properties, namely hexafluoropropylene oxide dimer acid (GenX), perfluoro-1- butanesulfonate (PFBS), perfluoro-n-octanoic acid (PFOA) and perfluoro-1-octanesulfonate (PFOS) were studied as a proof of concept. Analysis was performed with the use of ultra-high pressure liquid chromatography-laminar flow tandem mass spectrometry (UHPLC-MS/MS). This study proposes the use of hydrophilic-lipophilic balance-weak anion-exchange/polyacrylonitrile (HLB-WAX/PAN) as a SPME coating, ideal for all model analytes. A sample volume of 1.5 mL was used for analysis, the optimized protocol including 20 min extraction, 20 min desorption and 6 min LC/MS analysis. This method achieved LOQs of 2.5 ng L- 1 (PFOS) and 1 ng L - 1 (GenX, PFBS and PFOA) with satisfactory precision and accuracy values evaluated over a period of 5 days.
Collapse
Affiliation(s)
- Aghogho A Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States
| | - Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States
| | - Nipunika H Godage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States
| | | | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States; School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, 43606.
| |
Collapse
|
13
|
Magnetic paper-based sorptive phase for enhanced mass transference in stir membrane environmental samplers. Talanta 2021; 228:122217. [DOI: 10.1016/j.talanta.2021.122217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
|
14
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Alidoust M, Yamini Y, Baharfar M, Seidi S, Rasouli F. Microfluidic-enabled versatile hyphenation of electromembrane extraction and thin film solid phase microextraction. Talanta 2021; 224:121864. [PMID: 33379075 DOI: 10.1016/j.talanta.2020.121864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
In the present study, a versatile combination of electromembrane extraction (EME) with thin film solid phase microextraction (TF-SPME) was introduced using a microfluidic chip device. The device consisted of two single channels on two separate layers. The upper channel was dedicated to donor phase flow pass, while the beneath channel was used as a reservoir for stagnant acceptor solution. A slide of fluorine doped tin oxide (FTO) was accommodated in the bottom of the acceptor phase channel. A thin layer of polyaniline was electrodeposited on the FTO surface to achieve the required thin film for TF-SPME. A stainless-steel wire was embedded in the donor phase channel and another wire was also attached to the FTO surface. The channels were separated by a piece of polypropylene membrane impregnated with 1-octanol and the whole chip was fixed with bolts and nuts. The driving force for the extraction was an 8 V direct current (DC) voltage applied across the supported liquid membrane (SLM). Under the influence of the electrical field, analytes immigrated from sample towards the acceptor phase and then adsorbed on the thin film of the solid phase. Finally, the analytes were desorbed by successive movement of a desorption solvent in the acceptor phase channel followed by injection of the desorption solution to HPLC-UV. The applicability of the proposed device was demonstrated by the determination of four synthetic food dyes: Amaranth, Ponceau 4R, Allura Red, and Carmoisine, as the model analytes. The effective parameters on the efficiency of the both EME and TF-SPME were investigated. Under the optimized conditions, the microchip provided low LODs (1-10 μg L-1), and a wide linear dynamic range of 10-1000 μg L-1 for all analytes. The system also offered RSD values lower than 5.5% and acceptable reusability of the thin film for multiple extractions.
Collapse
Affiliation(s)
- Mina Alidoust
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115 175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115 175, Tehran, Iran.
| | - Mahroo Baharfar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115 175, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Fatemeh Rasouli
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Nukatsuka I, Satoh R, Kihara S, Kitagawa F. A thin-layer solid-phase extraction-liquid film elution technique used for the enrichment of polycyclic aromatic hydrocarbons in water. J Sep Sci 2021; 44:1989-1997. [PMID: 33605531 DOI: 10.1002/jssc.202001165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
In this article, we propose a novel microsolid-phase extraction and elution technique, which we called the thin-layer solid-phase extraction-liquid film elution technique. The thin-layer solid-phase extraction phase is an octadecylsilylated sol gel- coated porous silica thin film prepared on the outer wall of a test tube, which has a larger surface area for the extraction of the target compounds compared to a conventional solid-phase microextraction phase. After optimization of the extraction procedure for five types of polycyclic aromatic hydrocarbons, the liquid film elution technique was investigated. Liquid film elution is an elution technique wherein the compounds extracted into the thin-layer solid-phase extraction phase are eluted using a small volume of solvent film formed around the extraction phase. The results show that the elution can be carried out using 150 μL of eluent. Enrichment factors between 20 and 34 were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings in 10 mL aliquots of aqueous samples. Finally, recoveries of 85-112% were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings from spiked natural water samples using the thin-layer solid-phase extraction-liquid film elution technique.
Collapse
Affiliation(s)
- Isoshi Nukatsuka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Ryota Satoh
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Shigeki Kihara
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
17
|
Billiard KM, Dershem AR, Gionfriddo E. Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review. Molecules 2020; 25:molecules25225297. [PMID: 33202856 PMCID: PMC7696234 DOI: 10.3390/molecules25225297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Implementing green analytical methodologies has been one of the main objectives of the analytical chemistry community for the past two decades. Sample preparation and extraction procedures are two parts of analytical method development that can be best adapted to meet the principles of green analytical chemistry. The goal of transitioning to green analytical chemistry is to establish new methods that perform comparably—or superiorly—to traditional methods. The use of assessment tools to provide an objective and concise evaluation of the analytical methods’ adherence to the principles of green analytical chemistry is critical to achieving this goal. In this review, we describe various sample preparation and extraction methods that can be used to increase the greenness of a given analytical method. We gave special emphasis to modern microextraction technologies and their important contributions to the development of new green analytical methods. Several manuscripts in which the greenness of a solid-phase microextraction (SPME) technique was compared to other sample preparation strategies using the Green Analytical Procedure Index (GAPI), a green assessment tool, were reviewed.
Collapse
Affiliation(s)
- Kayla M. Billiard
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH 43606, USA;
| | - Amanda R. Dershem
- Department of Chemistry, College of Arts and Sciences, Siena Heights University, Adrian, MI 49221, USA;
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH 43606, USA;
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH 43606, USA
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
- Correspondence: ; Tel.: +1-419-530-1508
| |
Collapse
|
18
|
Grandy JJ, Galpin V, Singh V, Pawliszyn J. Development of a Drone-Based Thin-Film Solid-Phase Microextraction Water Sampler to Facilitate On-Site Screening of Environmental Pollutants. Anal Chem 2020; 92:12917-12924. [PMID: 32847349 DOI: 10.1021/acs.analchem.0c01490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To simplify on-site water sampling and screening, particularly in hard-to-reach or dangerous sites, a drone equipped with a hydrophilic-lipophilic balance (HLB), thin-film solid-phase microextraction (TF-SPME) sampler was developed. The drone-based sampler was shown to protect the sorbent phase from external contamination while preventing any detectable loss of components of a spiked modified McReynolds mixture on the membrane in the sampler for at least 10 min. HLB/poly(dimethylsiloxane) (PDMS) membranes deployed in flight on the drone sampler were demonstrated to extract disinfection by-products, including trichloromethane, dichloroacetonitrile, 1,1,1-trichloro-2-propanone, 2,2,2-trichloroethanol, benzonitrile, and benzyl nitrile, from hot tub water. When analyzed on-site, in duplicate, using hand-portable instrumentation, reasonably repeatable results were achieved (%relative standard deviations (RSD's) 5-16%). Finally, drone TF-SPME sampling of an anthropogenically impacted watercourse indicated that impact from the suspected nearby landfill site was minimal, instead suggesting that internal combustion by-products from vehicles on the nearby Highway 401 played a much larger role in contaminating the watercourse. This conclusion was supported by the confirmed presence of BTEX, styrene, isopropylbenzene, propylbenzene, and 1,3,5-trimethylbenzene. In addition to immediately identifying these compounds on-site using portable gas chromatography-mass spectrometry (GC-MS), samples were taken back to the laboratory for benchtop analysis, further supporting this conclusion.
Collapse
Affiliation(s)
- Jonathan J Grandy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Virginia Galpin
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|