1
|
Li X, Zabed HM, Yun J, Zhang Y, Zhao M, Zhang C, Ouyang Z, Li J, Qi X. Sustainable bio-manufacturing of D-arabitol through combinatorial engineering of Zygosaccharomyces rouxii, bioprocess optimization and downstream separation. BIORESOURCE TECHNOLOGY 2024; 393:130162. [PMID: 38065516 DOI: 10.1016/j.biortech.2023.130162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Biosynthesis of D-arabitol, a high value-added platform chemical, from renewable carbon sources provides a sustainable and eco-friendly alternative to the chemical industry. Here, a robust brewing yeast, Zygosaccharomyces rouxii, capable of naturally producing D-arabitol was rewired through genome sequencing-based metabolic engineering. The recombinant Z. rouxii obtained by reinforcing the native D-xylulose pathway, improving reductive power of the rate-limiting step, and inhibiting the shunt pathway, produced 73.61% higher D-arabitol than the parent strain. Subsequently, optimization of the fermentation medium composition for the engineered strain provided 137.36 g/L D-arabitol, with a productivity of 0.64 g/L/h in a fed-batch experiment. Finally, the downstream separation of D-arabitol from the complex fermentation broth using an ethanol precipitation method provided a purity of 96.53%. This study highlights the importance of D-xylulose pathway modification in D-arabitol biosynthesis, and pave a complete and efficient way for the sustainable manufacturing of this value-added compound from biosynthesis to preparation.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jia Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
2
|
An Integrated Chromatographic Strategy for the Large-Scale Extraction of Ergosterol from Tulasnellaceae sp. SEPARATIONS 2022. [DOI: 10.3390/separations9070176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A reliable chromatographic strategy is crucial for the extraction of target compounds from natural sources as it is related to the preparation efficiency, as well as the purity of the compounds. In this study, medium-pressure normal-phase liquid chromatography and high-pressure reverse-phase liquid chromatography were combined to prepare and purify ergosterol from Tulasnellaceae sp. of Gymnadenia orchidis. First, Tulasnellaceae sp. was extracted three times (2.0 L and 2 h each time) with ethyl acetate, and the 6.0 L of extract solution was concentrated under reduced pressure to yield 2.2 g of crude sample. Then, the crude sample was pretreated utilizing silica gel medium-pressure liquid chromatography to enrich the target ingredient (586.0 mg). Finally, high-pressure reversed-phase liquid chromatography was used to purify the target compound, and the compound was characterized as ergosterol (purity > 95%) using spectral data. Overall, the simple and reproducible integrated chromatographic strategy developed in this study has the potential for the large-scale purification of steroids for laboratory and even industrial research. To the best of our knowledge, this is also the first report of ergosterol in Tulasnellaceae sp.
Collapse
|
3
|
Wang Y, Hao Z, Pan L. Evaluation of multiple hydrophilic interaction chromatography columns and surrogate matrix for arginine quantification in saliva by high-resolution mass spectrometry. J Sep Sci 2021; 44:3580-3593. [PMID: 34405941 DOI: 10.1002/jssc.202100361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 02/05/2023]
Abstract
Arginine, a pivotal ingredient in many biochemical synthetic pathways, can be used as a biomarker for many oral care clinical applications. It is still a challenge to develop a sensitive and reliable chromatographic method to quantify arginine as a biomarker in saliva, with or without arginine product pretreatment. The current method solved two critical issues for arginine quantitation in human saliva. The first issue was how to optimize arginine peak shape. A hydrophilic interaction chromatography method based on the column selection, pH and pKa relationship, mobile phase ionic strength, organic solvent consideration, and temperature effects was developed. An optimized chromatographic condition for arginine quantitation in the saliva matrix was obtained. The second issue was how to build confidence in the use of a simple surrogate matrix methodology to replace the more complex traditional standard addition methodology. The surrogate matrix methodology we developed is applicable to the measurement of arginine as a potential non-invasive biomarker in human saliva. The method detection and quantification limit reached 2 and 6 ng/mL. The tailing factor was within the 0.9-1.1 range even though arginine had three pKa values at 2.18, 9.09, and 13.2.
Collapse
Affiliation(s)
- Yu Wang
- Cross Category Research and Innovation Department, Technology Center, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Zhigang Hao
- Cross Category Research and Innovation Department, Technology Center, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Long Pan
- Cross Category Research and Innovation Department, Technology Center, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Ke C, Ren Y, Gao P, Han J, Tao Y, Huang J, Yang X. Separation and purification of pyrroloquinoline quinone from fermentation broth by pretreatment coupled with macroporous resin adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|