1
|
Wang R, Yu C, Shang Y, Wen J, Wei W, Du K, Li J, Fang S, Chang Y. Quantification and discovery of quality markers from Toddalia asiatica by UHPLC-MS/MS coupled with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:634-646. [PMID: 38191127 DOI: 10.1002/pca.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Toddalia asiatica (TA) is a classical traditional Chinese medicine used to treat rheumatoid arthritis and contusions. However, research regarding TA quality control is currently limited. OBJECTIVE We aimed to establish a strategy for identifying quality markers that can be used for the evaluation of the quality of TA. METHOD A rapid and efficient ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantitative determination of 19 compounds in TA from different regions. Then, the extraction process of TA was successively optimized by single-factor optimization and response surface methodology. Moreover, chemometrics was employed to confirm the correlation between quality and target compounds. RESULTS Utilizing the UHPLC-MS/MS method, separation of the 19 bioactive compounds was achieved within 14 min. The method was validated in terms of linearity (r2 > 0.9982), precision (0.08%-3.70%), repeatability (0.50%-2.54%), stability (2.26%-5.46%), and recovery (95.8%-113%). The optimal extraction process (extraction solvent, 65% ethanol aqueous solution; solid-liquid ratio, 1:20; extraction time, 25 min) was determined with the total content of 19 bioactive compounds as indicator. Significant disparities were observed in the contents of target compounds across different batches of TA. Besides, all samples could be categorized into two distinct groups, and magnoflorine, (-)-lyoniresinol, nitidine chloride, norbraylin, skimmianine, and decarine were identified as quality markers. CONCLUSION In the present study, we developed a strategy to improve the quality control of TA. In consideration of the pharmacodynamic activity and statistical differences, six compounds are proposed as quality markers for TA.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiake Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Zhao J, Chen Z, Li L, Sun B. UHPLC-MS/MS analysis and protective effects on neurodegenerative diseases of phenolic compounds in different parts of Diospyros kaki L. cv. Mopan. Food Res Int 2024; 184:114251. [PMID: 38609229 DOI: 10.1016/j.foodres.2024.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024]
Abstract
Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.
Collapse
Affiliation(s)
- Jian Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongling Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; Pólo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos 2565-191, Portugal.
| |
Collapse
|
3
|
Hurkul MM, Cetinkaya A, Kaya SI, Yayla S, Ozkan SA. Investigation of Health Effects of Major Phenolic Compounds in Foods: Extraction Processes, Analytical Approaches and Applications. Crit Rev Anal Chem 2024:1-35. [PMID: 38650305 DOI: 10.1080/10408347.2024.2336981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.
Collapse
Affiliation(s)
- M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Yu Y, Zuo C, Li M, Tang Y, Li L, Wang F, Zhang S, Sun B. Novel l-Cysteine Incomplete Degradation Method for Preparation of Procyanidin B2-3'- O-Gallate and Exploration of its in Vitro Anti-inflammatory Activity and in Vivo Tissue Distribution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4023-4034. [PMID: 38357881 DOI: 10.1021/acs.jafc.3c05616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In this study, an effective method for preparation of bioactive galloylated procyanidin B2-3'-O-gallate (B2-3'-G) was first developed by incomplete depolymerization of grape seed polymeric procyanidins (PPCs) using l-cysteine (Cys) in the presence of citric acid. The structure-activity relationship of B2-3'-G was further evaluated in vitro through establishing lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. The results suggested that the better protective effects of B2-3'-G against inflammation were attributed to its polymerization degree and the introduction of the galloyl group, compared to its four corresponding structural units. In vivo experiments demonstrated that the B2-3'-G prototype was distributed in plasma, small intestine, liver, lung, and brain. Remarkably, B2-3'-G was able to penetrate the blood-brain barrier and appeared to play an important role in improving brain health. Furthermore, a total of 18 metabolites were identified in tissues. Potential metabolic pathways, including reduction, methylation, hydration, desaturation, glucuronide conjugation, and sulfation, were suggested.
Collapse
Affiliation(s)
- Yanxia Yu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunying Zuo
- National Engineering Research Center of Pharmaceutics of Traditional Chinese Medicine, Benxi 117004, China
- Shenzhen Chinese Medicine Manufacturing Innovation Center Co., Shenzhen 518109, China
| | - Mingrui Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Tang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
| |
Collapse
|
5
|
Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients 2023; 15:4119. [PMID: 37836403 PMCID: PMC10574057 DOI: 10.3390/nu15194119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
6
|
Chen S, Yuan M, Zhang Y, Xu Y, Xu H. Characterization and quantification of chemical constituents in Fuzhuan brick tea using ultra-high-performance liquid chromatography-mass spectrometry. J Sep Sci 2023; 46:e2300087. [PMID: 37380621 DOI: 10.1002/jssc.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Fuzhuan brick tea, a distinctive dark tea fermented by microorganisms, is a traditional beverage in China throughout history. Recently, it has attracted considerable attention owing to its unique quality characteristics and potential health benefits. The aim of this study was to establish a method for the quality control of Fuzhuan brick tea for stable production. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to identify Fuzhuan brick tea, and the major components were chosen for further quantitative analysis. Subsequently, a quantification method was developed using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry, and its reliability was verified through methodological validation. Finally, a total of 30 compounds were identified, including catechins, flavonoids, alkaloids, and fatty acids. The established method was reliable for methodological validation and was applied to the quantitative analysis of Fuzhuan brick tea. This study provides a fundamental basis for the quality control and further studies on the component analysis of Fuzhuan brick tea.
Collapse
Affiliation(s)
- Simin Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yingling Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
7
|
Bai X, Zhou L, Zhou L, Cang S, Liu Y, Liu R, Liu J, Feng X, Fan R. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023; 28:molecules28083610. [PMID: 37110844 PMCID: PMC10140916 DOI: 10.3390/molecules28083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Blueberry is the source of a variety of bioactive substances, including phenolic compounds, such as anthocyanins, pterostilbene, phenolic acids, etc. Several studies have revealed that polyphenols in blueberry have important bioactivities in maintaining health, such as antioxidant and anti-tumor activities, immune regulation, the prevention of chronic diseases, etc. Therefore, these phenolic compounds in blueberries have been widely used in the field of healthcare, and the extraction, isolation, and purification of phenolic compounds are the prerequisites for their utilization. It is imperative to systematically review the research progress and prospects of phenolic compounds present in blueberries. Herein, the latest progress in the extraction, purification, and analysis of phenolic compounds from blueberries is reviewed, which can in turn provide a foundation for further research and usage of blueberries.
Collapse
Affiliation(s)
- Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Zhou
- Department of Food Science, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Song Cang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yuhan Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Rui Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Jie Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
8
|
Chen M, Zhang S, Ren Y, Le Z, Li L, Sun B. Effects of Different Brewing Technologies on Polyphenols and Aroma Components of Black Chokeberry Wine. Foods 2023; 12:foods12040868. [PMID: 36832943 PMCID: PMC9956948 DOI: 10.3390/foods12040868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The black chokeberry is a shrub of the Rosaceae family, which is characterized by strong acidity and astringency and is widely processed into wine and alcoholic beverages. However, due to the characteristics of black chokeberries, the wine brewed by traditional methods often has a strong sour taste, weak aroma, and poor sensory quality. In order to improve the sensory quality and explore the effects of different brewing technologies on polyphenols of black chokeberry wine, five brewing technologies (traditional fermentation, frozen fruit fermentation, co-fermentation, carbonic maceration, and co-carbonic maceration) were used in this study. The results showed that compared with the traditional method, the four alternative brewing technologies could reduce acidity, increase the contents of several major polyphenols, and enrich floral scents and fruity aroma, thus significantly improving the sensory qualities of black chokeberry wine. The proposed brewing technologies would be applied to the production of quality black chokeberry or other fruit wines.
Collapse
Affiliation(s)
- Mengying Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanxiao Ren
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhao Le
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence:
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Pólo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
| |
Collapse
|
9
|
Liu XL, Yan M, Chen ZG, Zhang B, Yao N, Zhao S, Zhao X, Zhang T, Hai G. A dual-site multifunctional fluorescent probe for selective detection of endogenous H 2O 2 and SO 2 derivatives based on ICT process and its bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121955. [PMID: 36228493 DOI: 10.1016/j.saa.2022.121955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we reported a coumarin-based fluorescent probe for selective detection of H2O2/SO2 derivatives via ICT process. To the best of our knowledge, it was few reported with the same probe to enable visual detection of H2O2/SO2 derivatives in vivo and in vitro. H2O2 and SO32- were selectively sensed over other analytes, and the probe displayed 20-fold and 220-fold relative fluorescence intensity respectively, as well as the good linear relationship and the excellent detection limits of 2.7 * 103 nM and 19.3 nM. Furthermore, the probe was successfully used for fluorescence imaging of the HeLa cells and the mice to monitor exogenous and endogenous H2O2 and SO32-, suggesting its potential biomedical application for investigation and detection the intermediate indicator of oxidative stress in vitro and in vivo.
Collapse
Affiliation(s)
- Xue-Liang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China.
| | - Mengdi Yan
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Zhi-Guo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Bingxin Zhang
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Ningcong Yao
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Shan Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Xiaoxia Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China.
| | - Guangfan Hai
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
10
|
Shi L, Lv YK, Wang JW, Yang LL, Shen SG. A novel thiolysis-HPLC method for the determination of proanthocyanidins in grape seeds. J Sep Sci 2022; 45:1874-1883. [PMID: 35357084 DOI: 10.1002/jssc.202200003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
A novel thiolysis-HPLC method for quantitative determination of total proanthocyanidins and mean degree of polymerization in grape seeds has been developed. Following thiolysis with formic acid and benzyl mercaptan, reaction products were separated and purified. Three proanthocyanidin monomers and three derivatives were obtained and their structures were identified by LC-MS, fourier transform infrared spectroscopy, and NMR. A decomposition model of the thiolysis products and a correction formula for proanthocyanidins concentration were established. This thiolysis-HPLC method displayed good calibration linearity (R2 > 0.999 over the concentration range 0.01 to 10 mg/mL), and excellent accuracy (recoveries of 97.9-99.6%) and precision (repeatability relative standard deviations of 0.45-0.75%). This method is suitable for the quantitative analysis of proanthocyanidins in grape seed products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lei Shi
- Department of Nursing, Hebei University, Baoding, 071000, P. R. China.,Department of Chemistry and Environmental Science, Hebei University, Baoding, 071000, P. R. China
| | - Yun-Kai Lv
- Department of Chemistry and Environmental Science, Hebei University, Baoding, 071000, P. R. China
| | - Jiang-Wang Wang
- Department of Public Health, Hebei University, Baoding, 071000, P. R. China
| | - Lan-Lan Yang
- Department of Nursing, Hebei University, Baoding, 071000, P. R. China
| | - Shi-Gang Shen
- Department of Chemistry and Environmental Science, Hebei University, Baoding, 071000, P. R. China
| |
Collapse
|
11
|
Song C, Yu D, Jin G, Ding J, Zhou H, Guo Z, Liang X. High-performance liquid chromatography quantitative analysis of ephedrine alkaloids in Ephedrae Herba on a perfluorooctyl stationary phase. J Sep Sci 2022; 45:1051-1058. [PMID: 34984820 DOI: 10.1002/jssc.202100645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022]
Abstract
Ephedrae Herba is one of the most commonly used herbal medicines, and it has been shown that most of the clinical efficacy for cold and asthma is exerted by its alkaloidal components. A simple and sensitive high-performance liquid chromatography method was developed using a perfluorooctyl column for the simultaneous determination of five alkaloids (norephedrine, norpseudoephedrine, ephedrine, pseudoephedrine, and methylephedrine) in Ephedrae Herba. The mobile phase comprising acetonitrile and 15 mM ammonium trifluoroacetate was used to elute the targets in isocratic elution mode. The method was validated for linearity (R2 > 0.999), repeatability, intraday and interday precision, recoveries with trueness (93.87-110.99%), limits of detection (5.35-5.76 µg/mL), and limits of quantification (20 µg/mL). The quantitative results revealed that the developed method was precise and accurate. Then it was successfully applied to determine the difference in the contents of three batches of Ephedrae Herba from three pharmaceutical companies.
Collapse
Affiliation(s)
- Chunying Song
- CAS Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Gaowa Jin
- CAS Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Junjie Ding
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Han Zhou
- CAS Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Zhimou Guo
- CAS Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Xinmiao Liang
- CAS Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| |
Collapse
|