1
|
Bedjanian Y, Roose A, Vallet V, Romanias MN. Experimental and Theoretical Study of the Reaction of F 2 with Thiirane. Molecules 2024; 29:3636. [PMID: 39125041 PMCID: PMC11314507 DOI: 10.3390/molecules29153636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The kinetics of the F2 reaction with thiirane (C2H4S) was studied for the first time in a flow reactor combined with mass spectrometry at a total helium pressure of 2 Torr and in the temperature range of 220 to 800 K. The rate constant of the title reaction was determined under pseudo-first-order conditions, either monitoring the kinetics of F2 or C2H4S consumption in excess of thiirane or of F2, respectively: k1 = (5.79 ± 0.17) × 10-12 exp(-(16 ± 10)/T) cm3 molecule-1 s-1 (the uncertainties represent precision of the fit at the 2σ level, with the total 2σ relative uncertainty, including statistical and systematic errors on the rate constant being 15% at all temperatures). HF and CH2CHSF were identified as primary products of the title reaction. The yield of HF was measured to be 100% (with an accuracy of 10%) across the entire temperature range of the study. Quantum computations revealed reaction enthalpies ranging from -409.9 to -509.1 kJ mol-1 for all the isomers/conformers of the products, indicating a strong exothermicity. Boltzmann relative populations were then established for different temperatures.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 45071 Orléans, France
| | - Antoine Roose
- IMT Nord Europe, Institut Mines-Télécom, University Lille, Centre for Energy and Environment, 59000 Lille, France; (A.R.); (M.N.R.)
| | - Valérie Vallet
- University Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France;
| | - Manolis N. Romanias
- IMT Nord Europe, Institut Mines-Télécom, University Lille, Centre for Energy and Environment, 59000 Lille, France; (A.R.); (M.N.R.)
| |
Collapse
|
2
|
Bedjanian Y, Szabó P, Lendvay G. Experimental and Theoretical Study of the Kinetics of the CH 3 + HBr → CH 4 + Br Reaction and the Temperature Dependence of the Activation Energy of CH 4 + Br → CH 3 + HBr. J Phys Chem A 2023; 127:6916-6923. [PMID: 37561546 PMCID: PMC10461296 DOI: 10.1021/acs.jpca.3c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Indexed: 08/11/2023]
Abstract
The rate coefficient of the reaction of CH3 with HBr was measured and calculated in the temperature range 225-960 K. The results of the measurements performed in a flow apparatus with mass spectrometric detection agree very well with the quasiclassical trajectory calculations performed on a previously developed potential energy surface. The experimental rate coefficients are described well with a double-exponential fit, k1(exp) = [1.44 × 10-12 exp(219/T) + 6.18 × 10-11 exp(-3730/T)] cm3 molecule-1 s-1. The individual rate coefficients below 500 K accord with the available experimental data as does the slightly negative activation energy in this temperature range, -1.82 kJ/mol. At higher temperatures, the activation energy was found to switch sign and it rises up to about an order of magnitude larger positive value than that below 500 K, and the rate coefficient is about 50% larger at 960 K than that around room temperature. The rate coefficients calculated with the quasiclassical trajectory method display the same tendencies and are within about 8% of the experimental data between 960 and 300 K and within 25% below that temperature. The significant variation of the magnitude of the activation energy can be reconciled with the tabulated heats of formation only if the activation energy of the reverse CH4 + Br reaction also significantly increases with the temperature.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut
de Combustion, Aérothermique, Réactivité et Environnement
(ICARE), CNRS, Orléans Cedex
2 45071, France
| | - Péter Szabó
- Department
of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven 3001, Belgium
- Royal
Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, Brussels 1180, Belgium
| | - György Lendvay
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, Magyar tudósok
krt. 2., Budapest H-1117, Hungary
- Center
for Natural Sciences, Faculty of Engineering, University of Pannonia, Egyetem u. 10., Veszprém 8200, Hungary
| |
Collapse
|
3
|
Bedjanian Y. Rate Coefficients of the Reactions of Fluorine Atoms with H 2S and SH over the Temperature Range 220-960 K. Molecules 2022; 27:8365. [PMID: 36500456 PMCID: PMC9739569 DOI: 10.3390/molecules27238365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Reaction F + H2S→SH + HF (1) is an effective source of SH radicals and an important intermediate in atmospheric and combustion chemistry. We employed a discharge-flow, modulated molecular beam mass spectrometry technique to determine the rate coefficient of this reaction and that of the secondary one, F + SH→S + HF (2), at a total pressure of 2 Torr and in a wide temperature range 220-960 K. The rate coefficient of Reaction (1) was determined directly by monitoring consumption of F atoms under pseudo-first-order conditions in an excess of H2S. The rate coefficient of Reaction (2) was determined via monitoring the maximum concentration of the product of Reaction (1), SH radical, as a function of [H2S]. Both rate coefficients were found to be virtually independent of temperature in the entire temperature range of the study: k1 = (1.86 ± 0.28) × 10-10 and k2 = (2.0 ± 0.40) × 10-10 cm3 molecule-1 s-1. The kinetic data from the present study are compared with previous room temperature measurements.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
4
|
Chattopadhyay A, Bedjanian Y, Romanias MN, Eleftheriou AD, Melissas VS, Papadimitriou VC, Burkholder JB. OH Radical and Chlorine Atom Kinetics of Substituted Aromatic Compounds: 4-chlorobenzotrifluoride ( p-ClC 6H 4CF 3). J Phys Chem A 2022; 126:5407-5419. [PMID: 35943137 DOI: 10.1021/acs.jpca.2c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms for the OH radical and Cl atom gas-phase reaction kinetics of substituted aromatic compounds remain a topic of atmospheric and combustion chemistry research. 4-Chlorobenzotrifluoride (p-chlorobenzotrifluoride, p-ClC6H4CF3, PCBTF) is a commonly used substituted aromatic volatile organic compound (VOC) in solvent-based coatings. As such, PCBTF is classified as a volatile chemical product (VCP) whose release into the atmosphere potentially impacts air quality. In this study, rate coefficients, k1, for the OH + PCBTF reaction were measured over the temperature ranges 275-340 and 385-940 K using low-pressure discharge flow-tube reactors coupled with a mass spectrometer detector in the ICARE/CNRS (Orléans, France) laboratory. k1(298-353 K) was also measured using a relative rate method in the thermally regulated atmospheric simulation chamber (THALAMOS; Douai, France). k1(T) displayed a non-Arrhenius temperature dependence with a negative temperature dependence between 275 and 385 K given by k1(275-385 K) = (1.50 ± 0.15) × 10-14 exp((705 ± 30)/T) cm3 molecule-1 s-1, where k1(298 K) = (1.63 ± 0.03) × 10-13 cm3 molecule-1 s-1 and a positive temperature dependence at elevated temperatures given by k1(470-950 K) = (5.42 ± 0.40) × 10-12 exp(-(2507 ± 45) /T) cm3 molecule-1 s-1. The present k1(298 K) results are in reasonable agreement with two previous 296 K (760 Torr, syn. air) relative rate measurements. The rate coefficient for the Cl-atom + PCBTF reaction, k2, was also measured in THALAMOS using a relative rate technique that yielded k2(298 K) = (7.8 ± 2) × 10-16 cm3 molecule-1 s-1. As part of this work, the UV and infrared absorption spectra of PCBTF were measured (NOAA; Boulder, CO, USA). On the basis of the UV absorption spectrum, the atmospheric instantaneous UV photolysis lifetime of PCBTF (ground level, midlatitude, Summer) was estimated to be 3-4 days, assuming a unit photolysis quantum yield. The non-Arrhenius behavior of the OH + PCBTF reaction over the temperature range 275 to 950 K is interpreted using a mechanism for the formation of an OH-PCBTF adduct and its thermochemical stability. The results from this study are included in a discussion of the OH radical and Cl atom kinetics of halogen substituted aromatic compounds for which only limited temperature-dependent kinetic data are available.
Collapse
Affiliation(s)
- Aparajeo Chattopadhyay
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071 Orléans Cedex 2, France
| | - Manolis N Romanias
- Center for Energy and Environment, Institut Mines-Télécom Nord Europe, Université Lille, F-59000 Lille, France
| | - Angeliki D Eleftheriou
- Laboratory of Photochemistry and Chemical Kinetics, Department of Chemistry, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | | | - Vassileios C Papadimitriou
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States.,Laboratory of Photochemistry and Chemical Kinetics, Department of Chemistry, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - James B Burkholder
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3327, United States
| |
Collapse
|
5
|
Bedjanian Y. Experimental Study of the Reaction of O( 3P) with Carbonyl Sulfide between 220 and 960 K. J Phys Chem A 2022; 126:4080-4086. [PMID: 35703083 DOI: 10.1021/acs.jpca.2c02787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of a ground-state O atom with carbonyl sulfide is of interest for atmospheric (stratosphere and hot near-source volcanic plume) and combustion chemistry. In the present work, we employed a discharge-flow system combined with a modulated molecular beam mass spectrometry technique to measure the rate constant and products of the O + OCS reaction. The overall rate constant was determined either from the kinetics of the reaction product, SO radical, formation or under pseudo-first-order conditions from the decays of OCS in an excess of oxygen atoms: k1 = 1.92 × 10-12 × (T/298)2.08 exp(-1524/T) cm3 molecule-1 s-1 at T = 220-960 K, with conservative uncertainty of 20%. The yield of another reaction product, CO2, was found to increase from 3.55% at T = 455 K to 14.2% at T = 960 K, resulting in the following Arrhenius expression for the rate constant of the minor (S + CO2 forming) reaction channel: k1b = 4.19 × 10-11 exp(-4088/T) cm3 molecule-1 s-1 at T = 455-960 K (with an uncertainty of 25%). The kinetic and mechanistic data from the present work are discussed in comparison with previous experimental and computational studies.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| |
Collapse
|
6
|
Bedjanian Y. Rate constant and products of the reaction of O(
3
P) atoms with thiirane over the temperature range 220–950 K. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique Réactivité et Environnement (ICARE), CNRS, Cedex Orléans France
| |
Collapse
|
7
|
Rate constants for the reaction of SO with NO
2
over the temperature range 220–960 K. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Allani A, Bedjanian Y, Papanastasiou DK, Romanias MN. Reaction Rate Coefficient of OH Radicals with d 9-Butanol as a Function of Temperature. ACS OMEGA 2021; 6:18123-18134. [PMID: 34308045 PMCID: PMC8296604 DOI: 10.1021/acsomega.1c01942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
d 9-Butanol or 1-butan-d 9-ol (D9B) is often used as an OH radical tracer in atmospheric chemistry studies to determine OH exposure, a useful universal metric that describes the extent of OH radical oxidation chemistry. Despite its frequent application, there is only one study that reports the rate coefficient of D9B with OH radicals, k 1(295 K), which limits its usefulness as an OH tracer for studying processes at temperatures lower or higher than room temperature. In this study, two complementary experimental techniques were used to measure the rate coefficient of D9B with OH radicals, k 1(T), at temperatures between 240 and 750 K and at pressures within 2-760 Torr. A thermally regulated atmospheric simulation chamber was used to determine k 1(T) in the temperature range of 263-353 K and at atmospheric pressure using the relative rate method. A low-pressure (2-10 Torr) discharge flow tube reactor coupled with a mass spectrometer was used to measure k 1(T) at temperatures within 240-750 K, using both the absolute and relative rate methods. The agreement between the two experimental aproaches followed in this study was very good, within 6%, in the overlapping temperature range, and k 1(295 ± 3 K) was 3.42 ± 0.26 × 10-12 cm3 molecule-1 s-1, where the quoted error is the overall uncertainty of the measurements. The temperature dependence of the rate coefficient is well described by the modified Arrhenius expression, k 1 = (1.57 ± 0.88) × 10-14 × (T/293)4.60±0.4 × exp(1606 ± 164/T) cm3 molecule-1 s-1 in the range of 240-750 K, where the quoted error represents the 2σ standard deviation of the fit. The results of the current study enable an accurate estimation of OH exposure in atmospheric simulation experiments and expand the applicability of D9B as an OH radical tracer at temperatures other than room temperature.
Collapse
Affiliation(s)
- Amira Allani
- IMT
Lille Douai, Univ. Lille, SAGE, Lille F-59000, France
| | - Yuri Bedjanian
- Institut
de Combustion, Aérothermique, Réactivité et Environnement
(ICARE), CNRS, Orléans Cedex
2 45071, France
| | | | | |
Collapse
|
9
|
|
10
|
Bedjanian Y. Rate Constant of the Reaction of OH Radicals with HBr over the Temperature Range 235-960 K. J Phys Chem A 2021; 125:1754-1759. [PMID: 33605732 DOI: 10.1021/acs.jpca.1c00251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of the reaction of hydroxyl radicals with HBr, important in atmospheric and combustion chemistry, has been studied in a discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer in the temperature range 235-960 K. The rate constant of the reaction OH + HBr → H2O + Br (1) was determined using both a relative rate method (using the reaction of OH with Br2 as a reference) and absolute measurements, monitoring the kinetics of OH consumption under pseudo-first-order conditions in excess of HBr. The observed U-shaped temperature dependence of k1 is well represented by the sum of two exponential functions: k1 = 2.53 × 10-11 exp(-364/T) + 2.79 × 10-13 exp(784/T) cm3 molecule-1 s-1 (with an estimated conservative uncertainty of 15% at all temperatures). This expression for k1, recommended for T = 240-960 K, combined with that from previous low temperature studies, k1 = 1.06 × 10-11 (T/298)-0.9 cm3 molecule-1 s-1 at T = 23-240 K, allows to describe the temperature behavior of the rate constant over an extended temperature range 23-960 K. The current direct measurements of k1 at temperatures above 460 K, the only ones to date, provide an experimental dataset for use in combustion and volcanic plume modeling and an experimental basis to test theoretical calculations.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071, Orléans Cedex 2, France
| |
Collapse
|
11
|
Bedjanian Y. Rate constants for the reactions of F atoms with H
2
and D
2
over the temperature range 220‐960 K. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion Aérothermique Réactivité et Environnement (ICARE) CNRS 45071, Orléans Cedex 2 France
| |
Collapse
|
12
|
Osseiran N, Romanias MN, Gaudion V, Angelaki ME, Papadimitriou VC, Tomas A, Coddeville P, Thevenet F. Development and validation of a thermally regulated atmospheric simulation chamber (THALAMOS): A versatile tool to simulate atmospheric processes. J Environ Sci (China) 2020; 95:141-154. [PMID: 32653174 DOI: 10.1016/j.jes.2020.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/24/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric simulation chambers, are unique tools for investigating atmospheric processes in the gas and heterogeneous phases. They can provide a controlled yet realistic environment that simulates atmospheric conditions. In the current study, a Teflon atmospheric simulation chamber of 600 L, named THALAMOS (thermally regulated atmospheric simulation chamber) has been developed and cross-validated. THALAMOS can be operated over the temperature range 233 to 373 K under both static and flow conditions. It is equipped with state of the art instrumentation (selective ion flow tube mass spectrometry (SIFT-MS), long path Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), various analyzers) for the in-line monitoring of both reactants and products. THALAMOS was validated by measuring the rate coefficients of well documented reactions, i.e. the reaction of ethanol with OH radicals and the reaction of dichloromethane with Cl atoms, in a wide temperature range. Two different detection techniques were used in parallel, FTIR and SIFT-MS, to internally cross-validate the obtained results. The measured rate coefficients are in excellent agreement, both between each other and with the literature recommended values. Furthermore, the gas phase oxidation of toluene by Cl atoms (kinetics and product yields) was studied in the temperature range of 253 to 333 K. To the best of our knowledge, THALAMOS is a unique facility on national level and among a few smog chambers internationally that can be operated in such a wide temperature range providing the scientific community with a versatile tool to simulate both outdoor and indoor physicochemical processes.
Collapse
Affiliation(s)
| | | | | | - Maria E Angelaki
- Laboratory of photochemistry and chemical kinetics (LAPKIN), University of Crete, Heraklion 71003, Crete, Greece
| | - Vassileios C Papadimitriou
- Laboratory of photochemistry and chemical kinetics (LAPKIN), University of Crete, Heraklion 71003, Crete, Greece.
| | | | | | | |
Collapse
|
13
|
Zhang X, Sangwan M, Yan C, Koshlyakov PV, Chesnokov EN, Bedjanian Y, Krasnoperov LN. Disproportionation Channel of the Self-reaction of Hydroxyl Radical, OH + OH → H 2O + O, Revisited. J Phys Chem A 2020; 124:3993-4005. [PMID: 32396004 DOI: 10.1021/acs.jpca.0c00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The rate constant of the disproportionation channel 1a of the self-reaction of hydroxyl radicals OH + OH → H2O + O (1a) was measured at ambient temperature as well as over an extended temperature range to resolve the discrepancy between the IUPAC recommended value (k1a = 1.48 × 10-12 cm3 molecule-1 s-1, discharge flow system, Bedjanian et al. J. Phys. Chem. A 1999, 103, 7017) and a factor of ca. 1.8 higher value by pulsed laser photolysis (2.7 × 10-12 cm3 molecule-1 s-1, Bahng et al. J. Phys. Chem. A 2007, 111, 3850, and 2.52 × 10-12 cm3 molecule-1 s-1, Altinay et al. J. Phys. Chem. A 2014, 118, 38). To resolve this discrepancy, the rate constant of the title reaction was remeasured in three laboratories using two different experimental techniques, namely, laser-pulsed photolysis-transient UV absorption and fast discharge flow system coupled with mass spectrometry. Two different precursors were used to generate OH radicals in the laser-pulsed photolysis experiments. The experiments confirmed the low value of the rate constant at ambient temperature (k1a = (1.4 ± 0.2) × 10-12 cm3 molecule-1 s-1 at 295 K) as well as the V-shaped temperature dependence, negative at low temperatures and positive at high temperatures, with a turning point at 427 K: k1a = 8.38 × 10-14 × (T/300)1.99 × exp(855/T) cm3 molecule-1 s-1 (220-950 K). Recommended expression over the 220-2384 K temperature range: k1a = 2.68 × 10-14 × (T/300)2.75 × exp(1165/T) cm3 molecule-1 s-1 (220-2384 K).
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| | - Manuvesh Sangwan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| | - Chao Yan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| | - Pavel V Koshlyakov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgeni N Chesnokov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, Orléans 45071, Cedex 2, France
| | - Lev N Krasnoperov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, New Jersey, United States
| |
Collapse
|
14
|
Bedjanian Y. Temperature‐dependent rate constants for the reactions of chlorine atom with methanol and Br 2. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE)CNRS 45071 Orléans Cedex 2 France
| |
Collapse
|
15
|
Bedjanian Y. Rate constant of the BrO + BrO reaction over the temperature range 220‐950 K. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE)CNRS Orléans Cedex 2 France
| |
Collapse
|
16
|
Bedjanian Y. Temperature-Dependent Kinetic Study of the Reaction of Hydroxyl Radicals with Hydroxyacetone. J Phys Chem A 2020; 124:2863-2870. [PMID: 32172569 DOI: 10.1021/acs.jpca.0c00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetics of the reaction of OH radicals with hydroxyacetone has been investigated as a function of temperature at a total pressure of helium of 2.0-2.1 Torr and over an extended temperature range of T = 250-830 K and as a function of pressure at T = 301 K in the pressure range 1.0-10.4 Torr. The rate constant of the reaction OH + CH3C(O)CH2OH → products (1) was measured using both absolute (from the kinetics of OH consumption in excess of hydroxyacetone) and relative rate methods (k1 = 4.7 × 10-22 × T3.25 exp (1410/T) cm3 molecule-1 s-1 at T = 250-830 K). The present data combined with selected previous temperature-dependent studies of reaction (1) yield k1 = 4.4 × 10-20 × T2.63 exp (1110/T) cm3 molecule-1 s-1, which is recommended from the present work at T = 230-830 K (with conservative uncertainty of 20% at all temperatures). k1 was found to be independent of the pressure in the range from 1.0 to 10.4 Torr of He at T = 301 K. The present results are compared with previous experimental and theoretical data.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| |
Collapse
|
17
|
Bedjanian Y. Temperature-Dependent Rate Constant for the Reaction of Hydroxyl Radical with 3-Hydroxy-3-methyl-2-butanone. J Phys Chem A 2019; 123:10446-10453. [PMID: 31668071 DOI: 10.1021/acs.jpca.9b08714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactions of hydroxyketones with OH radicals are of importance in atmospheric chemistry and represent a theoretical interest because they proceed through two reaction pathways, formation of a hydrogen-bonded prereactive complex and direct H-atom abstraction. In this work, the kinetics of the reaction of OH radicals with 3-hydroxy-3-methyl-2-butanone (3H3M2B) has been investigated at 2 Torr total pressure of helium over a wide temperature range, T = 278-830 K, using a discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer. The rate constant of the reaction OH + 3H3M2B → products (1) was determined using both a relative rate method and absolute measurements under pseudo-first-order conditions, monitoring the kinetics of OH consumption in excess of 3H3M2B, k1= 5.44 × 10-41T9.7exp (2820/T) and 1.23 × 10-11 exp (-970/T) cm3 molecule-1 s-1 at T = 278-400 and 400-830 K, respectively (with a total uncertainty of 20% at all temperatures). The rate constant of the reaction OH + Br2 → HOBr + Br (2) was measured as a part of this study using both absolute and relative rate methods: k2 = 2.16 × 10-11 exp (207/T) cm3 molecule-1 s-1 at T = 220-950 K (with conservative 10% uncertainty). The kinetic data from the present study are discussed in comparison with previous measurements and theoretical calculations.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS , 45071 Orléans Cedex 2, France
| |
Collapse
|
18
|
Bedjanian Y. Temperature‐dependent rate constant for the reaction of F atoms with HNO
3. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de CombustionAérothermique, Réactivité et Environnement (ICARE) CNRS Orléans Cedex 2 France
| |
Collapse
|
19
|
Bedjanian Y. Kinetic study of the F2 + C2H4 reaction: Disagreement between theory and experiment resolved? Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Bedjanian Y, Kalyan C. Rate constants of the reactions of O(
3
P) atoms with Br
2
and NO
2
over the temperature range 220‐950 K. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, AérothermiqueRéactivité et Environnement (ICARE)CNRS Orléans France
| | - Chaitanya Kalyan
- Institut de Combustion, AérothermiqueRéactivité et Environnement (ICARE)CNRS Orléans France
| |
Collapse
|
21
|
Bedjanian Y, Romanias MN. Kinetics and Products of the Reactions of F2
with Br-Atom and Br2. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuri Bedjanian
- ICARE; CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| | | |
Collapse
|
22
|
Bedjanian Y. Reaction F + C 2H 4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K. J Phys Chem A 2018. [PMID: 29513993 DOI: 10.1021/acs.jpca.8b01371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics and products of the reaction of F + C2H4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k1 = (1.78 ± 0.30) × 10-10 cm3 molecule-1 s-1, determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C2H4, was found to be temperature independent in the temperature range used. H, C2H3F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k1b/ k1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k1a/ k1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C2H3F) and H atom abstraction (HF + C2H3) pathways of the title reaction: k1a = (0.80 ± 0.07) × 10-10exp(189 ± 37/ T) and k1b = (1.26 ± 0.13) × 10-10exp(-414 ± 45/ T) cm3 molecule-1 s-1, respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k1a and k1b. The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| |
Collapse
|
23
|
Bedjanian Y. Kinetics and Products of the Reaction of OH Radicals with ClNO from 220 to 940 K. J Phys Chem A 2018; 122:916-922. [PMID: 29304283 DOI: 10.1021/acs.jpca.7b11946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics and products of the reaction of OH radicals with ClNO have been studied in a flow reactor coupled with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium and over a wide temperature range, T = 220-940 K. The rate constant of the reaction OH + ClNO → products was determined under pseudo-first order conditions, monitoring the kinetics of OH consumption in excess of ClNO: k1 = 1.48 × 10-18 × T2.12 exp(146/T) cm3 molecule-1 s-1 (uncertainty of 15%). HOCl, Cl, and HONO were observed as the reaction products. As a result of quantitative detection of HOCl and Cl, the partial rate constants of the HOCl + NO and Cl + HONO forming reaction pathways were determined in the temperature range 220-940 K: k1a = 3.64 × 10-18 × T1.99 exp(-114/T) and k1b = 4.71 × 10-18 × T1.74 exp(246/T) cm3 molecule-1 s-1 (uncertainty of 20%). The dynamics of the title reaction and, in particular, non-Arrhenius behavior observed for both k1a and k1b in a wide temperature range, seems to be an interesting topic for theoretical research.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071 Orléans Cedex 2, France
| |
Collapse
|
24
|
Bedjanian Y. Kinetics and Products of the Reactions of Fluorine Atoms with ClNO and Br2 from 295 to 950 K. J Phys Chem A 2017; 121:8341-8347. [DOI: 10.1021/acs.jpca.7b08956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071 Orléans Cedex 2, France
| |
Collapse
|
25
|
Morin J, Bedjanian Y. Kinetic and Mechanistic Study of the Thermal Decomposition of Ethyl Nitrate. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Julien Morin
- Institut de Combustion; Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| | - Yuri Bedjanian
- Institut de Combustion; Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| |
Collapse
|
26
|
Bedjanian Y, Morin J. Reaction of O( 3P) with C 3H 6: Yield of the Reaction Products as a Function of Temperature. J Phys Chem A 2017; 121:1553-1562. [PMID: 28152309 DOI: 10.1021/acs.jpca.6b12739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction of oxygen atoms with propene is an important step in combustion processes particularly affecting the profiles of intermediate species and flame speed. The relative importance of different pathways of this multichannel reaction at different temperatures represents significant theoretical interest and is essential for modeling combustion systems. In the present work, we report the first experimental investigation of the products of the O(3P) + C3H6 reaction over an extended temperature range (298-905 K). By using a low pressure flow reactor combined with a quadrupole mass spectrometer, the yields of the five reaction products, H atom, CH3, C2H5, CH2O and OH were determined as a function of temperature between 298 and 905 K: 0.0064 × (T/298)2.74 exp(765/T), 1.41 × (T/298)-1.0 exp(-335/T), 0.92 × (T/298)-1.41 exp(-381/T), 0.17 × (T/298)0.165 exp(-36/T), and 0.0034 × (T/298)2.34 exp(788/T), respectively (corresponding to the variation of the respective yields between 298 and 905 K in the ranges 0.08-0.31, 0.46-0.32, 0.26-0.12, 0.15-0.19, and 0.05-011), independent of pressure in the range 1-8 Torr of helium. For the yields of the minor reaction products, H2 and CH3CHO the upper limits were determined as 0.2 and 0.05, respectively. These results are compared with the experimental data and theoretical calculations available in the literature.
Collapse
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS and Université d'Orléans , 45071 Orléans Cedex 2, France
| | - Julien Morin
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS and Université d'Orléans , 45071 Orléans Cedex 2, France
| |
Collapse
|
27
|
Morin J, Bedjanian Y, Romanias MN. Rate Constants of the Reactions of O(3P) Atoms with Ethene and Propene over the Temperature Range 230-900 K. INT J CHEM KINET 2016. [DOI: 10.1002/kin.21056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julien Morin
- Institut de Combustion; Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| | - Yuri Bedjanian
- Institut de Combustion; Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| | - Manolis N. Romanias
- Institut de Combustion; Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| |
Collapse
|
28
|
Morin J, Bedjanian Y. Reaction of O(3P) with C2H4: Yield of the Reaction Products as a Function of Temperature. J Phys Chem A 2016; 120:9063-9070. [DOI: 10.1021/acs.jpca.6b09803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Morin
- Institut
de Combustion, Aérothermique, Réactivité et Environnement
(ICARE), CNRS and Université d’Orléans, 45071 Orléans
Cedex 2, France
| | - Yuri Bedjanian
- Institut
de Combustion, Aérothermique, Réactivité et Environnement
(ICARE), CNRS and Université d’Orléans, 45071 Orléans
Cedex 2, France
| |
Collapse
|
29
|
Morin J, Bedjanian Y. Thermal Decomposition of Isopropyl Nitrate: Kinetics and Products. J Phys Chem A 2016; 120:8037-8043. [PMID: 27676070 DOI: 10.1021/acs.jpca.6b06552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetics and products of the thermal decomposition of isopropyl nitrate (IPN, C3H7NO3) have been studied using a low pressure flow reactor combined with a quadrupole mass spectrometer. The rate constant of IPN decomposition was measured as a function of pressure (1-12.5 Torr of helium) and temperature in the range 473-658 K using two methods: from kinetics of nitrate loss and those of reaction product (CH3 radical) formation. The fit of the observed falloff curves with two parameter expression [Formula: see text] provided the following low and high pressure limits for the rate constant of IPN decomposition: k0 = 6.60 × 10-5exp(-15190/T) cm3 molecule-1 s-1 and k∞ = 1.05 × 1016 exp(-19850/T) s-1, respectively, which allows one to determine (via the above expression) the values of k1 (with 20% uncertainty) in the temperature and pressure range of the study. It was observed that thermal decomposition of IPN proceeds through initial breaking of the O-NO2 bond, leading to formation of NO2 and isopropoxy radical (CH3)2CHO, which rapidly decomposes forming CH3 and acetaldehyde as final products. The yields of NO2, CH3, and acetaldehyde upon decomposition of isopropyl nitrate were measured to be (0.98 ± 0.15), (0.96 ± 0.14), and (0.99 ± 0.15), respectively. In addition, the kinetic data were used to determine the O-NO2 bond dissociation energy in isopropyl nitrate, 38.2 ± 4.0 kcal mol-1.
Collapse
Affiliation(s)
- Julien Morin
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS and Université d'Orléans , 45071 Orléans Cedex 2, France
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS and Université d'Orléans , 45071 Orléans Cedex 2, France
| |
Collapse
|
30
|
Morin J, Bedjanian Y, Romanias MN. Kinetics and Products of the Reactions of Ethyl and n
-Propyl Nitrates with OH Radicals. INT J CHEM KINET 2016. [DOI: 10.1002/kin.21037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Julien Morin
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| | - Manolis N. Romanias
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE); CNRS and Université d'Orléans; 45071 Orléans Cedex 2 France
| |
Collapse
|
31
|
Bedjanian Y, Morin J, Romanias MN. Gas-Phase Reaction of Hydroxyl Radical with p-Cymene over an Extended Temperature Range. J Phys Chem A 2015; 119:11076-83. [DOI: 10.1021/acs.jpca.5b08478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion, Aérothermique,
Réactivité et Environnement (ICARE), CNRS and Université d’Orléans, 45071 Cedex 2, Orléans, France
| | - Julien Morin
- Institut de Combustion, Aérothermique,
Réactivité et Environnement (ICARE), CNRS and Université d’Orléans, 45071 Cedex 2, Orléans, France
| | - Manolis N. Romanias
- Institut de Combustion, Aérothermique,
Réactivité et Environnement (ICARE), CNRS and Université d’Orléans, 45071 Cedex 2, Orléans, France
| |
Collapse
|