1
|
Trallero J, Camacho M, Marín-García M, Álvarez-Marimon E, Benseny-Cases N, Barnadas-Rodríguez R. Properties and cellular uptake of photo-triggered mixed metallosurfactant vesicles intended for controlled CO delivery in gas therapy. Colloids Surf B Biointerfaces 2023; 228:113422. [PMID: 37356136 DOI: 10.1016/j.colsurfb.2023.113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The scientific relevance of carbon monoxide has increased since it was discovered that it is a gasotransmitter involved in several biological processes. This fact stimulated research to find a secure and targeted delivery and lead to the synthesis of CO-releasing molecules. In this paper we present a vesicular CO delivery system triggered by light composed of a synthetized metallosurfactant (TCOL10) with two long carbon chains and a molybdenum-carbonyl complex. We studied the characteristics of mixed TCOL10/phosphatidylcholine metallosomes of different sizes. Vesicles from 80 to 800 nm in diameter are mainly unilamellar, do not disaggregate upon dilution, in the dark are physically and chemically stable at 4 °C for at least one month, and exhibit a lag phase of about 4 days before they show a spontaneous CO release at 37 °C. Internalization of metallosomes by cells was studied as function of the incubation time, and vesicle concentration and size. Results show that large vesicles are more efficiently internalized than the smaller ones in terms of the percentage of cells that show TCOL10 and the amount of drug that they take up. On balance, TCOL10 metallosomes constitute a promising and viable approach for efficient delivery of CO to biological systems.
Collapse
Affiliation(s)
- Jan Trallero
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Camacho
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - Centre CERCA, Genomics of Complex Diseases, Barcelona, Spain
| | - Maribel Marín-García
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Elena Álvarez-Marimon
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Núria Benseny-Cases
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain; Consorcio para la Construcción Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Catalonia, Spain.
| | - Ramon Barnadas-Rodríguez
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
4
|
Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vitamin B 12 in Foods, Food Supplements, and Medicines-A Review of Its Role and Properties with a Focus on Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010240. [PMID: 36615431 PMCID: PMC9822362 DOI: 10.3390/molecules28010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Collapse
Affiliation(s)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
5
|
Exploration of Microneedle-assisted Skin Delivery of Cyanocobalamin formulated in Ultraflexible Lipid Vesicles. Eur J Pharm Biopharm 2022; 177:184-198. [PMID: 35787430 DOI: 10.1016/j.ejpb.2022.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Vitamin B12 (cyanocobalamin) deficiency is a widespread condition because of its different aetiologies, like malabsorption syndrome or lifestyles as strict veganism that is increasing its incidence and prevalence in developed countries. It has important haematological consequences that require pharmacological treatment. Current therapy consists of oral or parenteral supplements of cyanocobalamin; however, the oral route is discarded for malabsorption syndrome patients and the parenteral route is not well accepted generally. Topical treatments have been suggested as an alternative, but the molecular weight and hydrophilicity of cyanocobalamin limits its diffusion through the skin. Lipid vesicles can allow the transdermal absorption of molecules >500 Da. The aim of this work was to use different ultraflexible lipid vesicles (transfersomes and ethosomes) to enhance cyanocobalamin transdermal delivery. Vesicles were characterized and lyophilised for long-term stability. The ability to deliver cyanocobalamin through the skin was assessed in vitro using full-thickness porcine skin in Franz diffusion cells. As expected, the best transdermal fluxes were provided by ultraflexible vesicles, in comparison to a drug solution. Moreover, the pre-treatment of the skin with a solid microneedle array boosts the amount of drug that could potentially reach the systemic circulation.
Collapse
|
6
|
Guillot AJ, Jornet-Mollá E, Landsberg N, Milián-Guimerá C, Montesinos MC, Garrigues TM, Melero A. Cyanocobalamin Ultraflexible Lipid Vesicles: Characterization and In Vitro Evaluation of Drug-Skin Depth Profiles. Pharmaceutics 2021; 13:pharmaceutics13030418. [PMID: 33804652 PMCID: PMC8003749 DOI: 10.3390/pharmaceutics13030418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are the most common chronic inflammatory skin disorders, which importantly affect the quality of life of patients who suffer them. Among other causes, nitric oxide has been reported as part of the triggering factors in the pathogenesis of both conditions. Cyanocobalamin (vitamin B12) has shown efficacy as a nitric oxide scavenger and some clinical trials have given positive outcomes in its use for treating skin pathologies. Passive skin diffusion is possible only for drugs with low molecular weights and intermediate lipophilicity. Unfortunately, the molecular weight and hydrophilicity of vitamin B12 do not predict its effective diffusion through the skin. The aim of this work was to design new lipid vesicles to encapsulate the vitamin B12 to enhance its skin penetration. Nine prototypes of vesicles were generated and characterized in terms of size, polydispersity, surface charge, drug encapsulation, flexibility, and stability with positive results. Additionally, their ability to release the drug content in a controlled manner was demonstrated. Finally, we found that these lipid vesicle formulations facilitated the penetration of cyanocobalamin to the deeper layers of the skin. The present work shows a promising system to effectively administer vitamin B12 topically, which could be of interest in the treatment of skin diseases such as AD and psoriasis.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Enrique Jornet-Mollá
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Natalia Landsberg
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Carmen Milián-Guimerá
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| |
Collapse
|