1
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
2
|
Zhang L, Zhang H, Niu X, Zhang X, Chen X, Lei S, Ma S, Sun Z. Liangxue-Qushi-Zhiyang Decoction Ameliorates DNCB-Induced Atopic Dermatitis in Mice through the MAPK Signaling Pathway Based on Network Pharmacology. ACS OMEGA 2024; 9:17931-17944. [PMID: 38680355 PMCID: PMC11044150 DOI: 10.1021/acsomega.3c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
The traditional prescription of Liangxue-Qushi-Zhiyang decoction (LQZ) has been demonstrated to be efficacious in treating atopic dermatitis (AD), a chronic inflammatory skin disorder marked by intense itching, redness, rashes, and skin thickening. Nevertheless, there has been an inadequate systematic exploration of the potential targets, biological processes, and pathways for AD treatment through LQZ. The study objective was to evaluate the efficacy and possible mechanism of LQZ in AD mice. In our study, we identified the primary compounds of LQZ, analyzed hub targets, and constructed a network. Subsequently, the predicted mechanisms of LQZ in AD were experimentally studied and validated in vivo, as determined by network pharmacological analysis. A total of 80 serum components of LQZ were identified through ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), among which 49 compounds were absorbed into the bloodstream. Our results indicated that LQZ targets six putative key factors in the MAPK signaling pathway, which play essential roles in AD, namely, EGFR, p-MAPK1/3, p-MAPK14, IL-1β, IL-6, and TNF-α. We observed spleen coefficient, dermatitis scores, and ear thickness were all downregulated in 2,4-dinitrochlorobenzene (DNCB)-induced mice after LQZ treatment. Histological analysis of the dorsal and ear skin further revealed that LQZ significantly decreased skin inflammation, epidermal thickness, and mast cell numbers compared to the DNCB group. Our study demonstrated the effectiveness of LQZ in reducing epidermal and dermal damage in a mouse model of AD. Furthermore, our findings suggest that downregulating the MAPK signaling pathway could be a potential therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Huili Zhang
- Beijing
University of Chinese Medicine Dongfang Hospital, Beijing 100078, China
| | - Xiaoyu Niu
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Xuan Zhang
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Xingtong Chen
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Shengyi Lei
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Shengnan Ma
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Zhanxue Sun
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| |
Collapse
|
3
|
Shen F, Gao C, Wang M, Ding X, Zhao H, Zhou M, Mao J, Kuai L, Li B, Wang D, Zhang H, Ma X. Therapeutic effects of the Qingre-Qushi recipe on atopic dermatitis through the regulation of gut microbiota and skin inflammation. Heliyon 2024; 10:e26063. [PMID: 38380039 PMCID: PMC10877368 DOI: 10.1016/j.heliyon.2024.e26063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has highlighted a strong association between gut microbiota and the occurrence, development, prevention, and treatment of atopic dermatitis (AD). The regulation of gut microbial dysbiosis by oral traditional Chinese medicine (TCM) has garnered significant attention. In the treatment of AD, the TCM formula Qingre-Qushi Recipe (QRQS) has demonstrated clinical efficacy. However, both the therapeutic mechanisms of QRQS and its impact on gut microbiota remain unclear. Thus, our study aimed to assess the efficacy of QRQS and evaluate its influence on the composition and diversity of gut microbiota in AD animal models. First, we investigated the therapeutic effect of QRQS on AD using two animal models: filaggrin-deficient mice (Flaky tail, ft/ft) and MC903-induced AD-like mice. Subsequently, we explored its influence on the composition and diversity of gut microbiota. Our results demonstrated that QRQS treatment ameliorated the symptoms in both ft/ft mice and MC903-induced AD-like mice. It also reduced the levels of serum IgE and pro-inflammatory cytokines, including IL-1β, IL-4, IL-5, IL-9, IL-13, IL-17A, and TNF-α. Furthermore, QRQS remarkably regulated gut microbiota diversity by increasing Lactobacillaceae and decreasing Bacteroidales. The inflammatory factors in peripheral serum of ft/ft mice showed a close correlation with gut microbiota, as determined using the Spearman correlation coefficient. Additionally, PICRUSt analysis revealed an enrichment in ascorbate and aldarate metabolism, fatty acid metabolism and biosynthesis, and propanoate metabolism in the QRQS group compared to the ft/ft group. Finally, we identified liquiritin as the primary active ingredient of QRQS using ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Our findings revealed that QRQS improved AD-like symptoms and alleviated skin inflammation in ft/ft and MC903-induced mice. This suggests that modulating the gut microbiota may help elucidate its anti-inflammation activation mechanism, highlighting a new therapeutic strategy that targets the intestinal flora to prevent and treat AD.
Collapse
Affiliation(s)
- Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaojie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingyi Mao
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Dongming Wang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
4
|
Bai L, Zhang Y, Zheng C, Xu S, He Y, Yu G, Huang D, Huang Y, Li M, Xu C. Tanshinone IIA protects mouse testes from heat stress injury by inhibiting apoptosis and TGFβ1/Smad2/Smad3 signaling pathway. Cell Stress Chaperones 2023; 28:749-759. [PMID: 37610501 PMCID: PMC10746600 DOI: 10.1007/s12192-023-01367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Heat stress can cause testicular damage and affect male fertility. Tanshinone IIA (TSA) is a monomer substance derived from plants, with antioxidant and anti-apoptotic effects. Whether it can repair testicular damage caused by heat stress is unclear. This study aims to construct a mouse testicular heat stress injury model and intervene with TSA. Various methods such as histopathology, high-throughput sequencing, bioinformatics analysis, and molecular biology were used to investigate whether TSA can alleviate heat stress-induced testicular injury and its mechanism. Results showed that heat stress significantly reduced the diameter of the mouse seminiferous tubules, increased cell apoptosis in the testicular tissue, and significantly decreased testosterone levels. After TSA intervention, testicular morphology and cell apoptosis improved significantly, and testosterone secretion function was restored. High-throughput transcriptome sequencing found that key differentially expressed genes between the HS group and the control and TSA groups clustered in the apoptosis and TGFβ signaling pathways. Using western blot technology, we found that the HS group upregulated TGFβ1/Smad2/Smad3 pathway protein expression, causing cell apoptosis, testicular tissue organic lesions, and affecting testicular secretion function. Through TSA intervention, we found that it can inhibit TGFβ1/Smad2/Smad3 pathway protein expression, thereby restoring testicular damage caused by heat stress. This study confirms that TSA can effectively restore testicular damage caused by heat stress in mice, possibly by inhibiting the TGFβ1/Smad2/Smad3 pathway to suppress apoptosis.
Collapse
Affiliation(s)
- Lin Bai
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
- Guangxi Key Laboratory of Marine Drugs, Nanning, 530200, China
| | - Yaping Zhang
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Changmin Zheng
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Shifu Xu
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Yining He
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Guangqiang Yu
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Delun Huang
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Yulin Huang
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Mingxing Li
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530001, China
| | - Changlong Xu
- Nanning Second People's Hospital, Reproductive Medicine Center, Nanning, 530002, China.
| |
Collapse
|
5
|
Lu Y, Sun Y, Peng Y, Zhao X, Wang D, Zhang T, Qian F, Wang J. Inhibition of gasdermin D (GSDMD) as a promising therapeutic approach for atopic dermatitis. Int Immunopharmacol 2023; 124:110958. [PMID: 37741129 DOI: 10.1016/j.intimp.2023.110958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, erythema, and skin barrier dysfunction. Gasdermin D (GSDMD) is the key executioner of an inflammatory cell death mechanism known as pyroptosis. However, the role of GSDMD in the pathogenesis of AD remains unclear. Through the analysis of publicly available Gene Expression Omnibus (GEO) datasets, we observed an upregulation of Gsdmd mRNA in the skin tissue of AD patients. Moreover, we delved into the impact of GSDMD deletion and inhibition on AD-like skin lesions using a mouse model induced by the topical application of oxazolone (Oxa). We found that mice lacking GSDMD exhibited relieved AD signs and symptoms in terms of reduced skin thickness, scarring and scratching behavior compared to wild-type mice after induction of AD-like skin lesions. This was associated with decreased infiltration of inflammatory cells, reduced epidermal thickness, and decreased serum levels of IgE and IL-4. Western blot analysis further revealed decreased GSDMD cleavage in the skin of GSDMD knockout mice, and reduced expression of IL-1β and IL-18. Inhibition of GSDMD using the pharmacological agent disulfiram or the herbal compound matrine significantly attenuated the symptoms of AD-like skin lesions in wild-type mice, GSDMD cleavage and pro-inflammatory cytokines were reduced as well. Our results suggest that GSDMD-mediated pyroptosis plays a critical role in the development of AD-like skin lesions, and targeting GSDMD may be a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yiteng Lu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China; Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Peng
- Department of Dermatology, Jiading District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danjie Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongtong Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Qian
- Department of Pharmacy, Jiading District Hospital of Traditional Chinese Medicine, Shanghai, China.
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Cao G, Li J, Mao Z, Zhang Y. Oxymatrine Alleviates Collagen-Induced Arthritis in Mice by Regulating the Immune Balance of T Cells. Molecules 2023; 28:5879. [PMID: 37570855 PMCID: PMC10420974 DOI: 10.3390/molecules28155879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic immunity and autoimmune disorders. We have previously found that oxymatrine (OMT), a natural alkaloid, can alleviate rheumatoid arthritis without knowing whether OMT can alleviate rheumatoid arthritis through gut microbiota. In this study, we found that OMT can alleviate collagen-induced arthritis in mice and reconstruct the immune balance of Th1/Th2, Treg/Th17, and Tfr/Tfh cells. Colon transcriptome gene enrichment analysis indicated that oxymatrine may alleviate collagen induced arthritis in mice through immune system process pathway. Furthermore, OMT significantly altered the gut microbiota variety, changed the composition of microbial colonies, and reshaped the gut microbiota of collagen-induced arthritis (CIA) mice, which may participate in the regulation of the balance of Th1/Th2, Treg/Th17, and Tfr/Tfh cells to alleviate collagen-induced arthritis in mice.
Collapse
Affiliation(s)
| | | | | | - Yanli Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; (G.C.); (J.L.); (Z.M.)
| |
Collapse
|